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 In this paper, a new adaptive sliding mode control algorithm combining the adaptive PID sliding mode control 

with time delay estimation (TDE) technique is proposed for trajectory tracking of nonholonomic mobile robots. 

Conventional sliding mode control is used to compensate system uncertainties by approximate control, but it is 

sensitive to chattering because of the high switching gains. TDE technique is efficient to estimate the nonlinear 

terms in robot dynamics, but it exhibits a pulse-type error due to the discontinuous external disturbance. 

Integrating the above difficulties, a hybrid control scheme is proposed in this work. Time delay estimation based 

on adaptive sliding mode control aiming at overcoming the individual weaknesses while retaining the positive 

advantages. The simulation results demonstrate that the tracking errors under the proposed controller can be 

guaranteed to be uniformly ultimate bounded with acceptable small bound. 

 

 

 

Published by Y.X.Union. All rights reserved. 

Keywords： 

Adaptive PID sliding mode control 

Time delay estimation (TDE) 

Trajectory tracking 

Nonholonomic mobile robot 

 

 

1. Introduction 

Nonholonomic mobile robots have received a lot of attentions 

in the past decades for their feasibility, maneuverability, and wide 

practicability [1]-[3]. Their broad application domains involve 

industry, service to military, scientific research and other fields. 

To perform such complex and demanding tasks, mobile robots 

are required to follow the desired paths accurately [4]-[6]. 

The difficulties of controlling mobile robots include inherent 

nonlinearities, modeling uncertainties, coupling dynamics effects 

and unknown external disturbance [7]-[8]. Various robust control 

algorithms have been proposed to solve these problems, including 

adaptive control[7], [19], fuzzy control [9], [10]neural network 

[15], [16] time delay control [21], [22], [28], sliding mode control 

[12], [13]and so on. Among them, adaptive control has fixed 

structure and variable parameter, which is suitable for application 

in structural uncertainty, but it can not solve the non-structural 

uncertainty; Fuzzy control and neural networks control are good 

at solving nonlinear and uncertain robot dynamics, however, they 

employ numerous design parameter and complex rules that may 

be inefficient. 

SMC is a representative nonlinear control method, which is an 

effective way to compensation model uncertainties and external 

disturbance. It requires a suitable predefined uncertainty bound, if 

the switching gains of SMC are greater than the upper bound of 

uncertain terms in the system, it can cover a wide range of 

uncertainties. However, too large switching gains may cause 

chattering which will result in serious problems, such as 

mechanical and electronic damage to mobile robots. During 

recent years, in order to enhance the tracking performance and 

suppress the chattering phenomenon, various intelligent 

algorithms have been combined with SMC, including fuzzy 

sliding mode control [14], neural sliding mode [11]and so on. 

Although, these approaches eliminate the requirement for 

information from dynamics equation, they still have difficulties to 

get numerous parameters and design fuzzy rules. For this reason, 

adaptive sliding mode control (ASMC) has been proposed and 

attracts more and more attentions. Its switching gains are tuned 

regardless of the upper bound of the uncertainties terms. 

Some methods have been used for achieving ASMCs that do 

not need the upper bound of the uncertainties terms and reduce 

chattering. In [17]-, the switching gains of sliding mode control 

are tuned automatically, they are effective on compensating 

unknown terms. In [17], the switching gains are tuned by just a 

constant and chattering still happens before reaching the sliding 

manifold. Then, the boundary layer is proposed to reduce 

chattering, it has a tradeoff between tracking performance and 

chattering reduction [18]. As another approach in [19], switching 
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gains are tuned automatically through adaptive method based on 

bound layer, but there is a singular when the sliding variable 

crosses zero. In [20], the singularity problem is solved by 

designing a new adaptive law, but the control accuracy is varies 

with the sliding variables' change. It will be meaningful to design 

a new adaptive law that can simultaneously improve the accuracy 

and suppress chattering. 

Recently, Time-delay control (TDC) was proposed by 

combining with ASMC. TDC is a control technique that 

compensates system uncertainties by using a time-delayed signal 

of system variables. TDC has simple structure, easy to implement 

and has a strong robustness. TDC has been widely used to various 

model, such as underwater vehicles [21]-[23], robot manipulators 

[19], [20], [24]-[25], and mobile robots [26]-[29]. However TDE 

technique causes TDE errors because the presence of sampling 

step. The combination of ASMC and TDE showing better 

performance compared with [17] and [28]. 

In this paper, we proposed an ASMC based on TDE technique 

for tracking control problem of nonholonomic mobile robots. The 

proposed controller provides robustness against TDE errors [28] 

without the knowledge of uncertainty bound. The proposed 

adaptive law guarantees the sliding variables enter an small 

vicinity of sliding manifold with a finite time and then around it. 

In addition, the new adaptive law can achieve fast adaptation, and 

the effective of chattering is reduced obviously. And the posture 

of a mobile robot is frequently changed, the best switching gains 

in a particular posture may not suitable for other situations. 

TDE-based controller with a constant switching gains may show 

poor tracking performance [21]. 

The rest part of the paper is organized as follows. Section 2 

describes the dynamic model of nonholonomic mobile robot. In 

Section 3, TDE-based ASMC controller is proposed to improve 

the tracking performance and present the stability analysis. 

Simulations and experiments are carried out in Section 4 and 

Section 5 respectively to verify the effectiveness of the proposed 

controller. Conclusion is drawn in Section 6. 

2. System Modeling 

The dynamics of nonholonomic mobile robot can be found in 
[28]. The robot is driven by two driving wheels of radius r  

which is separated by distance 2L . The posture of robot in 

Cartesian coordinate system is denoted by [ ]Tq x y = , where, 

( , )x y  denotes the coordinate of the reference point C (center 

of mass) in Cartesian frame. The coordinate   denotes angle 

between local coordinate system [ ]c cC x y and Cartesian frame. 

The force analysis is depicted in Fig.1. The Euler-Lagrange based 

dynamics equations can be written as follows 

2 1
( sin cos ) cos ( ) sin 0r lmx md

r
        + + − + − =

 
(1) 

2 1
( cos sin ) sin ( ) cos 0r lmy md

r
        − − − + + =

 
(2) 

  
( sin cos ) ( ) 0l r

L
I md x y d

r
     + − − − − =

     
(3) 

Equations (1)-(3) are written compactly as follows 

( ) ( , ) ( ) ( ) ( ) ( )T

dM q q C q q q F q G q B q A q  + + + + = −
 

(4) 

where 

0 sin

( ) 0 cos

sin cos

m md

M q m md

md md I





 

 
 = −
 
 − 

,

0 0 cos

( , ) 0 0 sin

0 0 0

md

C q q md

 

 

 
 

=  
 
 

,
r

l






 
=  
 

,

( cos sin )m x y   = − + , 

cos cos
1

( ) sin sinB q
r

L L

 

 

 
 =
 
 − 

, ( ) 0G q = ,

 ( ) sin cosA q d = − − . 

m and I  are the mass and moment of inertia of the robot 

respectively. 3 3( )M q R   is the inertia matrix, 3 3( , )C q q R   

is a centripetal and Coriolis matrix associated with velocity and 

position, 3 1( )F q R  and 3 1( )G q R  are static and dynamic 

friction terms and gravity terms associated with velocity and 

position respectively, 
3 1

d R  is composed of unmodeled 

dynamics and bounded disturbances, 3 2( )B q R  is the input 

transformation matrix, 
2 1R  is the control input vector, 

1 3A R  is a nonholonomic constraints matrix, and R  is a 

Lagrange multiplier related with the constraints. 
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Fig. 1. Schematic force analysis for mobile robot. 

 

The compact equation of (4) can be written in a modified form 

as follows 

        ( ) ( ) ( , , , )M q M q q H q q q U= + =
  

(5) 

where 
.

( , , , ) [ ( ) ( )] ) ( , ( ) T

dH q q q M q M q q C q q q F q A  = − + + + + (6) 

                 ( )U B q =
    

(7) 

( , , , )H q q q   also contains unmodeled dynamics and external 

disturbances in practice. ( )M q  represents the nominal value of 

the inertia matrix. 

3. ASMC with TDE 

3.1 Controller design 

The control objective is to make the actual position ( )q t of 

robot track the reference position ( )dq t  precisely, where ( )dq t

represents the desired trajectory. To achieve the control objective, 
we define a PID sliding variable as follows 

           0
( ) ( ) ( ) ( )D

t

Ps t e t K e t K e u du= + + 
 

(8) 

where 
3

1 2 3( ) [ ( ), ( ), ( )]Te t e t e t e t R=   is error vector, in which 

( ) ( ) ( )de t q t q t= − , 
3 3

1 2 3( , , )D D D DK diag k k k R =  , and 

3 3

1 2 3( , , )P P P PK diag k k k R =  . It is noted that DK  and PK  

in (8) are designed parameters related to stability. With ( ) 0s t = ,  
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Fig. 2. Schematic diagram of the proposed algorithm. 

 

We can get the system target error dynamics as follows: 

             
( ) ( ) ( ) 0D Pe t K e t K e t+ + =

   
(9) 

with ( ) 0s t = , combining equation (5) and (9), the control law can 

be designed as follows 

         
ˆ( ) [ ( ) ( ) ( )] ( )d D PU t M q t K e t K e t H t= + + +

 
(10) 

where ˆ ( )H t  is an estimate of ( )H t  in (5), using the concept of 

time delay estimate, and using (5), the estimated value of ( )H t  

is made as follows 

     
( ) ˆ ( ) ( ) ( ) ( )H t H t H t L U t L Mq t L = − = − − −

 
(11) 

where L  is a small sampling time.  

The method is called TDE, which calculates the unknown 

dynamics of the system by the estimated function that only needs 

the values of the immediately past states derivatives and previous 

control inputs. It is computationally simple and easy to 

implement. Because time-delayed information is easy to get, we 

can get easily the estimation of the unknown dynamics of the 

system and external disturbance. 

   Substituting (11) into (10), we have 

( ) ( ) ( ) [ ( ) %( ) ( )]d D PU t Mq t L U t L M q t K e t K e t= − − + − + + + (12) 

Substituting the control input ( )U t  into robot dynamics (5), the 

system dynamics is 

          
ˆ[ ( ) ( ) ( )] ( ) ( )D PM e t K e t K e t H t H t+ + = −

 
(13) 

Ideally infinite sampling frequency results infinitesimally 

small sampling time, hence, ˆ ( )H t  is very close to ( )H t . The 

system dynamics equation becomes the desired dynamics (9). 
However, due to sensor response time and computational time, 
sampling time remains above zero. Based on the reasons, we 
define a bounded TDE error 

                 
ˆ( ) ( )H t H t = −     (14) 

The TDE error will always exist and it exhibits a pulse-type 

error due to the discontinuous disturbance. So it is important to 

suppress this TDE error by using another control algorithm. We 

propose ASMC and add it to (2), then 

TDE

ASMC desired dynamics

( ) ( ) ( )

ˆ      [ ( ) ( ) ( )] ( ( ) ( ( )))

= − − + −

+ + + + d D P

U t Mq t L U t L

M q t K e t K e t M K t sgn s t

  

(15) 

The proposed control scheme (see Fig.2) contains three parts: a 

linear feedback control term that drives the closed-loop system to 

follow the desired trajectory, TDE term that eliminates the 

accurate requirement to robot dynamic equation, and a AISMC 

term that suppresses the TDE error and against parameter 

variations. 
3 3

1 2 3
ˆ ( ) ( , , )K t diag k k k R =  is a positive switching gain 

proposed by 

             

( )ˆ ( ) { } ( )t

i i iK t a b s t 


= + 
  

 (16) 

where
ia  and 

ib  are tunable positive gains related to adaptive 

speed and ( )t  is defined as ( ( ) )sgn s t 

− with a positive 

parameter  that is related to adaptation speed. The sign 

function 1 2( ) [ ( ), ( ),..., ( )]T n

nsgn x sgn x sgn x sgn x R=   is 

defined as  

           

1, ( ) 0
( )

1, 0

i

i

i

if x t
sgn x

if x


= 

−    

(17) 

The proposed adaptive law does not need the upper bound of the 
uncertain and unmodeled terms. In the gain dynamics in (16), when 

( )s t 

 , the ˆ ( ) 0K t



 , the switching gain ˆ ( )ik t  increases 

until ( )s t 

 . That is to say, when the inequality ( )s t 


  

is satisfied, the switching gain ˆ ( )ik t  keeps increasing, and the 

sliding variable ( )s t  is close to the vicinity of the sliding manifold 

quickly. Once the sliding variable enters the vicinity of the sliding 

manifold, ( )s t 

 , the switching gain ˆ ( )ik t  decreases fast 

because it is inversely proportional to the sliding variable. In 
general, the proposed adaptive law can achieve better tracking 
performance and can reduce chattering due to its fast adaption 

speed. 

3.2Stability analysis 

The system under the proposed scheme is uniformly ultimately 

bounded (UUB). Before we show the main analysis result, we 

give two Lemmas that will be used in the next proof process. 

Lemma 1: The TDE error i  is bounded by a constant i
+

 if 

the control gain matrix M  in (15) satisfies the following 

condition 

1( ( )) 1I M q t M−− 
           

(18) 

Lemma 2: The switching gain ˆ ( )ik t  is upper bounded by a 

positive constant ˆ
ik   as follows 

      
ˆ ˆ( )i ik t k

               
(19) 

Theorem 1: Considering the mobile robot (5) controlled by (15) 

and (16), the closed-loop system is UUB if the following 

condition is satisfied 

            
( )2

2
1

n

i

s  
=

 +
     

(20) 
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where   is the maximum value of 1 2

1

1 ˆ( )
n

i i i

i i

M K
a

− +

=

− . In 

addition, the sliding variables enter the vicinity of the sliding 
manifold within a finite time, and then they are UUB.  

Proof: We choose a Lyapunov function as follows 

1 2

1

1 1 1 ˆ( )
2 2

− +

=

= + −
n

T

i i

i i

V s s M K
a  

    
   

(21) 

Its time derivative is 

1

1

1 ˆ ˆ( )
n

T

i i i

i i

V s s M K K
a




− +

=

= − −
        

(22) 

Substitute (5) and (8) into (22), one yields 
1

1

1

[ ( ) ]

1 ˆ ˆ( )

T

d D P

n

i i i

i i

V s q M U H K e K e

M K K
a



−


− +

=

= − − + +

− −
      

(23) 

We need to consider two cases: ( )s t 



 
and ( )s t 


 . 

In the case of ( )s t 

 , substitute (11), (15) and (16) into 

(23), we have 

  

1 1 1

1

1 1 1

1

1 1

1

ˆ[ ]

[

ˆ ]

ˆ[ ( ) ( )]

n

i i i i i i i i i i i

i

n

i i i i i i i i i

i

i i

n

i i i i i i i i

i

V M s M b M s K b

M s M b M s

K b

M s b K M

  

  

  

− − + − +

=

− − + − +

=

− + − +

=

= − − +

 − −

+

= − + −






   

 

 (24) 

If 
1ˆ

i iK M − +  is satisfied, 0V  . It means that the sliding 

variable s  arrives at the range is   within a finite time 

0t  . 

Even though within a finite time, the sliding variable arrives at 

the vicinity of the sliding manifold is  , it may cross the 

acceptance layer   since V is not guaranteed to be 

non-positive in this vicinity. If the sliding variable ( )s t  is in the 

range is  , V  becomes negative again. 

Now, we obtain the upper bound of 
2

s , which will be 

satisfied when the sliding variable ( )s t  enters the region ‖

( )s t 

 . It can be seen in (21) the Lyapunov function V  is 

bounded as 

    

2 2 1 2

2 2
1

1 1 1 1 ˆ( )
2 2 2

n

i i i

i i

s V s M K
a

− +

=

  + −
    

(25) 

in which 
1 2

1

1 1 ˆ( )
2

n

i i

i i

M K
a

− +

=

− is bounded, because 
1

iM − +
is 

constant and ˆ
iK  is bounded according to Lemma 2. Then one 

has 

          

2

1 1

1 1

2 2

n n

i i

V  
= =

 + 
    

(26) 

According to (25) and (26), one can get 

         

2 2

2
1 1

1 1 1

2 2 2

n n

i i

s  
= =

 + 
    

(27) 

which means that 

             
( )2

2
1

n

i

s  
=

 +
   

(28) 

Equation (28) implies that the sliding variable ( )s t  is UUB. 

Although the sliding variable moves in and out of the boundary 

layer, it is guaranteed to be upper-bounded by (28). The proof is 

completed. 

4. Simulation Results 

In this section, various computer simulation tests with the 
nonholonomic mobile robot model are performed to verify the 
effectiveness of the proposed control law. The control parameters 

are M ,
PK ,

DK ,
ia ,

ib , , for which the values were obtained 

heuristically Table1. 

Gain Value 

M  (8 8 2.5)diag  

PK  (8 8 8)diag  

DK  (100 105 110)diag  

a  (600 600 800)diag  

b  (10 1.57 0.15)diag  

  0.015 

The desired trajectories are described by ( ) 2cos( )rx t t= , 

( ) 2sin( )ry t t= , ( )r t t = . The initial position vector is chosen 

as [1 0 0]T

rq = . The suffered external disturbance of the 

mobile robot in the system is [6sin( ) 6sin( )]T

d t t = . We 

perform the simulation and the comparison studies on the system 
with two approaches: (1) Use the proposed algorithm in this 
paper; (2) Use the algorithm proposed in [21] (SMC+TDE), 
where the switching gains are used as constants. 
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Fig. 3. Tracking trajectory of mobile robot using SMC+TDE in [21]. (a) 

Tracking trajectory of circular;(b) The tracking errors;(b)The control inputs. 
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Fig. 4. Tracking trajectory of mobile robot using the proposed algorithm in 

this paper: (a) Tracking trajectory of circular; (b) The tracking errors; (c) 

The control inputs. 

Fig.3 shows the simulation results of algorithm proposed in [21] 

(SMC+TDE), and the simulation results using proposed 

algorithm are shown in Fig.4. 

Parameter   in the adaptive law (16) plays an important role 

in the tradeoff between chattering reduction and tracking 

performance. If   is too small, the chattering will be seriously 

due to the slow adaptation speed. And if   is too large, the 

tracking accuracy will be reduced seriously. The proposed 

adaptive law of switching gains has fast adaptation speed, it 

permit more freedom for  . 

Fig.5(a)-(b) show the sliding variables in the two controls. The 

sliding variables in the proposed ASMC have less chattering 

when there are disturbance in the process of trajectory tracking. 

We can see that the proposed algorithm in this paper have 

better tracking performance when there are some structure and 

non-structured by comparing Fig.3 and Fig.4. At the same time, 

the proposed algorithm eliminated the output force chattering 

comparing with the algorithm proposed in [21]. 
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Fig.5. Comparisons of the sliding variables generated by the two controllers. 

(a) Sliding variables of SMC+TDE controller in [21]; (b) Sliding variables 

of the proposed controller. 

5. Experiments Results 

Performance of the proposed controller is verified by two 

experiments with Makerfire Arduino FPV robot shown as in 

Fig.6(a). Fig.6(b) shows the diagram of experimental platform. It 

contains visual positioning subsystem, motion control subsystem, 

and wireless communication subsystem. We get the position of 

robot through using image-process software to identify the color 

paper covered on robots, and transmit the data information to the 

host computer by wifi. In this paper, we focus on the research of 

motion control algorithm based on the existing visual positioning 

and wireless communication mechanism. 
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Fig.6.Experimental environment: (a) Makerfire Arduino FPV robot; (b) 

Diagram of experiment platform. 

The circular path tracked by FPV, when two different 

controllers are employed. The control parameters are chosen to be 

the same as that in section 4. The experimental results are 

demonstrated in Fig.7-Fig.10. Particularly, Fig.7 and Fig.9 show 

some movement screen-shots intercepted from the control 

software, which describe the motion states of mobile robots in 

tracking process. Fig.8 and Fig.10 show the trajectory 

screen-shots from the control software. As it can be seen in the 
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figures, the mobile robots move along the desired trajectory 

stably after a period of position adjustment. Compared with the 

trajectory diagram under the SMC based on TDE in Fig.7 and 

Fig.8, the trajectory diagram under the proposed TDE-based 

ASMC in this paper, shown in Fig.9 and Fig.10, are obviously 

superior to the former, and the FPV mobile robot can adjust in 

time during the process of steering. 

 

（a） （b）

（c） （d）

（e） （f）  
Fig.7. Experimental results under SMC+TDE. 
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Fig.8. Trajectory diagram under SMC+TDE. 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

 
Fig.9.Trajectory diagram under proposed method. 
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Fig.10. Experimental results under the proposed method. 

 

6. Conclusion 

This paper proposes a robust control algorithms using AISMC 

with the help of TDE and validated through simulation for 

efficient path tracking of mobile robot. The proposed AISMC 

algorithm does not require the prior acknowledge of the upper 

bound of uncertain terms and compensate the TDE errors. The 

new adaptive law has the characteristics of fast adaptation and 

chattering reduction. Stability analysis shows that the closed-loop 

system with the proposed controller is UUB. Finally, the 

simulation results show good tracking performance by using 

proposed controller. 
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