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 This paper presents multilateration system for monitoring and scene surveillance. Multilateration (MLAT) system 

acquires the position of target mainly by the time-difference-of-arrival (TDOA) at the different ground stations. 

The mathematical modeling of the aircraft and vehicle in the MLAT system is carried out, and the shortest path 

planning problem is realized. The MLAT system improves the monitoring precision to provide security for 

real-time collision-free path planning of multimodal transport choice in stationary or non-stationary environments 

using modified pulse-coupled neural network (MPCNN) model. The proposed neural network is topologically 

organized with only local lateral connections among neurons. It works in dynamic environments and requires no 

prior knowledge of transport model. In the process of path planning of based on MLAT system, The transport 

between start to target with neurons like the propagation of a wave, which the target neuron fires first, and then the 

firing event spreads out, through the lateral connections among the neurons, then accurately record the excitation 

time of each neuron. The real time optimal path is the parent sequence from the starting neuron to the target 

neuron. In the static and dynamic conditions, an algorithm for generating wave is proposed. The number of 

propagation in the network is proportional to the connection intensity between the neurons. Therefore, the 

generated path is always the shortest path of the global. In addition, each neuron in the model can propagate the 

ignition event to adjacent neurons without any comparison calculation. The effectiveness and effect iveness of the 

proposed method are verified by simulation and comparative study. 
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1. Introduction 

The multilateration(MLAT) system is a promising airport scene 

monitoring technology which compared with the traditional PSR 

and SSR surveillance, positioning accuracy, low cost and easy to 

install. The accuracy of aircraft and surface vehicles detection, 

identification, tracking, and communication is gradually increased 

by the use of multilateration systems. MLAT system has been 

successfully applied in many large international airports and 

becomes core technology in the advanced scene activity guidance 

and control system (A-SMGCS) proposed by international civil 

aviation organization (ICAO). 

Nowadays, MLAT system based on ADS-B standard is a feasible 

option to be used in the air traffic control (ATC). ADS-B 

(automatic-dependent-surveillance-broadcast) is a surveillance 

system placed in aircraft that periodically transmits state vector 

estimates and other information to air traffic control centers and 

other nearby aircraft. It is assumed that the aircraft and surface 

vehicles are equipped with an ADS-B transponder, and it 

continually transmits the ADS-B signal at 1090 MHz every second. 

The structure of MLAT system is shown as Fig.1. MLAT system 

calculates a more accurate position based on the ground stations 

receiving the ADS-B signals by TDOA/TOA theory. Each ground 

station of MLAT system needs to preserve a higher time 

synchronization to reduce the time measurement error. It is 

necessary that all the ADS-B receivers are synchronized by a 

common GPS/rubidium clock standard to assist in the time 

synchronous capture of the ADS-B frames. The ADS-B signals are 

digitally processed by the ground stations to the central processing 

facility of MLAT system, and the positioning of the target is 

accomplished by the TDOA measurements value processing.  

In this paper, the paths planning of aircraft and vehicles in airport 

scene are studied using neural network based on MLAT system. As 

a result, shortest problem has gotten the attention of multimodal 

transport, traffic engineers and other researchers. These techniques 
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include time series analysis, Bayesian networks, neural networks 

(NNs), fuzzy NNs, nonparametric regression (NP), and intelligence 

computation[1, 2]. 

Many scholars have proposed algorithms to solve this kind of 

problem[3, 4]. Liu investigated the solution algorithms for the 

multi-criteria multi-modal shortest path problem (M-SPP), which 

belongs to the set of problems known as NP-hard[5]. Lozano 

considered a label correcting approach to find the shortest viable 

hyper path from an origin to a destination, for different values of the 

upper limit of modal transfers [6, 7]. Dib have shown that the 

success rate of approach in terms of converging to optimum/near 

optimum solutions is highly better than a pure GA[8]. 

The remainder of this paper is organized as follows. In the second 

section of the MLAT system theory. The third chapter proposes the 

multimodal transport. The fourth section describes a path planning 

algorithm based on PCNN. The simulation results are given in 

section V and the conclusion is given in the end. 

 
Fig.1 The structure of MLAT system 

2. Multilateration technology theory 

2.1 fundamental theory for MLAT system 

MLAT systems are basically distributed surveillance and 

identification systems which are both short range and wide area for 

airport. In MLAT systems, a number of ground stations or “sensor” 

stations are placed in some strategic locations around the airport to 

make up a MLAT system network as Fig 2. State of the MLAT 

systems require high band-width communication lines for the 

correlation of signals from ground stations. The method of 

calculating the target position based on the TDOA principle is 

usually used. Furthermore, the local clocks of the ground stations 

must be synchronized with a very high precision to make the arrival 

time difference more accurate to reduce TDOA measurement error. 

The theory for TDOA principle is as Fig.3. 

 

Fig.2  The schematic diagram for MLAT system 

 

Fig.3  The theory for TDOA principle 

2.2 Mathematical model for MLAT system 

The TDOA technique is also called hyperbolic positioning where 

the target is visible to perform intersection of many hyperbolic 

surfaces. The coordinates of two ground stations are known as

( ) ( )1 1 2 2, ,x y x y、 , Suppose that the target's coordinate is 

( ),x y  that is unknown. The time difference of signal to the two 

ground stations is 1t . According to the principle of TDOA, set up 

the following mathematical model: 

( ) ( ) ( ) ( )
2 2 2 2

1 1 1 2 2t c x x y y x x y y  = − + − − − + −
(1) 

where c  is the velocity of light. The upper type expresses that 

the target position is on one of the hyperbola. The MLAT system 

generally includes at least four ground base stations, and there are 

three groups of time difference, and the intersection point of the 

curve represents the target position as follows. 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2

1 1 1 1 2 2 2

2 2 2 2 2 2
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t c x x y y z z x x y y z z
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  = − + − + − − − + − + −


  = − + − + − − − + − + −

  = − + − + − − − + − + −


(2)

 

In the three-dimensional space, the MLAT system is used to 

locate the target, and the intersection point represents the target 

position, as shown in the Fig.4.. 

 

Fig.4  Three curves fix one point in 3D space 

3. The theory of multimodal transport 

For the transport from starting point S to the destination E, there 

exist some nodes in transport process as shown in the Fig.5. Assume 

the cargo would be transported through three cities, and every city 

has some three to four points which indicate the transport site, 

where nodes 11,12,13 mean the different transport site in the first 

city, nodes 21,22,23,24 mean the different transport site in the 

second city, nodes 31,32,33 mean the different transport site in the 

third city. Every line in the Fig.5 means the transport format 

between different site, including the different site in the same city. 

Such as the node 21 means the park in city 2, then the cargo can be 

transported by truck from the city 2 to node 31 which means the 

airport of city 3 through the line between node 11 to node 31, and 

also to node 32 which airport in city 3. Each site called neurons, 

connection between its known as the weights of neural network, the 

weight can be expressed as path or cost. 

21

11 22 31

12 23 32 ES

13 24 33

Fig.5. Multimodal transport 

The key issue is the time and cost in multimodal transport, 

therefore in the transport process the weight transport neural 

networks is proposed which contain time and cost. 

                  ( ), ,ij i jw f T C=               (3) 

where ,T C indicate the transport time and cost from the i to j . 

Therefore, the multimodal transport problem is transform into the 

shortest path planning. A modified pulse neural network can be used 

to realize the shortest path planning. A typical neuron of PCNN 

consists of three parts: the receptive fields, the modulation fields, 

and the pulse generator. The neuron receives input signals from 

other neurons and external sources through the receptive fields. The 

receptive fields can be divided into two channels: one is the feeding 

inputs and the other is the linking inputs. The modulation fields 

generate the internal activity of the neuron. The pulse generator 

receives the result of total internal activity and determines the firing 

events. 

If internal activity is greater than the threshold, the output of 

neuron turns into 1, and the neuron fires, then the output feedbacks 

to make threshold rise over internal activity immediately, then the 

output of neuron turn into 0. Thus it produces a pulse output. It is 

clear that the pulse generator is responsible for the modeling of the 

refractory period. 

4. PCNN Model for path planning and analysis 

In this section, a modified PCNN is proposed to examine the 

path planning process. In addition, the architecture and variables are 

defined and used in this section. 

4.1 Network Architecture 

In the proposed PCNN model, each neuron i , 

, 1, 2,...,i j N= has one output jY . 

1, ( ) ( )
( ) ( ( ) ( ))

0,

ij ij

j ij ij

if x t t
Y t Step x t t

otherwise





= − = 


(4) 

where ( )ijx t and ( )ij t  are the internal activity and threshold 

function, respectively, t is the time, N and is the total number of 

neurons. 

The threshold function of neuron ij can be expressed as 

              ( )( ) expij ijt w =                (5) 

for all 1, 2,...,i N= , where ijw is positive constants. 

The internal activity ijx of neuron ij  determines the firing 

events. It can be determined by 

          

0 0

0

i
fire

i

fire

t t i j

ij fire fire

j

fire

t t

x e t t t

t t

−

  


=  
 


          (6) 

where
i

firet is the time of the neuron iy  fired, and determined 

by the neuron kix . 

4.2 Algorithm of Neural Networks 
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Before discussing the model, some notations and definitions 

about neuron firing and the firing time are defined as follows. 

Definition 1: The fire time of the output of neuron i  is definite 

as following: 

    ( )   min ( ) ( ), 1,2,3i

fire ki kit t x t t k=     (7) 

Then the output of neuron i  at time is represented by ( )iY t  

such that 

              
0,

( )
1,

j

fire

j j

fire

t t
Y t

t t

 
= 



             (8) 

where 
i

firet is the time at which output neuron i fires, after neuron

( )jY t  fired, the neuron which connected directly with neuron

( )jY t is work as Definition 2. 

Definition 2: Dynamic neuron ji  is represented by ( )jix t  

such that 

           

0,

( ) ,

0,

j

ji fire

j i

ji ji ji fire fire

i

ji fire

x t t

x t x x t t t

x t t

 = 


=  


= 

      (9) 

where 
i

firet is the time at which neuron i fires. 

For any given neuron ( )Y i , after the output of neuron ( )Y i  

fires, its neighbor neurons ijx  are ready to fire and the firing time 

of this neuron is denoted as
i

firet . A neuron ( )Y j  will fire only if 

some neuron ijx in its neighbor set fires. And then the neuron

( )Y i is said to be the parent of ( )Y j ,
j

Pi R=  , and the firing 

time of neuron ( )Y j is denoted as
j

firet . If another neuron in the 

same neighborhood fires and if it can make neuron ( )Y i fires 

early, then it will become the new parent of neuron ( )Y i .  

4.3 Theoretical analysis of the model 

Theorem 1: For any given neuron i ,if 
i

PR j=  and t  

satisfying. 

    ( )

ln( )

( ) exp

P P
i iR R

fire fire ji

ji ji

t t t

t w





   +


=
           (10)

 

where ji is the linking strength from i to j  , the wave propagate 

process is work to the neuron j  . 

Proof: It is clear that at time
P
iR

firet t= . Under the stimulation of 

neuron P

iR , 

               0jix =                     (11)
 

For

P
iR

firet t
. Thus 

               ( ) exp[ ]ji jit w =                 (12)
 

Then, from Definition 1, we have 

      
P
iRi

fire fire jit t w= +                  (13) 

This completes the proof of Theorem 1. 

From Theorem1 it can be drawn that the wave propagates process 

is work from neuron j to the neuron i  . 

Theorem 2:  Assume that there is a neuron which is the target 

that fired first, and then the wave propagates to neuron i and neuron

j , the two paths are
iPATH and

jPATH . The time that the firing 

wave propagates to i is
iT along

iPATH and to j is
jT along

jPATH . 

If Theorem 1 hold, then 

( ) ( )i i i jT T L PATH L PATH          (14) 

where ( )iL PATH and ( )jL PATH  are the path lengths of 

iPATH and jPATH  , which can be expressed as 

         
( )

( )

i

j

i pq

p q PATH

j pq

p q PATH

L PATH w

L PATH w

→ 

→ 

 =



=






        (15)

 

Proof: If the wave propagates along
iPATH  , then 

     

arg

( ) ( ) ...

ln( )

( )
ln( )

PRP P i
i i i

i

i T et

i fire fire

R R Ri

fire fire fire fire

pq

p q PATH

i

T t t

t t t t

w
B

B

L PATH
B

B





→ 

= −

= − + − +

= −

= −


     (16) 

where /ij iju w =  , it is clear that   is a by constant 

Condition (III) . Similarly, if the wave propagates along jPATH  

    

( )
ln( )

j

j

L PATH
T B

B
= −

          (17)

 

Since Conditions (I) and (II) hold   

                 ln( ) 0B−                (18) 

Thus: 

(I) If i jT T , then ( ) ( )i jL PATH L PATH ; 

(II) If ( ) ( )i jL PATH L PATH ,then i jT T . 

This completes the proof of Theorem 2. 

 



T. Zhao / IJAMCE 1 (2018) 62-69 

 

5. Simulation for PCNN Model in MALT system 

The target is located in the range of ( )m700700 , and the real 
position and measured location of the target are recorded. The 
simulation results are as Fig.6. The straight line represents the true 
position of the target, and the star fold line represents the 
measurement position. And the mean square deviation is shown in 
Fig.7.. 

 
Fig.6  Comparison diagram of real and measurement position 

 
Fig.7  The mean square deviation of the target position 

After locating the target by MLAT system, realizing the path 

planning of aircraft and vehicle in the scene. We use the theory 

mentioned above to simulate the graph 5. 

Consider a real example as illustrated in Fig. 1, where S is the 

location of the start, E is the location of the target, and 

11,12,13,21,22,23,24,31,32,33 are the locations of transfer station. 

In this example, which satisfied the conditions in Theorem 1.  

Consider the dynamics of each neuron step by step. 

1）At time 0, neuron S fires, thus
0S

firet =
 

Then 

( )( ) expSi Sit w =
, 

11,12,13i =
 

( )
( )Si

Si

dx t
x t

dt
=

, 
11,12,13i =

 
else 

( )( ) expij ijt w =
 

( )
0

ijdx t

dt
=

 

2）At time 
( )ln 4t =

,for 12i = , we have 

12( ) 1Y t =
 

Thus, when the neuron E fires, stop. 
Then the movement is 

1
11 ...P

P P

R
R R→ → →

 

That is 12 21 33S E→ → → →  
The finding shortest path is shown in Fig 8-Fig 11. 

 
Fig.8  The Firing sequence and time of the neuron 12 

 
Fig.9  The Firing sequence and time of the neuron 21 



T. Zhao / IJAMCE 1 (2018) 62-69 

 

 
Fig.10  The Firing sequence and time of the neuron 33 

 
Fig.11  The Firing sequence and time of the neuron E 
In this example, describe how the proposed model worked step by 
step. In the Fig.8-Fig.11, it illustrates the firing sequence and time 
of the neurons which are on the shortest path. 

6. Conclusion 

MLAT system is used to locate the target. The high-precision 

positioning method provides more reliable location information for 

aircraft and vehicle monitoring in the scene. Then these traffic tools 

are modeled by path planning, the article proposed that fast and 

accurate finding the shortest path is a simple and easy model, which 

not only maintains the important properties of the typical PCNN 

model. The complexity of the algorithm is only related to the 

shortest path length and the complexity of the map. It does not need 

any prior knowledge and does not need to optimize the cost function. 

In addition, there is no comparative calculation in the wave 

propagation of each neuron. The feasibility and correctness of the 

method are verified by simulation and theoretical analysis. 
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