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 Due to the drift of measurement, it is difficult to get the accuracy trajectory for pedestrian indoor navigation. In 

this paper, we proposed an algorithm to improve the accuracy of pedestrian trajectory by fusing the information 

from 3 inertial sensors based on the zero-velocity detection approach. Experiments showed that the accuracy of 

the trajectory was able to significantly improved using the proposed algorithm. 
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1. Introduction 

Pedestrian navigation, considering outside and indoor conditions, 

mainly involves two technologies, i.e., the global position system 

(GPS) and self-contained sensors. Since GPS signal attenuation is 

severe in buildings and tunnels, it is not applicable for accurate 

indoor pedestrian position estimation (e.g. Chen, L. and Hu, H, 

2012). Therefore, indoor positioning technology is mainly based on 

self-contained sensors, such as the inertial measurement unit (IMU) 

(e.g. Luan, V. N. et al., 2016). Recently, more and more family 

service robots have come into people’s life, for example, Bellarbi, 

Abir, et al. use the tour-guide robot in human environment (e.g. 

Bellarbi, A. et al., 2017), and Boujelben M, et al.also provide an 

improved robot navigation way (e.g. Boujelben, M., 2017). 

Thanks to miniaturization technologies, such as 

micro-electro-mechanical systems or nano-electro-mechanical 

systems, being smaller and low-cost, IMU consumes less power, 

and could be fixed to the feet of pedestrians. Foot-mounted IMUs 

have many indoor applications, such as in anti-terrorism, and 

assessing fire scenes and other dangerous areas (e.g. Rüppel, U. et 

al. 2010). For instance, in anti-terrorism applications, the IMU 

system can provide the location of each policeman, which can 

improve the cooperation ability for police groups indoor. 

Using the information from the IMU, including acceleration and 

orientation measurements, the current position of a pedestrian can 

be obtained based on a previously determined position. However, 

the measurement of the IMU has unknown drift, which reduces the 

performance of indoor navigation greatly. One way to correct drift 

is to use other information. For example, Li et al (e.g. Li, Y. et al. 

2017) used Wi-Fi and magnetic information together with 

acceleration and orientation measurements to cut down the 

navigation error. Nevertheless, this kind of method has a great 

demand for a priori information about the environment and the 

system. Another approach to correct the drift of position is to use 

the feature of target motion. At each step when a pedestrian is 

moving, the foot touches the ground, at which time the speed with 

respect to the ground is zero. This is so-called “zero-velocity 

updates (ZUPT)” (e.g., Norrdine, A. et al., 2016; Skog, I. et al., 

2010), an effective technique to reduce error. 

Nilsson et al. had given an open-source, real-time, embedded 

implementation of a foot-mounted, zero-velocity-update-aided 

inertial navigation system (e.g. Nilsson, J. O. et al., 2012), which 

only used ZUPT information in stance phases, and ignored 

accumulated errors in non-stance phases of gait cycles. Furthermore, 

an adaptive zero-velocity interval (ZVI) detection algorithm was 

proposed based on a smoothed pseudo Wigner Ville distribution to 

remove multiple frequencies intelligently, which utilizes an adaptive 

threshold method to improve positioning accuracy (e.g. Nilsson, J. 

O. et al., 2016); but the error of this method gradually grows larger 

and larger as time goes on. Therefore, in practice, it is still difficult 

to detect the ZVI and the position error due to the unknown drift of 

the IMU. 

We here present a method to obtain accurate pedestrian 

navigation using a foot-mounted inertial sensor based on the data 

fusion method, which does not require any installation in the 

environment and any prior knowledge of the environment (such as a 

map). The data fusion method uses the multi-sensor measurement, 
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and can produce more consistent, accurate, and useful information 

than that provided by any individual data source, especially when 

the measurements have noise and drift (e.g. Grigorie, L. T. et al., 

2014; Paola, A. D. et al., 2017). Therefore, here we used 3 low-cost 

IMUs and the effective fusion method to reduce the error of 

navigation. 

 Three inertial sensors were used to obtain the measurements 

when the pedestrian is walking, which were then fused by the 

weights based on the data synchronization method. Experimental 

results showed that the fusion method greatly improved the 

performance of indoor navigation. 

   This paper is organized as follows. Section 2 introduces 

zero-velocity detection, which is the important method used to 

synchronize data and label the state of steps. The data fusion 

algorithm is discussed in Section 3, including the methods for 

calculating the weight, and fusing measurement data, and presents 

the out-of-sequence problem of the practical measurement data. 

Section 4 shows the evaluation results for several navigation tests. 

In Section 5, we give the main conclusions drawn from this work. 

2. Zero-velocity Detection 

Zero-velocity detection examines whether the pedestrian’s foot is 

on the ground. The detected zero-velocity state reduces speed errors 

of the external measurement information for the system, and the 

error of navigation system can be corrected to improve positioning 

accuracy. One of the 2 different states, i.e., moving and static, is 

output by zero-velocity detection based on the signal source. 

The output of the IMU can be expressed as follows:  

[ , ]a w

k k kx x x=  

where 3  a

kx   is the specific acceleration measurement vector, 

and 3  w

kx    is the angular velocity measurements vector. By the 

Neyman-Pearson rules, we assumed a series of values 
1{ }n W

n k k nz x + −

== , where n  represents the sampling time, W

represents the number of samples, and 2 states 
0H  and 

1H  are 

set respectively, where 
1H  describes the object being moving and 

0H  describes it being static. Here, the detection probability 

0 0{ | }dP P H H=  determines whether the target is in the static state, 

and the false alarm probability is expressed as follows: 

0 1{ | }fP P H H = =              (1)   

In other words, we should ensure the maximum correct probability 

of judgment dP  due to fP  constraints. 

Two hypothesis observation data probability density functions are 

defined as 0( ; )nP z H ， 1( ; )nP z H . The sensor model used can be 

represented by the following model: 

 ( )k k kx d v=  +                   (2) 

where ( ) [ ( ), ( )]a w T

k k kd d d =   , ( )a

kd   represents the 

acceleration of the IMU, and the angular velocity is expressed as

( )w

kd  . The symbol   denotes the vector of unknown elements, 

and [ , ]a w T

k k kv v v= ,
3a

kv   denotes accelerometers noise and 

3w

kv  indicated gyroscopes noise respectively. We assumed the 

noises follows a zero mean Gaussian distribution, with noise 

covariance matrix

2

3 3 3 3

2

3 3 3 3

0
{ }

0

T a

k k

w

I
E v v

I





 

 

 
=  
 

, where
2

a  and 
2

w  

represent accelerometers and gyroscopes noise variance, 

respectively. 

Then we constructed a likelihood ratio function,  
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Zero-velocity detection’s status value is determined by the 

hypothesis 0H  if ( )nT z  , where is set 
-50.3 10 . 

2
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Here, 0̂  and 1̂  represent the maximum likelihood estimate of 

the unknown element under the assumptions 0H  and 1H , 
respectively. Finally, we can get ( )nT z  by combining equations 

(3), (4), (5), and (6) as follows: 

1
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where g  represents gravitational acceleration, and a

kx , w

kx  

represent the means of the samples, respectively.  

In Fig.1, the red line represents the calculated the value of T  by 

equation (8), and the bold blue line represents the set threshold. If 

the value of T  is higher than the set threshold  ,the pedestrian 

will be considered as moving, while it will be determined to be in 

the static state if the value of T  is below the set threshold  . 

 

Fig.1. The value of T 

3. Data Fusion Algorithms 

3.1 Information Fusion Based on the IMU 

In this paper, we used 3 inertial sensors to track the position of 

the target. Therefore, we needed to fuse the data collected by these 3 

inertial sensors. As we know, there are 3 kinds of sensors in the 
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inertial sensors, i.e., the gyro, accelerometer, and magnetometer. In 

this paper, we considered the measurement data from the gyroscope 

and accelerometer. For each sensor, measurement data from 3 axes, 

x, y, and z, were obtained. The fusion process for multi-inertial 

sensors is shown in Fig. 2. 

Fusing Z 

axis data

Fusing X 

axis data

Sensor1(Gyro) Sensor2(Gyro) Sensor3(Gyro)

Fusing Y 

axis data

(a) fusion process by gyro sensor data 

Fusing Z 

axis data

Fusing Y 

axis data

Sensor2(Accelerometer) Sensor3(Accelerometer)

Fusing X 

axis data

Sensor1(Accelerometer)

(b) fusion process by accelerometer data 
Fig.2. Fusion process for multi-inertial sensors 

Considering n  sensors from the same measurement data in Fig. 1, 

the evaluation of the standard deviation of the signal for i th sensor 

within m  samples with the same sampling time is obtained by 

using the following equation: 

2

,

1

1
( )

m

i i k i

k

r r
m


=

= −               (9) 

where ,i kr  denotes the k th sample in the data frame measured by 

the i th sensor in the cluster, and r  is the mean of the m  

consecutive samples measured by the same sensor. 

,
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Applying the inverse proportionality between weights and standard 

deviations, and considering the sum of the weights equaling the 

unity, we have 

1
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Here is a group of data fusion methods, and its fusion formulae is as 

follows: 

1

, 1,2,3, ,
n

i r i

i

w i n 
=

=  =          (12) 

1
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i

accR accR i n
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where irw  represent the angular velocity i( , , )x yi ziw w w  of all 

measurement sensors, and iaccR  represents the acceleration 

( , , )i i iaccX accY accZ of all measurement sensors. [ , , ]x y zw w w w=

and [   ]accR accX accY accZ=  are the fused measurement data in 

the body coordinate system.  
3.2 Data Synchronization 

We found that the data from different sensors cannot be sent 

simultaneously, although they are caught at the same time. Even 

worse, the recorded sample time is a pseudo time, which means the 

sensor system cannot give us the right sample time because of the 

response time of the hardware; thus, the recorded sampling time is 

not the actual time when the measurement was obtained. Therefore, 

in the practical system, the measurement data from different sensors 

had different sampling times. 

We used the x-axis of the gyroscope as an example to show the 

measurement data and results of fusion. Fig. 3 indicates that 

measurement data for 3 gyro sensors on the x-axis. We can see the 

start time of the data was different, which was caused by the 

delayed response time of the serial data acquisition port in the 

hardware system. Therefore, formula (12) and (13) could not be 

used directly, and the data synchronization was both necessary and 

important. 

Data synchronization involved 2 steps. Firstly, each sensor was 

adjusted to send data with the same baud rate. Then, the data was 

aligned by zero-velocity detection. In particular, zero-velocity 

detection was used to find the starting position. and the 

measurement of the start time was adjusted to the same time. Fig. 4 

indicates that the data has been aligned; then, based on the aligned 

measurement data, the data fused by equation (12) is as shown in 

Fig. 5.
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Fig. 3. Data for 3 gyro sensors on the x-axis, unaligned 
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Fig.4. Data for 3 gyro sensors on the x-axis, aligned 
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Fig. 5. Gyro x-axis fusion results 
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4. Results 

We conducted an indoor experiment in the corridor of the 

building (Fig. 5). Fig.7 shows the installation method and location 

of the sensor。 

 
Fig.6. Indoor environment 

 

Fig.7. The installation position of the sensor 

The results of zero-velocity correction by Kalman filter (e.g. Yi, J. 

et al. 2011) are shown in Fig. 6 (a), (b), and (c). The trajectory 

following fusion of these 3 sensors, together the zero-velocity 

correction process, is shown in Fig. 6 (d), in which, all measurement 

data from the 3 sensors were used to obtain the fused measurement 

using equations (12) and (13). 

Y(m)

X(m)
 

(a) trajectories derived from individual sensor data 

Y(m)

X(m)
 

(b) trajectories derived from individual sensor data 

 
(c) trajectories derived from individual sensor data 

 

Y(m)

X(m)
 

(d) the trajectory derived from the data after fusion 
Fig. 8. Comparison of single sensors and fusion processing trajectory obtained by 

the fusion of 3 sensor: (a), (b), and (c) represent trajectories derived from 

individual sensor data; (d) represents the trajectory derived from the data after 

fusion. 

Fig. 9 shows the fused trajectory compared with the reference 

data. Here, the blue line represents the trajectory after fusion, and 

the red line represents the actual trajectory. We considered the errors 

of trajectory as 
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2 2

 k  k( ) ( )truth xk truth ykerror X s Y s= − + −                (14) 

where  truth kX  and 
 truth kY  represent the actual x-axis and y-axis 

coordinates of the trajectory on the horizontal plane, and xks , 
yks  

represent the x-axis and y-axis coordinates of the obtained 

trajectories ks . It should be noted that we omitted zks , because we 

assumed the pedestrian was walking on the horizontal plane. 

The errors of trajectory by each sensor and the fused data are 

shown in Tab. 1, by which we can see that the error of trajectory 

was reduced greatly by the fusion process. 

 

 

 

 

 
Tab.1 Error contrast between fusion and no fusion 

Sensor Error (m) Percentage of error (%) 

Sensor1 12.5857 33.5 

Sensor2 4.23992 11.3 

Sensor3 6.98518 18.6 

Fusion sensor 1.35625 3.6 

 

Fig. 9. Comparison of the trajectory obtained by the proposed method with the reference data 

 

Then we conducted outdoor long track experiments, as shown in 

Fig.10. The outdoor environment map is shown in Fig 11 and the 

length of the playground is about 320 meters. The trajectory was 

made by a pedestrian which walk around the playground of our 

campus, and the green circle represents the both starting point and 

end of the track.  

 

From Fig.10. we can see the error of fused trajectory is 3 meters and 

the error of not fused trajectory is 4 meters. Based on the 

experiments mentioned above, it can be seen that the fusion scheme 

can reduce the error generation. 

 

5. Summary 

Pedestrian indoor navigation based on IMUs tracks the location 

of a person on foot, and is useful for finding and rescuing 

firefighters or other emergency first responders, or for 

location-aware computing, personal navigation assistance, etc. In 

this paper, we proposed an algorithm to improve the accuracy of 

determining a pedestrian’s trajectory by fusing 3 inertial sensors. 

The proposed method was then evaluated with walking experiments, 

and comparisons to a previous method illustrated the effectiveness 

of the proposed algorithm for information fusion. In a future study, 

we will study more complicated movement cases, such as walking 

backwards, sideways walking, and climbing stairs. More 

complicated walking scenarios will be tested in the near future. 

the trajectory after fusion

the actual trajectory
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Fig. 10. Comparison of the trajectory obtained by the proposed method with the reference data 

 

 

Fig. 11. Outdoor environment map 

 


