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 In this paper, a finite time tracking control scheme is proposed for a quadrotor unmanned aerial vehicle by 

constructing a terminal synergetic manifold. The whole control system is divided into two loops: the inner-loop 

for the attitude control and the outer-loop for the position control. Through integrating the terminal sliding mode 

techniques and synergetic control theory, the finite time synergetic controllers are designed to achieve both the 

position and attitude tracking control performance. Moreover, a disturbance observer is employed in the 

inner-loop to compensate for effect of external disturbances. Simulation results are given to validate the 

effectiveness and satisfactory performance of the proposed scheme. 
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1. Introduction 

As a rotor-type aircraft, quadrotor unmanned aerial vehicle (UAV) 

has many advantages, such as small size, simple structure, low cost, 

rapid maneuverability and flexible operability. Quadrotor UAV is a 

kind of nonlinear system with underactuation, strong coupling and 

static instability (Zhao et al., 2015). Generally, the control of rotors 

is directly influencing the quadrotor’s attitude, and the position is  

indirectly controlled by the change of the attitude.  

In order to solve the flight control problems of quadrotor UAV, 

numerous schemes have been put forward so far. In (Bouabdallah et 

al., 2004), PID control and LQR control methods are proposed, but 

the anti-disturbance performance of the above linear control 

methods is not satisfactory. In (Xu et al., 2015), a nonlinear control 

method of quadrotor UAV is designed based on singular 

perturbation with taking into account the robustness and tracking 

accuracy of the system. In (Liao et al., 2015), a finite time flight 

control based on fast terminal sliding mode is proposed, and the 

finite time stability and anti-disturbance performance are guaranteed, 

however, the nature of the discontinuous switching characteristic 

determines that the chattering phenomenon would exist, which may 

affect its practical application.  

In (Kolesnikov et al, 2000), a synergetic control scheme is 

proposed and it can lead to the closed-loop system reduction 

without any chattering problem. The controller is easy to be 

implemented, and provides a good dynamic performance and 

stability characteristics. Therefore, the synergetic control scheme 

has been widely used in power systems (Zhao et al., 2013; Santi et 

al., 2004). The synergetic control design is based on a particular 

choice of the macro-variable, which results in the determination of a 

control law to force the system to track a reference signal. Hadjer 

Abderrezek et al. developed a nonlinear macro-variable in the 

terminal synergetic control for the buck DC/DC converter and a fast 

finite time convergence was achieved (Abderrezek et al., 2016). 

Chi-Hua Liu et al. presented a new evolution constraint of 

macro-variable in the finite time synergetic control scheme for robot 

manipulators (Liu et al., 2012).  

Moreover, external disturbances exist in most control systems and 

may cause a system crash. Then, the disturbance suppression is an 

important issue in the field of control. In (Isidori et al., 1992), a 

measurement feedback is used for disturbance attenuation in affine 

nonlinear systems. In (Chen et al., 2004), several control techniques 

based on disturbance observers are used to introduce general 

frameworks for nonlinear systems subjected to disturbances. The 

disturbance attenuation and suppression problem of a class of 

multi-input and multi-output (MIMO) nonlinear systems with 

exogenous-system-generated disturbances is discussed in (Guo et al., 

2005). A trajectory tracking controller of airship horizontal model 

based on active disturbance rejection is proposed in (Zhu et al., 
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2014). The existing work shows that the observer-based active 

disturbance suppression method is popular due to its effectiveness 

and ease of use. 

Motivated by the aforementioned discussion, this paper develops 

a nonsingular terminal synergetic control scheme for quadrotor 

UAV with external disturbances. The developed terminal synergetic 

manifold contains terminal synergetic macro-variable and 

nonsingular terminal constraint, such that the proposed synergetic 

controller can achieve finite time convergence of macro variables 

without any singularity problems. Besides, disturbance observer is 

employed to compensate for the system uncertainty and external 

diturbances. 

The rest of this paper is organized as follows. Section 2 presents 

the dynamic model of the quadrotor UAV. Section 3 describes the 

control design process. Section 4 provides the simulation results, 

and the conclusion is given in Section 5. 

2. Dynamic Model 

For the convenience of an intuitive understanding of the 

quadrotor UAV configuration, the schematic configuration, the 

illustrations of reference frames, and the force from each of the four 

rotors are shown in Fig. 1. There are two reference frames defined 

in the model. A fixed inertia frame {E} represented by OX𝐸Y𝐸Z𝐸 is 

established to locate the absolute position of the center of the mass 

of the quadrotor vehicle. Body frame {B}, which is represented by 

OX𝐵Y𝐵Z𝐵, is a frame attached to the center of mass of the vehicle, 

shifting and/or rotating with the quadrotor vehicle. The Euler angles 

of the vehicle with respect to reference frame {E} is denoted by 

{𝜓,𝜃, 𝜙}, which represent the yaw angle (𝜓, rotation around OZ𝐸), 

the pitch angle (𝜃, rotation around OY𝐸) and the roll angle (𝜙, 

rotation around OX𝐸 ), respectively. The four rotors rotate in 

different speeds to generate the lift force 𝐹𝑖 and balance the yaw 

torque. 

The rotation matrix for transforming coordination from {B} to {E} 

is given as 

𝑅𝐵
𝐸 = [

𝑐𝜃 ∙ 𝑐𝜓 𝑠𝜙 ∙ 𝑠𝜃 ∙ 𝑐𝜓 − 𝑐𝜙 ∙ 𝑠𝜓 𝑐𝜙 ∙ 𝑠𝜃 ∙ 𝑐𝜓 + 𝑠𝜙 ∙ 𝑠𝜓
𝑐𝜃 ∙ 𝑠𝜓 𝑠𝜙 ∙ 𝑠𝜃 ∙ 𝑠𝜓 + 𝑐𝜙 ∙ 𝑐𝜓 𝑐𝜙 ∙ 𝑠𝜃 ∙ 𝑠𝜓 − 𝑠𝜙 ∙ 𝑐𝜓
  −𝑠𝜃             𝑠𝜙 ∙ 𝑐𝜃             𝑐𝜙 ∙ 𝑐𝜃

](1) 

where 𝑐𝜃  and 𝑠𝜃  denote co𝑠𝜃  and 𝑠𝑖𝑛𝜃 , respectively, and 

similarly for 𝜙 and 𝜓. 
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Fig.1. Quadrotor configuration frame scheme 

At present, the Newton-Euler formula is used to modelling the 

quadrotor UAV in most research works (Mellinger et al., 2012; 

Elsamanty et al., 2013; Islam et al., 2014). Generally, the air 

resistance and the gyro effect are ignored in the kinematic and 

dynamic analysis. Prior to modeling the quadrotor UAV, the 

following reasonable and necessary assumptions are provided. 

Assumption 2.1 (Bouabdallah et al., 2007) The quadrotor 

structure is rigid and strictly symmetrical with respect to the body 

coordinate system. 

Assumption 2.2 (Bouabdallah et al., 2007) The center of gravity 

of the quadrotor coincides with the origin of the body coordinate 

system. 

Under these assumptions, the quadrotor UAV can be described as 

a rigid body. So all the external forces acting on the rigid body can 

be regarded as acting on the center of mass. The acceleration of the 

center of mass governed by the Newton equation is 

[

𝜏𝑥
𝜏𝑦
𝜏𝑧
] = [

𝐼𝑥 0 0
0 𝐼𝑧 0
0 0 𝐼𝑧

] [
�̇�
�̇�
�̇�
] + [

𝑝
𝑞
𝑟
] × [

𝐼𝑥 0 0
0 𝐼𝑧 0
0 0 𝐼𝑧

] [
𝑝
𝑞
𝑟
] (3) 

where {𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧} represents the moment applied to the vehicle’s 

center of mass; {𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧} represents the moment of inertia of the 

quadrotor vehicle; {𝑝, 𝑞, 𝑟}  denotes the angular velocity with 

respect to frame {B}. All the components represent the ones around 

OX𝐵,  OY𝐵,  OZ𝐵, respectively. 

Taking into account that the quadrotor is generally in a low speed 

flight or hover state, the change of attitude angle is small, reference 

(Liao et al., 2015) notices that �̇� ≈ 𝑝, �̇� ≈ 𝑞, �̇� ≈ 𝑟, �̈� ≈ �̇�, �̈� ≈

�̇�, �̈� ≈ �̇�. The system parameters and states in equations (2) and (3) 

are not accurately obtained due to the influence of measurement 

noise, power supply changes and external disturbances. Therefore, 

combining (1) to (3), the mathematical model can be expressed as 

 

{
  
 

  
 
�̈� = 𝑈𝑥 + 𝑑𝑥
�̈� = 𝑈𝑦 + 𝑑𝑦
�̈� = 𝑈𝑧 + 𝑑𝑧
�̈� = 𝑎1�̇��̇� + 𝑏1𝜏𝑥 + 𝑑𝜙

�̈� = 𝑎2�̇��̇� + 𝑏2𝜏𝑦 + 𝑑𝜃

�̈� = 𝑎3�̇��̇� + 𝑏3𝜏𝑧 + 𝑑𝜓

 (4) 

Where 𝑈𝑥 =
𝑈𝐹

𝑚
(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓),𝑈𝑦 =

𝑈𝐹

𝑚
(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓),𝑈𝑧 = −𝑔+

𝑈𝐹

𝑚
(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃); a1 =

𝐼𝑦−𝐼𝑧

𝐼𝑥
, a2 =

𝐼𝑧−𝐼𝑥

𝐼𝑦
, a3 =

𝐼𝑥−𝐼𝑦

𝐼𝑧
, b1 =

1

𝐼𝑥
, b2 =

1

𝐼𝑦
, b3 =

1

𝐼𝑧
; 

{𝑑𝑥 ,𝑑𝑦 , 𝑑𝑧 , 𝑑𝜙 , 𝑑𝜃 , 𝑑𝜓} represent external disturbance and model 

uncertainty. 

From (4), we can see that the former three terms are the position 

related equations, the latter three terms are the attitude related 

equations. Therefore, the control problem could be divided into 

double loops to realize the flight control of the quadrotor UAV. But 

it should be noticed that the position term {𝑈𝑥, 𝑈𝑦  , 𝑈𝑧} contains 

the attitude terms like that 𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜓 and so on, which 

results in the coupling problem between the position and attitude 

and increases the design difficulty of position and attitude 

controllers.  
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3. Control Design 

In this section, we design the finite time synergetic control 

strategy for the quadrotor vehicle. To obtain a clear understanding 

of the control strategy, the overall control structure diagram is given 

in Fig. 2, which is mainly divided into outer-loop position controller 

and inner-loop attitude controller. 
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Fig. 2. Control system structure 

3.1 Preliminaries 

As shown in Fig. 2, {𝑈𝑥, 𝑈𝑦 , 𝑈𝑧} is regarded as the outputs of 

position controller and {𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧} are regarded as the outputs of 

attitude controller. Notice that the reference signals include 

{𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 , 𝜓𝑑}. The control structure mainly includes three parts: 

position-attitude decoupling, rotational speed inverter, and the 

position & attitude controllers. 

A. Position-attitude decoupling 

According to equation (4), the position and attitude relationship 

can be decoupled, the results are as follows: 

 

{
 
 

 
 𝑈𝐹 = 𝑚√𝑈𝑥

2 +𝑈𝑦
2+ (𝑈𝑧 +𝑔)2

𝜙𝑑 = 𝑠𝑖𝑛
−1 [

𝑚

𝑈𝐹
(𝑈𝑥 sin𝜓𝑑 −𝑈𝑦 cos𝜓𝑑)]

𝜃𝑑 = 𝑡𝑎𝑛
−1 [

1

𝑈𝑧+𝑔
(𝑈𝑥 cos𝜓𝑑 +𝑈𝑦 sin𝜓𝑑)]

 (5) 

After decoupling calculation, the attitude controller inputs, that is 

{𝜙𝑑 , 𝜃𝑑}, can be obtained from the outputs of position controller 

{𝑈𝑥, 𝑈𝑦 , 𝑈𝑧} . Therefore, the position controller and attitude 

controller are connected in this way. 

B. Rotational speed inverter 

The quadrotor UAV is usually driven by DC motors, so the 

relationship between the control torque and the rotational speed of 

the rotor are stated as follows (Wei et al., 2015): 

 [

𝑈𝐹
𝜏𝑥
𝜏𝑦
𝜏𝑧

] = [

𝑘𝐹
0

−𝑘𝐹𝐿
𝑘𝑀

 

𝑘𝐹
𝑘𝐹𝐿
0

−𝑘𝑀

 

𝑘𝐹
0
𝑘𝐹𝐿
𝑘𝑀

 

𝑘𝐹
−𝑘𝐹𝐿
0

−𝑘𝑀

]

[
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

  (6) 

Then, the speed inverter is shown in the following: 

 

[
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

=
1

4𝑘𝐹𝑘𝑀𝐿
[

𝑘𝑀𝐿
𝑘𝑀𝐿
𝑘𝑀𝐿
𝑘𝑀𝐿

 

0
2𝑘𝑀
0

−2𝑘𝑀

 

−2𝑘𝑀
0
2𝑘𝑀
0

 

𝑘𝐹𝐿
−𝑘𝐹𝐿
𝑘𝐹𝐿
−𝑘𝐹𝐿

][

𝑈𝐹
𝜏𝑥
𝜏𝑦
𝜏𝑧

] (7) 

where 𝐿  denotes the distance from the center of mass to the 

rotation axis of the rotor;  𝜔𝑖(𝑖 = 1,2, 3, 4) represent the rotational 

speed of the rotor; 𝑘𝐹 represents the lift coefficient; 𝑘𝑀 represents 

the torque coefficient. 

The outputs of attitude controller {𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧}, which represent the 

overall torque acting on the rigid body, are transformed into the 

every rotor’s desired speed. When the quadrotor is in the hover state, 

the lift force 𝑈𝐹 is equal with the gravity of quadrotor 𝑚𝑔. 

C. Position & attitude controllers 

Considering that the position and attitude equations belong to the 

second order MIMO nonlinear system, the attitude equations 

become more complicated, so in order to facilitate the design of the 

controllers, system (4) can be expressed as  

 {�̈� = 𝑓(𝑋) + 𝐵(𝑋)𝑈 + 𝐷
𝑌 = 𝑋

  (8) 

where�̈� = [�̈�, �̈�, �̈�, �̈�, �̈�, �̈�]
𝑇
, 𝑓(𝑋) = [0,0,0, a1�̇��̇�, a2�̇��̇�, a3�̇��̇�]

𝑇
, 

𝐵(𝑋) = 𝑑𝑖𝑎𝑔{1,1,1, 𝑏1 , 𝑏2 , 𝑏3}, 𝑈 = [𝑈𝑥, 𝑈𝑦 , 𝑈𝑧 , 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧]
𝑇
, 𝐷 =

[𝑑𝑥, 𝑑𝑦 , 𝑑𝑧 , 𝑑𝜙 , 𝑑𝜃 , 𝑑𝜓]
𝑇
. 

The control objective of this paper is to design a finite time 

synergetic controller 𝑈 for the system (8), such that the system 

output 𝑌 can track the desired reference signal 𝑌𝑑 and all signals 

in the closed-loop system are bounded. 

3.2 Disturbance observer design 

Disturbance observer (DO) is easy to use and can be designed 

independently from  the controller. In this section, a disturbance 

observer is employed to compensate for the external disturbance 

and model uncertainty 𝐷. The design of the disturbance observer is 

generally divided into two steps (Chen et al., 2011): (i) design the 

disturbance observer to estimate the external disturbance; (ii) design 

the attitude controller to compensate for the negative effect caused 

by using the estimation of the observer. Before the disturbance 

observer design, it is necessary to make a reasonable assumption 

firstly. 

Assumption 3.1 For all system states X, there exists δ > 0 such 

that |�̇�𝑖| ≤ δ. 

To design a disturbance observer, an auxiliary design variable is 

introduced as follows: 

 𝑧 = 𝐷 − 𝑘𝑑𝑥2 (9) 

where 𝑘𝑑 > 0; 𝑥2 = �̇�. 
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  Considering (8) and (9), the time derivative of 𝑧 can be written 

as 

�̇�  =  �̇� − 𝑘𝑑�̇�2  

 = �̇� − 𝑘𝑑(𝑓 + 𝐵𝑈 +𝐷) (10) 

 = �̇� − 𝑘𝑑(𝑓 + 𝐵𝑈 + 𝑧 + 𝑘𝑑𝑥2)  

The estimate of the auxiliary variable 𝑧 is given by 

 �̇̂� = −𝑘𝑑(𝑓 + 𝐵𝑈 + �̂� + 𝑘𝑑𝑥2) (11) 

where �̂� is the estimate value of 𝑧. 

Considering (9), we can obtain the estimate of disturbance 𝐷 

 �̂� = �̂� + 𝑘𝑑𝑥2  (12) 

Then, we define the estimate error 

 �̃� = 𝑧 − �̂� = 𝐷 − �̂� = �̃� (13) 

Differentiating (13), and considering (10) and (11) yields 

 �̇̃� = �̇� − �̇̂� = �̇� − 𝑘𝑑�̃� = �̇� − 𝑘�̃� = �̇̃� (14) 

For the developed disturbance observer (11) and (12), 

considering the convergent stability of estimate error �̃� , the 

Lyapunov function can be expressed as 

 𝑉0 = 0.5�̃�
2 = 0.5�̃�2 (15) 

Considering (15), the derivative of 𝑉0 is 

 �̇�0 = �̃��̇̃� = �̃��̇� − 𝑘𝑑�̃�
2 = �̃��̇� − 𝑘𝑑 �̃�

2 (16) 

Due to the basic inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, we can assure that 

�̃��̇� ≤ 0.5(�̃�2 + �̇�2). Then, (16) can be rewritten as 

�̇�0 ≤ 0.5(�̃�
2+ �̇�2) − 𝑘𝑑�̃�

2 

 ≤ (0.5 − 𝑘𝑑)�̃�
2+ 0.5�̇�2 (17) 

 ≤ −(𝑘𝑑 − 0.5)�̃�
2 + 0.5δ2 

 ≤ −(2𝑘𝑑 − 1)𝑉0 + 0.5δ
2  

According to the lemma 1 in the literature (Yu et al., 2002) and  

(17), when 𝑘𝑑 > 0.5, the estimate error �̃�  is bounded by ϵ =

0.5δ2/(2𝑘𝑑 − 1). 

Thus, we can conclude that the approximation error �̃� of the 

developed disturbance observer is uniformly asymptotically 

convergent if the parameter 𝑘𝑑 is chosen appropriately. 

 

3.3 Terminal synergetic manifold 

In this subsection, we provide a new terminal synergetic manifold 

for quadrotor system (8) by combining the terminal attractor 

technique. 

Firstly, define system tracking error as 

 𝑒 = 𝑋 − 𝑋𝑑 (18) 

where 𝑋𝑑  denotes the desired signal. Then, the first order 

derivative and the second order derivative of (18) are expressed as  

 �̇� = �̇� − �̇�𝑑 (19) 

 �̈� = �̈� − �̈�𝑑 (20) 

Next, define a macro-variable  σ  to construct the following 

manifold 

 𝑀 = {𝜀: 𝜎 = 𝑠(𝜀) = 0, 𝑠(𝜀) ∈ 𝑅} (21) 

where   𝜀 = �̇�; s(𝜀) = �̇� + 𝛼𝑒 + 𝛽𝑒𝛾 , 𝛼, 𝛽 > 0, 0 <  𝛾 < 1. 

The aim of the synergetic controller is to drive the variable σ to 

converge from any initial state and remain on the manifold 𝑀 in 

finite time. Then, the system tracking error 𝑒 moves along the 

manifold to the equilibrium point in finite time. The dynamic 

process of the variable σ converging to the manifold  𝑀 can be 

constrained by the following nonsingular form: 

 𝜏�̇�𝑝/𝑟 + 𝜎 = 0 (22) 

where 𝜏 > 0; 𝑝, 𝑟 are positive odd integers and satisfy 𝑝 > 𝑟. 

 

3.4 Finite time synergetic controller design 

In this section, we provide the finite time synergetic controller 

design based on the proposed terminal synergetic manifold given in 

Sect. 3.3. The detailed design procedure is given as follows. 

Substituting (21) into (22), we have 

 𝜏(𝑠𝜀𝜀̇)
𝑝/𝑟 + 𝑠 = 0 (23) 

where  𝑠𝜀 =
𝜕𝑠

𝜕𝜀
=

𝜕𝑠

𝜕�̇�
= 1 .Then consider the system (8) and 

tracking error (20), and we can obtain 

 𝜏(𝑓(𝑥) + 𝐷 + 𝐵(𝑥)𝑈 − �̈�𝑑)
𝑝

𝑟 + 𝑠 = 0 (24) 

So the control law can be designed as 

𝑈 =  𝐵(𝑥)−1(𝑋�̈� − 𝑓(𝑥) − �̂�) −  𝐵(𝑥)
−1 [(𝜏−1𝑠)

𝑟
𝑝 + 𝑘𝑛𝑠]  

      = 𝑈𝑒𝑞 +𝑈𝑓𝑡𝑠𝑐  (25) 

where 𝑈𝑒𝑞 = 𝐵(𝑥)
−1(�̈�𝑑 − 𝑓(𝑥) − �̂�) ; 𝑈𝑓𝑡𝑠𝑐 =

−𝐵(𝑥)−1[(𝜏−1𝑠)𝑟/𝑝 + 𝑘𝑛𝑠] , 𝑘𝑛 > 0 ; �̂�  is the estimate of 

disturbance 𝐷, which is designed as (12). 

Remark 3.1 According to the control law (25), notice that there is 

no direct differentiation of 𝑠 but the partial differential 𝑠 respect 

to ε. That means there is no differential term of 𝛽𝑒𝛾 in the control 

law, and thus the singularity is avoided from the underlying cause. 

In addition, there is no sign function such that there will be no 

chattering phenomenon. 

Lemma 3.1 (Yu et al., 2005) An extended Lyapunov description 

finite-time stability can be given with the following form 

 �̇�(𝑥) + 𝛼𝑉(𝑥) + 𝛽𝑉𝛾(𝑥) ≤ 0 (26) 

where 𝛼, 𝛽 > 0; 0 < 𝛾 < 1, and the settling time can be given by 

 t𝑟 =
1

𝛼(1−𝛾)
ln

𝛼𝑉1−𝛾(𝑥0)+𝛽

𝛽
 (27) 

Theorem 1 Consider a class of nonlinear systems (8). The 

variable σ  will converge to zero in finite time with the 

convergence rate depending on the selected parameters τ, p and r 

if the control law is designed as (25). 

Proof 

First, choose the following Lyapunov function: 
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 𝑉1 = 0.5σ
2 (28) 

Differentiating (28) with respect to time and using (25) yields 

�̇�1 = σσ̇ = 𝑠𝑠𝜀𝜀̇ = 𝑠𝑠𝜀(�̈� − �̈�𝑑) 

 =  𝑠(𝑓(𝑥) + D+𝐵(𝑥)𝑈 − �̈�𝑑) 

 = −𝑠(𝜏−1𝑠)𝑟/𝑝 + �̃�𝑠 − 𝑘𝑛𝑠
2 

 < −𝜏
−
𝑟

𝑝(𝑠2)
𝑟+𝑝

2𝑝 + 𝜖(𝑠2)
𝑟+𝑝

2𝑝 − 𝑘𝑛𝑠
2 (29) 

 < −(𝜏−𝑟/𝑝 − 𝜖)(2)𝑟/𝑝(𝑉1)
(𝑟+𝑝)/2𝑝 − 2𝑘𝑛𝑉1 

 < −𝛼1𝑉1 − 𝛼2𝑉1
𝛼3  

where 𝛼1 = 2𝑘𝑛, 𝛼2 = (𝜏
−𝑟/𝑝 − 𝜖)(2)𝑟/𝑝 and 𝛼3 = (𝑟 + 𝑝)/2𝑝. 

Then, (29) can be rewritten as 

 �̇�1(𝑥) + 𝛼1𝑉1(𝑥) + 𝛼2𝑉1
𝛼3(𝑥) < 0  (30) 

Since  𝑝 > 𝑟 , that is 0.5 < 𝛼3 = (𝑟 + 𝑝)/2𝑝 <1, satisfies the 

condition of Lemma 3.1, the settling time of the period σ → 0 is 

 T𝑟1 =
1

𝛼1(1−𝛼3)
ln

𝛼1𝑉2
1−𝛼3(𝑥0)+𝛼2

𝛼2
  (31) 

Theorem 2 Consider a class of nonlinear systems (8). When the 

variable σ = 0 is achieved, the tracking error 𝑒 will converge to 

the equilibrium point within a finite time. 

Proof 

When the variable σ = 0 is achieved, the system tracking error 

𝑒 remains on the manifold 𝑀 and the manifold behaves like a 

terminal attractor. On the manifold s(𝜀) = 0, we can obtain 

 𝜀 = �̇� = −(𝛼𝑒 + 𝛽𝑒𝛾)  (32) 

Constructing the following Lyapunov candidate 

 𝑉2 = 0.5𝑒2 (33) 

and differentiating 𝑉2 along (32) yields: 

 �̇�2 = −𝑒(𝛼𝑒 + 𝛽𝑒
𝛾)                             

   = −𝛼𝑒2 −𝛽𝑒𝛾+1              (34) 

 = −2𝛼𝑉2 − 𝛽2
𝛾+1

2 𝑉2
𝛾+1

2                         

     <  −𝛽1𝑉2 −𝛽2𝑉2
𝛽3 

where 𝛽1 = 2𝛼, 𝛽2 = 𝛽2
𝛾+1

2  and 𝛽3 =
𝛾+1

2
. 

Then, (34) can be rewritten as 

 �̇�2(𝑥) + 𝛽1𝑉2(𝑥) + 𝛽2𝑉2
𝛽3(𝑥) < 0  (35) 

Since  0 <  𝛾 < 1 , that is 0.5 < 𝛽3 =
𝛾+1

2
< 1, satisfies the 

condition of Lemma 3.1, the settling time of the period 𝑒 → 0 is 

 T𝑟2 =
1

𝛽1(1−𝛽3)
ln

𝛽1𝑉2
1−𝛽3(𝑥0)+𝛽2

𝛽2
  (36) 

In conclusion, the proposed control law (25) can drive the 

variable σ  and the tracking error 𝑒  to zero within a finite 

convergence time 𝑇𝑟 = 𝑇𝑟1 +𝑇𝑟2. 

4．Simulation 

In this section, simulations are conducted to verify the feasibility 

of the proposed scheme. Table 1 gives the system model parameters 

(Liao et al., 2015), while the initial state of the system are set to 

zero; the position reference signals are given as 𝑥𝑑 = 𝑦𝑑 = 𝑧𝑑 =

2𝑚 ; yaw angle reference signal is given 𝜓𝑑 = 0.5𝑟𝑎𝑑 . The 

parameters of the position controller are set to 𝛼1 = 1.5, 𝛽1 = 0.1, 

𝛾1 = 0.8 , 𝑝1 = 7 , 𝑟1 = 5 , τ1 = 0.2 , 𝑘𝑛1 = 1 , while the 

parameters of the attitude controller are set to 𝛼2 = 2, 𝛽2 = 0.1, 

𝛾2 = 0.8 , 𝑝2 = 7 , 𝑟2 = 5 , τ2 = 0.5 , 𝑘𝑛2 = 1 . The simulation 

results of the two cases are shown as follows. 

 

 Table 1 model parameters 

Parameters Value 

𝑚 0.625𝑘𝑔 

𝐿 0.1275𝑚 

𝑘𝐹 2.103 × 10−6𝑁/(𝑟𝑎𝑑 ∙ 𝑠−2) 

𝑘𝑀      2.091 × 10−8𝑁/(𝑟𝑎𝑑 ∙ 𝑠−2) 

𝐼𝑥 2.3 × 10−3𝑘𝑔 ∙ 𝑚2 

𝐼𝑦 2.4 × 10−3𝑘𝑔 ∙ 𝑚2 

𝐼𝑧 2.6 × 10−3𝑘𝑔 ∙ 𝑚2 

 

Case I: control performance without external disturbance 

In this case, we consider the situation where there exists no 

external disturbance, and simulations are conducted with two 

different control schemes. In order to verify the effectiveness and 

superiority of the proposed controller, the terminal sliding mode 

control (TSMC) in (Mellinger et al., 2012) is employed for the 

comparison with the proposed finite time synergetic control (FTSC). 

In the TSMC scheme, the sliding mode is 𝑠 = �̇� + 𝛼𝑒 + 𝛽𝑒𝑞/𝑝; the 

control law is U = −B−1[𝑓 + �̇�(𝛼 + 𝛽𝑒𝑞/𝑝−1) − �̈�𝑑 + 𝑘1𝑠 +

𝑘2𝑠𝑖𝑔𝑛(𝑠)]. The system parameters and the initial values are all set 

the same as Table 1. Compared simulations results are shown in 

Figs.3-6, respectively, and we can see that FTSC has a faster 

trajectory tracking performance due to the quick response of attitude. 

Fig.7 shows the trajectory of the quadrotor in 3-dimensional space. 

 
Fig.3 Position tracking performance 
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Fig.4 Attitude convergence performance 

 

 
Fig.5 Position controller outputs 

 

 

Fig.6 Attitude controller outputs 

 

 

Fig.7 3-Dimentional trajectory 

 

Case II：control performance with external disturbance 

In this case, we consider the other situation where external 

disturbances exist. The disturbances are described as 

{2,4𝑠𝑖𝑛(5𝑡) , 3𝑠𝑖𝑛 (4𝑡)} and added to the outer-loop channel after 

3 seconds. Simulations are conducted for the FTSC without DO and 

the FTSC with DO. The disturbance observer parameter is designed 

to be 𝑘 = 50 . Simulations results are shown in Figs.8-12, 

respectively, and we can see that the controller with DO has the 

better capability to stabilize the overall nonlinear quadrotor system 

and provides a better trajectory tracking performance.  

 
Fig.8 Position tracking performance 
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Fig.9 Attitude convergence performance 

 
Fig.10 Position controller outputs 

 

Fig 11 Attitude controller outputs 

 
Fig.12 Disturbance estimation 

5．Conclusion 

In this paper, a finite time synergetic control scheme is proposed 

for the flight of quadrotor UAV with disturbance. Based on the 

terminal sliding mode techniques and synergetic control theory, 

both the position and attitude tracking control performance are 

guaranteed simultaneously. Besides, the effect of external 

disturbances is considered and compensated by employing a 

disturbance observer. Finally, some simulation examples are given 

to show the effectiveness of the proposed scheme. 
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