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 Bernstein basis has a specific mechanics meaning in geometric modeling. In this paper, we combine with the load 

and bending moment of mechanics to study the mechanical meaning of the Bernstein basis. In mechanics we have 

found the model of Bernstein basis, and give its particular mechanical meaning. In the triangular domain of binary 

Bernstein basis we used triangulation to study it. Eventually we find the mechanical meaning of the Bernstein 

basis. 
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1. Introduction 

Bedform dynamics is of great importance for fluvial and coastal 

research. Bernstein base function has an important role in geometric 

modeling. With the rapid development of automobile，in the 1960s, 

aided design of car styling urgent to find a practical and feasible 

modeling tools 1972 French Renault engineers Bézier advance a 

shape of the curve Bézier curves when he explore automotive 

design. And later, Forrest Research find Bézier curve is a Bernstein 

polynomial form of vector-valued (see [1-3]). 

With the rapid development of CAGD people have done a lot of 

researches about Bernstein basis (see [4-6]). But Geometric 

modeling indispensable in the mechanics, when we study the shape 

of the object shell, we should be clear what kind of external force 

we impose will be the object shape what we want (see [7-9]). This 

requires us to fully understand the Bézier curve (surface), Bézier 

curve (surface) construction are based on the Bernstein basis. This 

paper focuses on the mechanical meaning of the Bernstein basis. We 

have not enough research on the mechanical meaning of the 

Bernstein basis, but on the mechanical meaning of the spline there 

are a number of studies, such as WANG Ren-hong, CHANG Jin-cai 

A kind of bivariate spline and pure bending of thin plate. Bernstein 

basis has some connection with the spline function, this study 

provides some reference(see [10-12]) . 

The paper is organized as follows. The second part describes 

the generalization of Bernstein basis. Including the definition of a 

Bernstein basis, the area coordinates of the dual Bernstein basis in 

triangular domain. The three parts of the article describes the 

mechanical significance of the Bernstein basis, which came with the 

introduction of single-span statically indeterminate beam. The 

fourth section describes the mechanical meaning of the dual 

Bernstein basis functions in triangular domain(see [13-15]). 

2 The definition of the Bernstein basis 

2.1 The definition of one variable Bernstein basis 

2.1 Derivation of Navier-Stokes equations in vertical velocity 

formulation. Let 
( )f t

be a function on the interval [0, 1], 

0

( ; ) ( ) ( ),0 1
n

n

n i

i

i
B f t f B t t

n=

=    

It called the n-th Bernstein polynomial. Of which 

( ) (1 )n i n i

i

n
B t t t

i

− 
= − 
 

    0,1, , ;0 1i n t=    

The combination coefficients

n

i

 
 
   are defined as 
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0{ ( )}n n

i iB t = are linearly independent and constitute a set of n degree 

polynomials space basement nP
, which known as the Bernstein 

basis. Each function
( )( 0,1, , )n

iB t i n=
 is called the Bernstein 

basis. The following figure shows Bernstein basis when n = 3 

Fig2.1 Bernstein basis when n=3 

2.2. Bernstein basis on the triangular domain 

(1) Area coordinates in the plane 

If all the number does not exceed n degrees in the binary 

polynomial space 

{ , , , 0,1, , }i j

n span x y i j n i j n = +  =  

The basis functions ( )i jx y i j n+  of the
n corresponding to the 

triangular structure, 

2 2

3 2 2 3

1

x y

x xy y

x x y xy y

 

So it can be called a triangular polynomial space, in order 

transformed a binary power plot into dual Bernstein basis. The 

following text give the concept of barycentric coordinates. 

Given two points 1v
, 2v

in space and determine a straight line. 

The relative position of any point may be sole determined by 1v
and

2v
. Take this line for the axis, and set up 1x

，
2x and x as the 

coordinates of 
1v ，

2v  and 
v

, respectively 1 2 1,v v v v
and 2v v

to 

a distance of line segments is 

1

1 2 2 1

2

1

1 1

2 2

2

1

1

1

1

1

1

x
v v x x

x

x
v v x x

x

x
vv x x

x

= − =

= − =

= − =

 

If 

2
2

1

2 11 2

1
1

2

2 11 2

vv x x

x xv v

v v x x

x xv v





−
= =

−

−
= =

−

 

1 2( , )   Known as the one-dimensional center of gravity 

coordinates, and 1 2 1 + =
. 

So the Bernstein basis is expressed as 

1 2

1 2

1 2

! !
( ) (1 )

!( 1)! ! !

n i n i

i

n n
B t t t

i n

  
 

−= − =
−

 

Among them, 
1 1 t = − ,

2 t = ,
1 n i = − ,

1 2, 0,1,  =  

,n . 
1 2( , )  is in the interval

 0,1
, the point t is in the 

barycentric coordinates of 0 and 1 will be extended to 

two-dimensional space available to the center of gravity of the 

two-dimensional space coordinates, also known as area coordinates. 

As figure 3.4 shown, given any triangle T, the three vertices

1 2 3, ,v v v
 in counterclockwise order, taking any point in T, Denoted 

their Cartesian coordinates are as follows: 

1 1 1( , )v x y= ,
2 2 2( , )v x y= ,

3 3 3( , )v x y= , ( , )x x y=  

The area of triangles 1 2 3v v v
, 2 3xv v

, 3 1xv v
 and 1 2xv v

were
1 2 3, , ,A A A A . 

 

3

3B

3

2B3

1B

3
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Fig2.2 Area coordinate diagram 
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= =

    

（2-1） 

The area coordinates 1 2 3( , , )  
of point x  defined as 

1

1 1 1 1

2
2 2 2 2

3

3 3 3 3

1
( ),

2

1
( ),

2

1
( ).

2

A
a b x c y

A A

A
a b x c y

A A

A
a b x c y

A A







= = + +

= = + +

= = + +
    

（2-2） 

Among them, , ,i i ia b c ( 1, 2,3.i = ) are coefficients and have 

relationship with 1 2 3, ,x x x
and 1 2 3, ,y y y

. 

It is easy to verify 
1 2 3 1  + + = . 

（2）Triangulations 

Put the trilateral of the triangle T n equal portions, connecting 

each side of the bisector, received
( 1)( 2) / 2n n+ +

 points of 

intersection, called the domain points or nodes, each domain points 

denoted as 1 2 3, ,  
. Correspond to the area coordinates

31 2, ,
n n n

  
 
  , in which 1 2 3, ,  

is non-negative integer and

1 2 3 n  + + =
. These nodes form set of Larange interpolation 

nodes on the triangle, If given some values, we can uniquely 

identify a binary n polynomial. The figure 2.5 shows domain 

distribution of the triangles when n=3. 

 

Fig2.3Domain distribution of the triangles when n=3 

The introduction of mark is 1 2 3( , , )   =
，

1 2 3( , , )   = ，

1 2 3   = + + ，
1 2 3!: ! ! !   = ， 31 2

1 2 3:
    = . The 

promotion of one-dimensional center of gravity coordinates of the 

Bernstein basis. We can get 
( 1)( 2) / 2n n+ +

 area coordinates of 

n Bernstein basis. 

31 2

1 2 3, , 1 2 3 1 2 3

1 2 3

! !
( ) ( , , )

! ! ! !

n n n n
B t B

 

          
   

= = =  

1 2 3, , 0    ，
1 2 3 1   = + + = ， n = 。 

The following figure shows 
3 3

0,3,0 0,2,1( ), ( )B B 
and 

3

1,1,1( )B 

images 

 

Fig2.4 Bernstein basis of
3

0,3,0 ( )B   
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Fig2.5 Bernstein basis of
3

0,2,1( )B   

 

Fig2.6 Bernstein basis of
3

1,1,1( )B   

3 The mechanical meaning of one variable Bernstein basis 

3.1 Internal force in the length of the surface of Beam 

AS shown in Figure 3.1, any length surface is generally 

believed that there are three components of internal force, the axial 

force N, shear force Q and bending moment M (Figure 3.3). 

The basic method of calculation of the beam cross-section 

internal forces is a cross-section method, Section method can be 

drawn to the calculation rule of Section Analysis: 

(1) The cross-section beam axial force N is numerically equal to 

algebraic sum, that all the external forces of cross-section on 

either side of along the beam axis direction of the tangent to 

the projection. The axial force is usually tension is positive, the 

pressure is negative. 

(2) The beam of a cross-section of the shear Q is numerically 

equal to algebraic sum, that all the external forces of 

cross-section on either side of along the beam axis normal 

direction to the projection. Shear to the isolation of the cross 

section make the body clockwise rotation trend is positive, 

otherwise it is negative. 

(3) The cross-section of the beam bending moment M is 

numerically equal to algebraic sum of torque, that all the 

external forces during in any of the side of the cross-section 

centroid. The moment make the down side of the fiber of beam 

tension is positive, else is negative. 

 

Fig3.1 Sign-span statically indeterminate bean 

 

Fig3.2 Loads of simple support bean 

 

Fig3.3 Internal force component of the beam 

 

Fig3.4 Differential sectional diagram 

3.2 Differential relation between the load and internal force 

Shown in Figure 3.1 is simply supported beam, take the x-axis 

coincident with the beam axis and define the right is positive. Take 

the load perpendicular to the rod axis and define the down is 

positive. Remove isolated body from the beam for segmentation dx, 

Internal forces and load set on the differential as Figure 3.4 shown. 

Part of the load q (x) (load set degree in dx is can be constant), and 

set to go around some of its force Q ， 1Q and torque M ， 1M , 

under a state of equilibrium. So we can see 

1Q Q dQ= + and 1M M dM= +  

As shown in Figure 3.4 of the segment, we can come from 

balance equation
0y = out 

( ) ( ) 0Q Q dQ q x dx− + − =  

Then 

A 
B 

M 

Q 

q(x) 

1M M dM= +

 

1Q Q dQ= +

 dx 

M 

N 

Q 
M 

N 

Q 

q（x） 
p 

A B 

x 
d(x) 
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( )
dQ

q x
dx

= −
               

（3-1） 

The right side of the micro-segment as the cross-section centroid 

moment center, the torque balance equation is 

0,M =    ( ) ( ) 0
2

dx
M M dM Qdx q x dx− + + − =  

Then spent high order differential 

dM
Q

dx
=

                 

(3-2) 

Combine conditions（3-1）and（3-2） 

2

2
( )

d M
q x

dx
= −

              

(3-3)

 

Satisfy conditions（3-1）and（3-2）is differential relations of M, 

Q, q (x). The geometric meaning of these formulas are: in a point 

the shear tangent equal to the degree of load at the point, but the 

sign is opposite; the tangent of the bending moment diagram at a 

point equal to the point of the shear, the bending moment diagram 

of a point on the second derivative equal to the degrees of load at 

the point, but the sign is opposite. 

3.3. The relationship between moment and the Bernstein basis 

(1) The beam section of the load q (x) = 0, Q image is a horizontal 

straight line, as Bernstein basis
0

0B
, the moment image shows is an 

oblique straight line as the Bernstein basis of
1

0B
or

1

1B . 

Figure 3.5-a shown a period of no-load beam AB. For solving 

differential equations of the shear equation (3-1) we can get 

( )Q x C=  (C is a real number). AS the positive and negative in 

mechanics represent the direction. The size of the shear is exactly 

shown of the Bernstein basis
0

0B
, as shown in Figure 3.5-b, when

1C =  . 

 

Fig3.5-a No-load beam 

 

Fig3.5-b The Bernstein basis of
0

0B  

If we integrate shear through condition (3-2), we can get the 

symbol Moment of expression ( )M x x b=  +  (b is a real 

number). When is positive and b = 0 the Bernstein basis is
1

1B
, 

when the sign of x is negative and b = 1the Bernstein basis is
1

0B
, as 

shown in Figure 3.5-c 

 

Fig3.5-c Bernstein basis when n=1 

(2)The section of the beam with a uniformly distributed load (q (x) 

is constant), Q-images is an oblique straight line, and bending 

moment image is a parabola, as the Bernstein basis of
2 2

0 1,B B
or

2

2B . 

 

Fig3.6-a Uniform load beam 

 

Fig3.6-b Bernstein basis when n=2 

A B 

A B 

 

Load q(x) 

2

0B
2

1B

2
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When ( ) 2q x = − , through the condition (3-1) we can integrate 

( ) 2Q x x C= +  (C is a real number). When C = 0, again 

integrate 
( )Q x

and available 
2( )M x x D= +

 (D is a real 

number), when D = 0, we can get 
2( )M x x= as the Bernstein 

basis of
2

2B
. Similarly, when ( ) 2q x = − and to control the values 

of C and D, we can get the Bernstein basis of
2

0B
; when ( ) 4q x =

and to control the values of C and D, we can get the Bernstein 

basis of
2

1B
.  

(3) If the beam section have linear distribution of the load 

q(x)=kx+b, the Q-image is a parabola, and bending moment image 

is a cubic parabola, as the Bernstein basis of
3 3 3

0 1 2, ,B B B
or

3

3B (see 

[16]). 

 

Fig3.7-a Linear load beam 

 

Fig3.7-b Bernstein basis when n=3 

When ( ) 6q x x= − , through the condition (3-1) we can integrate 

2( ) 3Q x x C= +  (C is a real number). When C = 0, again integrate 

( )Q x
and available 

3( )M x x D= +
 (D is a real number), when 

D = 0, we can get 
3( )M x x= as the Bernstein basis of

3

3B
. 

Similarly, when ( ) 6 18q x x= − and to control the values of C and 

D, we can get the Bernstein basis of
3

2B
; when

( ) 18 12q x x= −
 

and to control the values of C and D, we can get the Bernstein basis 

of
3

1B
; when

( ) 6 6q x x= −
 and to control the values of C and 

D ,we can get the Bernstein basis of
3

0B
. 

4 The mechanical meaning of dimensional Bernstein basis 

We use the area coordinates , , ( 1)u v w u v w+ + = study 

dimensional Bernstein basis. 

3

2 2

2 2

3 2 2 3

3 3

3 6 3

3 3

u

u v u w

uv uvw uw

v v w vw w
 

Label 

300

210 201

120 111 102

030 021 012 003
 

As triangulation of the triangle ABC in Figure 4.1 shown, we 

set up the point O during triangle, the area enclosed by the AB edge 

and O is u, the area enclosed by the BC side and O is v and the edge 

of AC and point O surrounded the area is w. Figure 4.2, set the area 

of the triangle ABC is S, so the coordinates 

1 1 2 2 3 3( , ), ( , ), ( , ), ( , )A x y B x y C x y O x y= = = =  

 

Fig4.1 Triangulation diagram 

 

Fig4.2 Area distribution diagram 

A B 

Load q(x) 

u

 

w
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B
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3B
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2B3
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（1） 3

0,3,0 ( )B  ， 3

3,0,0 ( )B   and
3

0,0,3 ( )B 
 are a class of functions, 

we take
3

0,3,0 ( )B 
as example and trilateral triangle T for n times. 

When u take the timing as take points in the AB side of the parallel 

lines, the basis function degradation of
3t  (t is the relative area of 

the triangle OBC ), by (3-3), we can get 
( ) 6q t t= −

by 
3( )M t t=

second guide. For w taken from time to time, the basis function is 

still degradation of
3( )M t t=

and we can get 
( ) 6q t t= −

by 

3( )M t t=
second guide. For the v take time, Bernstein basis 

degenerates to
3( )M t v=

 (v constant) and get 
( ) 0q t =

 for a 

given derivation. Integrated above trilateral combination (2-1) 

shows the load distribution on the triangle is
( ) 12 12q t t v= − = −

, 

by (2-2) we can push 

3 1 1 3 3 1 1 3

6
( , ) (( ) ( ) ( ) )q x y x y x y y y x x x y

S
= − − + − + −  

That is, when we applied
( , )q x y

 in the Triangle area the size of 

the load, the bending moment picture shows
3

0,3,0 ( )B 
in Fig2.4. 

(2) 3

2,1,0 ( )B  ， 3

2,0,1( )B  ， 3

1,2,0 ( )B  ， 3

1,0,2 ( )B  ， 3

0,2,1( )B  and

3

0,1,2 ( )B   are classes of functions, we take
3

0,2,1( )B 
as example and 

trilateral triangle T for n times deciles. When u takes given constant, 

the Bernstein basis degradation of
2( ) 3 (1 )M t t u t= − −  (set of 

triangles OBC relative area t), and its second guide was

( ) 18 6 6q t t u= + − . When v take timed, the Bernstein basis 

degenerates to
2( ) 3M t tv=  (v is a constant, t is the relative area of 

the triangle OBC) and its second derivative are 

( ) 0q t = . For the w take timed, the Bernstein basis degradation to

2( ) 3M t t w= and its second derivative are ( ) 6q t w= − .(see 

[17-20]) Therefore 

( , ) 18 6 6 6q x y v u w= + − −  

By（2-2）we can get
1 2 3( , ) 18 6 6 6q x y   = + − − ，When to 

impose a load of this size, the bending moment of picture shown as

3

0,2,1( )B 
in Fig 2.5. 

（3）For
3

1,1,1( )B  we trilateral triangle T as equal portions of n 

times. When u take the time Bernstein basis degradation as 

( ) 6 (1 )M t ut u t= − −
 (u is a fixed value, t is the relative area of 

the triangle OBC), its second derivative was
( ) 12q t u=

. Because 

of rotation symmetry of
3

1,1,1( )B 
, if v take timed we get

( ) 12q t v=
, and w take timed we get

( ) 12q t w=
. As condition

1u v w+ + =  When the triangle area imposed by the load of 12 

units, the bending moment picture shows 
3

1,1,1( )B  in Fig 2.6.  

6 Conclusions 

In this paper we study the Bernstein basis, and combined 

knowledge of a statically indeterminate beam. Ultimately we are 

able to figure out the Bernstein basis of physical background. We 

can recognize the Bernstein basis functions from the mechanical 

level. In the triangular domain we use the triangulation method 

simplified dimension. By some mechanical knowledge we get 

bending moment diagram as exactly Bernstein basis in triangular 

domain, when we take specific load. Lay to that knowledge, we can 

take the foundation for geometric modeling. 
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