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 In order to achieve better transient performance of model reference adaptive control (MRAC), a recently 

proposed idea, named closed-loop reference model (CRM), has been recently proposed. However, there exists a 

potential peaking phenomenon in the CRM-based MRAC systems due to the introduced feedback gain in the 

CRM, which may deteriorate the original tracking control response. In this paper, we revisit the CRM-based 

MRAC design, and provide a new prospective to analyze the bound of peaking value by using L2 norm and 

Cauchy-Schwartz inequality. Following the analysis we further provide a potential way to alleviate the peaking 

phenomenon by improving the parameter estimation error convergence. This has been achieved by introducing a 

modified adaptive law with a new leakage term, such that exponential convergence of estimation error can be 

proved via rigorous theoretical analysis. This new framework allows to use large feedback gains in the CRM to 

improve transient control performance, while the peaking phenomenon can be reduced. A wing rock aircraft model 

is used as the numerical example to validate the effectiveness of the proposed method and improved performance 

over the traditional CRM-based MRAC. Simulation results show that the modified CRM- based MRAC system 

can achieve better control responses. 
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1. Introduction 

In the traditional model reference adaptive control (MRAC), 

there exists such a conflict that the high adaptive gain in the 

adaptive laws can help to address the effect of uncertainties in the 

transient response but may also excite high frequency unmolded 

dynamics (Gibson, Annaswamy, & Lavretsky, 2013b; Na, Herrmann, 

& Zhang, 2017; Yucelen & Calise, 2010). Hence, it is 

well-recognized that high gain learning is not preferable in the 

control implementation; this could deteriorate the tracking response. 

In order to solve this problem, several methods have been proposed 

in the literature (Datta & Ioannou, 2002; Krstić, Kokotović, & 

Kanellakopoulos, 1993; Zang & Bitmead, 1991). In particular, in 

reference (Krstić et al., 1993), L2 norm is used to analyze the 

tracking error of adaptive systems with disturbances and 

un-modeled dynamics. 

Among different solutions, a new MRAC framework that was 

subsequently named as the closed-loop reference model (CRM) has 

recently been reported. In this method, the tracking error is 

introduced as a feedback into the reference model. Hence, the 

overall tracking error convergence rate can be improved. 

CRM-based adaptive control was first proposed in (Lee & Huh, 

1997). It is shown that the transient performance in the MRAC 

system (Narendra & Anuradha, 1989) can be improved by using the 

modified CRM. In particular, it shows that the CRM-based MRAC 

system can achieve fast tracking error convergence in the initial 

period (Lavretsky, 2009; Stepanyan & Krishnakumar, 2011). Due to 

its outstanding performance in addressing the conflict between the 

uncertainties of the transient response and the high frequency 

unmolded dynamics, CRM-based MRAC has recently attracted 

significant attention, and been used in some practice (Lavretsky, 

2006; Stepanyan & Krishnakumar, 2010). However, since the 

CRM-based adaptive control system introduces a feedback of the 

tracking error in the reference model, the reference model dynamics 

are slightly changed compared to the original open-loop reference 

model (ORM) in (Narendra & Anuradha, 1989). In this case, this 

modification may cause a potential peaking phenomenon in the 

CRM-based MRAC designs (Gibson et al., 2013b), which could 

deteriorate the transient performance of the control system. 

Consequently, the perfect tracking of the original reference model 

(this is the control design objective) may be lost.  

Although some preliminary solutions have been suggested to 

address this induced peaking phenomenon (Lavretsky, 2006; 
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Stepanyan & Krishnakumar, 2010), the authors assume that the 

initial state error is zero and the closed-loop system state is 

independent of the feedback gains in the reference model. Such 

assumptions may not be true in practice because the initial system 

state may not be able be measured directly. Hence, it remains an 

open problem to remedy the peaking phenomenon in the 

CRM-based MRAC.  

In this paper, we first revisit the CRM-based MRAC designs, 

where the peaking phenomenon is analyzed and the drawbacks of 

the Lyapunov based analysis is addressed. Then a new analysis of 

the peaking phenomenon is provided in this paper by using L2 norm 

and Cauchy-Schwartz inequality, where the influences of the 

tracking error and the parameter estimation error on the peaking 

phenomenon are clarified. It is shown that the peaking value can be 

reduced if the parameter estimation error can be alleviated. Then 

inspired by (Na, Herrmann, Ren, & Mahyuddin, 2011), we propose 

a modified adaptive law where a new leakage term containing the 

real-time parameter estimation error is incorporated into the 

traditional adaptive law, such that the estimation error can converge 

to zero exponentially. Consequently, this modified CRM-based 

MRAC with new adaptive law can allow using large feedback gain 

in the CRM to further improve the transient performance while the 

peaking phenomenon of the control system can be reduced. By 

using the wing-rock system as a benchmark example, comparative 

simulation results are provided to show the effectiveness and the 

improved performance of the proposed modified CRM-based 

MRAC over the traditional CRM-based MRAC. 

The structure of this paper is as follows. Section 2 illustrates the 

CRM-based MRAC design and the peaking phenomenon. Section 3 

contributes to analyze the peaking phenomenon vie a new 

perspective, and then introduces the modification of the CRM-based 

MRAC design. Section 4 provides simulation results to show the 

efficacy of the modified CRM-based adaptive control. 

2. Problem preliminaries 

2.1 Traditional CRM-based adaptive control  

We first recall the recently proposed CRM-based control system. 

Consider the following uncertain dynamic system. 

( )( ) ( )x Ax B f x u t= + +              (1) 

where
1 2[ , ]T n

nx x x x R=  is the system state, ( )u t is the control 

input, n n n mA R B R  ， and ( ,  )A B are the system matrices, and 

the pair ( ,  )A B is controllable, the matrices ( )TB B is invertible. 

( )f x is unknown system dynamics.  

Assumption 1(Na et al., 2011): The unknown dynamics of system 

(1) can be further rewritten as: 

( ) ( )Tf x x =                    (2) 

where d mR  is an unknown constant weight matrix. 

1( ) [ ( ) ( )]T d

dx x x R  =  is a known function vector.   

The original model reference to be tracked is given by: 

( ) ( )r r r rx t A x t B r= +                (3) 

where n

rx R is the state of the reference model, 
mr R is a given 

bounded control command, n n

rA R  is a Hurwitz system matrix, 

i.e. all the real parts of its eigenvalues are negative. n m

rB R  is the 

input matrix. Hence, there exist positive definite matrices

, n nP Q R  , which make the Lyapunov equation T
r rA P PA Q+ = −  

hold. 

For CRM-based MRAC system, the tracking error will be added 

into the reference model. Thus the CRM is as follow:  

( ) ( )cr r cr r crx t A x t B r e= + +             (4) 

where n

crx R is the state of the closed-loop reference model, 

cr cre x x= − is the tracking error between the closed-loop reference 

model and the uncertain dynamic system (1).  is a feedback gain 

selected by the designer. 

In the CRM-based MRAC system with the CRM (4), the control 

input u is designed as: 

x r au K x K r u= + +                 (5) 

where xK is feedback gain, rK is feedforward gain, which fulfill 

the follow equations: 

r x

r r

A A BK

B BK

= +

=
                  (6) 

au is the adaptive feedback given as: 

ˆ ( )T

au x = −                  (7) 

where ̂ is the estimation of the unknown weight matrix , which 

can be obtained through the adaptive law (8) 

  ˆ ( ) T

crx e PB =                (8) 

where 0  is the adaptive gain and cr cre x x= − is the tracking 

error between the uncertain dynamic system and the closed-loop 
reference model given in (4).  

Substituting (2), (5)-(8) into system (1), then we can get the 

closed-loop controlled system as: 

   ( )T

r rx A x B r B x = + +         (9) 

where ˆ  = − is the estimation error of the unknown weight 

matrix  .  

The block diagram of the CRM adaptive control architecture is 

exhibited in Fig. 1. 

 

Fig.1. Block diagram of the traditional CRM-based MRAC.  

Subtracting (4) from (9), the tracking error of the above 

CRM-based MRAC system with CRM (4) can be obtained as: 

  ( ) ( )T

cr r cre A I e B x  = − +      (10) 

where I  is an identity matrix. We set '
r rA A I= − , and then can 

verify that '
rA  is also a Hurwitz system matrix.  

For comparison, we also derive from (3) and (9) the tracking 

error of the original MRAC system with the original reference 

model (3) as: 

 ( )T

re A e B x = +            (11) 

  Comparing (10) with (11), we know the tacking error feedback 

term cre is introduced into the reference model (3), thus the 

feedback gain   can provide one more parameter to reduce the 
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tracking error without increasing the adaptive gain. Instead, it can 

shift the eigenvalues of the transform matrix of the closed-loop 

error equation (10), and thus improve the convergence speed of 

tracking error. Thus it can avoid the conflict existing in the 

traditional MRAC system. However, there may exist a potential 

peaking phenomenon in the CRM-based control system, which has 

been initially discussed inv(Gibson, Annaswamy, & Lavretsky, 

2013a). For clarity, we will discuss this issue in detail in next 

subsection. 

2.2 Peaking phenomenon 

Because of the feedback of the tracking error in the CRM (4), the 

error convergence of CRM-based MRAC in (10) is modified, which, 

on the other hand, may result in a peaking phenomenon. In this 

subsection we will analysis the peaking phenomenon and give some 

potential ways to eliminate the peaking phenomenon. 

  From equations (3) and (4), we can further obtain their solutions 

given in (12) and (13) 

( )

0
(0) ( )r r

t
A t A t

r rx e x e r d
  −

= +           (12) 

( ) ( )

0 0
(0) ( ) ( )r r r

t t
A t A t A t

cr cr crx e x e r d e e d
     − −

= + +   (13) 

In general, the difference between (12) and (13), i.e. cr rx x− , is 

used to measure the peaking phenomenon. For simplifying the 

analysis, we assume that (0)= (0)r crx x . Then, it follows from (12) 

and (13) that: 

( )

0
( )r

t
A t

cr r crx x e e d
  −

− =           (14) 

Clearly, this extra error term is due to the difference between the 

ORM (3) for the standard MRAC and the modified CRM (4) of the 

CRM-based adaptive control system. Based on (14), it can be 

verified that the desirable tracking for making the output of CRM 

crx
 

the same as the original reference model rx  may not be 

always achieved.   

In particular, this difference between the ORM (3) and the CRM 

(4) will also lead to a potential peaking phenomenon in the 

CRM-based MRAC system. In fact, based on the Lyapunov stability 

theorem, the authors of (Gibson et al., 2013b) derived the error 

convergence bound of (14) as: 
1

21

2

(0)(0)

2 2

cr
cr r

r r

e
x x

A A

 




 
−  +  

 
      (15) 

Because the closed-loop reference model introduces the tracking 

error that contains the unknown system dynamics as a feedback, the 

output of the CRM will also be affected by the unknown system 

dynamics, which is named peaking phenomenon. Hence, for large 

gain  in the CRM, a large peaking would appear in cr rx x−  

because of the induced exponential term 
1/2

 . For the detailed 

analysis on this peaking phenomenon, we refer to (Gibson et al., 

2013b).  

From (15) we can see that the peaking phenomenon is influenced 

by the initial tracking error (0)cre , the estimation error of the 

unknown weight matrix  , the adaptive gain   and the feedback 

gain   in the CRM (4). Hence, we can conclude the following 

facts: 

⚫ Decreasing the initial tracking error (0)cre  can alleviate the 

peaking phenomenon in the CRM-based control system. 

However, since in practice it is not always possible to measure 

the initial system state (0)x
, 

we may not be able to set 

(0)crx
 
to make (0)cre  zero or small in the control system.  

⚫ Decreasing the estimation error (0)  is also helpful to 

eliminate the peaking value. Again, since we cannot know the 

exact information of the unknown parameter  , it is not 

feasible to reduce (0) . 

⚫ Reducing the feedback gain  can definitely eliminate the 

peaking phenomenon by reducing the power of the exponential 

term 
1/2

 . However, too small   will loose the merits and 

advantages of CRM over ORM. In fact, the use of   could 

help to achieve faster convergence of control error cre  and 

thus improve the transient control response in the MRAC 

system. Hence, it is preferable to use fairly large feedback gain

 .  

⚫ For certain  , increasing the adaptive gain  can reduce the 

effect of the peaking phenomenon induced by the second term 

of (15). However, it has been widely recognized that too large 

gain 
 
may excite high frequency dynamics and even trigger 

instability of the adaptive control systems.  

From the above observations, we can see that it is generally 

difficult to find a feasible method to eliminate the peaking 

phenomenon in the CRM based MRAC, though a practical trade-off 

strategy has been reported in  (Gibson et al., 2013b) by using the 

Projection algorithm in the adaptive law. That is because the 

analysis based on Lyapunov theory and the derived error bound in 

(15) only reflect the influence of the initial tracking error (0)cre  

and the initial estimation error (0) , while the time-varying and 

dynamic behavior of ( )t  and its influence on the system response 

cannot be addressed. Hence, in the following section, we will try to 

use Cauchy-Schwartz inequality to revisit the tracking error bound 

and then provide a new feasible solution to eliminate the peaking 

phenomenon while keeping the merits of CRM. 

3. Modified CRM control system 

3.1 Peaking phenomenon analysis from new perspective  

In this section, we will provide a new perspective to analyze the 

peaking phenomenon based on L2 norm. From this analysis, we can 

further address the influences of both the initial tracking error 

(0)cre
 
and the estimation error ( )t  on the peaking phenomenon 

as time increases. Then, we will further propose a modification on 

the adaptive law to alleviate the peaking phenomenon. 

Lemma 1 (Peutemanyz & Aeyelsy, 1988): If A is a Hurwitz 

matrix,  is the maximum real part of the eigenvalues of A ,

max( ( ( )))real A = . Then, we know 0  . For any constant

0  , and variable 0t  , we can get: 
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( ( ) )( ) A tA te Le
   +

           (16) 

13 2
(1 )

2

n
L



−
= +                (17) 

where • is the norm of the matrix. 

Lemma 2: We can further reformulate Lemma 1 as the following 

form: 

( ) 2

t

A te Me


                 (18) 

13
(1 4 ( ) / )

2

n
M A  

−
= −            (19) 

Proof 

For simplicity, we can set / (2 ( )A  = −
 
and substitute it to 

(16), then it can be verified that (18) with (19) is true. 

We first prove the following theorem that states the bound of the 

tracking error cre .  

Theorem 1: For CRM-based MRAC system (1), (5)-(8) with the 

CRM (4), the boundary of the tracking error cre can be obtained as: 
'

' ' '2

2 22 2
( ) (0)  ( ) ( ) /

t

T

crcre t e M e M B t x


   + −  (20) 

We use matrix '

rA to represent for ( )rA I− . Thus the variables are 

defined as 
' ' ' 1

(3 / 2)(1 4 ( ) / )
n

M A  
−

= − and ' 'max( ( ( ))rreal A = . 

Proof 

The tracking error of CRM based MRAC system is given as in the 

above (10). Integrating both sides of (10), we can get that: 
' ' ( )

0
e ( ) (0) ( ) ( )r r

t
A t A t T

cr crt e e e B x d
    −

= +      (21) 

According Lemma 2, we can verify that the following inequality 

holds from (21)  
' ' ( )

' '2 2

22 0

2

( ) e (0)  
t t

t
T

cr cre t M e M B e d
  

  
−

 +   (22) 

By applying the Cauchy-Schwartz inequality, we can further 

obtain that: 

 

' '
2 2

( ) ( ) 2
2 2

0 0 0

t t
t t t

T Te d e d d
   

      
− −  

    
    
    (23) 

Noticing that the following facts are true 
2

( )

2
1

0
t

e d
 




− 
  − 

 
           (24)

2 2 2

20 2

t
T Td                 (25) 

Then we have:  
( )

2 2
2

20 2
2

1
t

t
T Te d

 

    


−

 −      (26) 

Substituting (26) into (22), the inequality (20) can be finally 

validated. This completes the proof.   ◇ 

Then we will use the above bound of cre
 
to further obtain the 

boundary of ( )cr rx x−  as follows: 

Theorem 2: The L2 norm bound of the error ( )cr rx x−
 

between 

the ORM and CRM is given as: 

' '

' 2

2 2 2' 2
(0) + ( )

t

T

cr r cr

M MM
x x e M e B t

 
 

  
− 

− − −
(27) 

Proof  

Applying Lemma 2 on (14), we can obtain that 

( )
2

2 0
2

( )
tt

cr r crx x M e e d




  
−

−        (28) 

According to Cauchy-Schwartz inequality, we can further obtain 
that: 

( )
( ) 22

0 0 0
2

( )

20

( ) ( )

                              = ( )

tt t t
t

cr cr

t
t

cr

e e d e d e d

e d e




 

 

    

 

−
−

−

  



    (29) 

Then by substituting (24) and (25) into (29), we can obtain that: 
'

( )
' ' '2 2

2 220

2

1
( ) (0)  ( ) ( ) /

t
tt

T

cr cr
e e d e M e M B t x

 


    


−

 + −
−

 
 
  

     

(30) 

Substituting (30) to (28), the inequality (27) can be validated. 

This completes the proof.   ◇ 

Remark  1: From (27), we can see that the influence of the initial 

tracking error (0)cre will exponentially vanish as time goes to 

infinity because of the exponential term 
' /2te , which means the 

impact of cre  is not the main factor to account for the peaking 

phenomenon. Instead, the impact of   is immune along the 

increase of time; that is the unknown system dynamics of   play 

a more important role in creating the peaking phenomenon. Thus, it 

is essential for reducing the peaking phenomenon in the CRM-based 

MRAC system. This new perspective provides a potential way to 

eliminate the peaking phenomenon by decreasing the bound of  .  

3.2 Modified adaptive law  

From the alternative analysis of peaking phenomenon, we know 

that one potential way to alleviate the peaking phenomenon is to 

reduce the estimation error  . In this section, inspired by previous 

result reported in (Na et al., 2011; Na et al., 2017), we will provide a 

new adaptive law, which can effectively make the estimated 

parameter ̂  converges to its real value   exponentially, which 

can allow the estimation error   converging to zero fast. 

The modified control structure is given in the following Fig.2. 

 

Fig.2. Block diagram of the modified CRM-based MRAC.  
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For this purpose, we define the filtered variables as:  

f f

f f

f f

kx x x

ku u u

k  

 + =


+ =
 + =

                  (31) 

where 0k  is a constant filter parameter. If k is small enough, we 

can get that ,  ,  f f fx x u u  → → → . It can also be seen from 

(31) that , u ,f f fx 
 
can be easily implemented by a low-pass 

filter operation ( )1 / 1ks +  on the variables , u,x  . 

We further define an auxiliary term
nE R as: 

 ( ) /f f fE x x k Ax Bu= − − −         (32) 

which can be online calculated via the variables given in (31). 

Next we define auxiliary matrix 
d dM R  and vector d mN R   

as: 

,     (0) 0

,    (0) 0

T

f f

T

f

M M M

N N E Z N

  

 

 = − + =


= − + =
     

(33) 

where 0   is a design parameter, and 1( )T n mZ B B B R− =    

exists for any det( ) 0TB B  . 

  Now, we can verify the following fact: 

Lemma 3: For the variables defined in (33) with variables given in 

(31), we have N M= . 

Proof 

We apply the filter operation ( )1 / 1ks +
 
on both sides of system 

(1), then we can obtain that: 

     ( )
1

1 1

Ts
x Ax Bu B

ks ks
  = + +  + +

    (34) 

where  • denotes the variable after Laplace transform. According to 

(31), we can get the following equalities through Laplace transform. 

 

 

 

1

1

1

1

1

1

f

f

f

x x
ks

u x
ks

ks
 


  =  +


  =  +

  =  +

                 (35) 

Substituting (35) to (34) with (31), we can further obtain that: 

 
1

( )T

f f f fB x x A x B u
k

        = − − −           (36) 

Applying the inverse Laplace Transform on (36) we can obtain 

that: 

1
( )T

f f f fB x x Ax Bu
k

  = − − −           (37) 

Considering (37) with (33), we can get that: 

2

T T

f fN N B Z   = − +               (38) 

Then the integration of M  and N  can be calculated along (33)

and (38) as: 

       

( )

0

( )

0

( ) ( )                             

( ) ( )                           

t
t T

f f

t
t T

f f

M e d

N e d

 

 

    

    

− −

− −

 =


 =





 (39) 

From (39), we can see that the following relationship between 

M and N is true: 

 =N M                       (40) 

This completes the proof.   ◇ 

It is shown in Lemma 3 and (40) that auxiliary matrix M and 

vector N contain the information of the unknown parameter  . 

Then by using auxiliary matrix M  and vector N , a new adaptive 

law will be designed and applied to the CRM-based MRAC system 

to alleviate the peaking phenomenon. The new adaptive law is 

designed as: 

    ( )'ˆ ˆ( ) ( ) ( )T

crt x e P B M N    = − −         (41) 

where 
'P Q  are positive definite matrices that make the Lyapunov 

equation ' ' ' '( )T

r rA P P A Q+ = −
 

hold with '
rA  being a Hurwitz 

system matrix shown in (10).  

We now validate the convergence of the CRM-based adaptive 

control system with the adaptive control law (41).  

Theorem 3: Consider the controlled system (1) with the modified 

reference model (4), the adaptive law is given by (41). If the 

regressor vector ( )f x  is persistent excited (PE), then all signals 

in the closed-loop system are bounded, and the tracking error 

( )cre t  and the parameter estimation error ( )t  converge to zero 

exponentially.  

Proof 

It can be verified that the tracking error of CRM-based MRAC with  

(4), (5) and the adaptive law (41) are the same as that given in (10). 

Hence, we choose the Lyapunov function as 

' 1( )T T
cr crV e P e tr   −= + . Moreover, we know ˆ  = − , thus 

the follow equality can be validated 

( )'ˆ ˆ( ) ( ) ( )Tt x e P B M N     = − = − − −     (42) 

According to the fact that ( ) ( )T
f f   

 
is nonnegative, thus we 

can deduce that 0M   as strictly proved in (Na et al., 2011; Na et 

al., 2017). Moreover, from (40), we can obtain that: 

ˆM N M − = −                (43) 

Calculating the derivative of V along (10), (43) and (42), we can 

obtain that: 
' ' ' ' '

'

( , ) (( ) ) 2 ( )

               2 ( ) 2 ( )

            2 ( )

            

T T T T

cr cr r r cr cr

T T T

cr

T T

cr cr

V e e A P P A e e P B x

tr e P B tr M

e Qe tr M

V

  

    

  

= − + +

− −

= − −

 −

 (44) 

where 1' '
max maxminmin{ ( ) / ( ),  2 / ( )}Q P    −=  determines the 

convergence speed.  

By using Lyapunov stability theorem, we can conclude that the 

closed-loop control system is stable and converge exponentially. We 

have both the tracking error and estimation error are bounded, i.e., 

,cr Le   . Moreover, we can verify from that 
2L  , 

2cre L

from (44). On the other hand, from (10) and (42) that ,cr Le    

are true. Hence, based on Barbalat’s lemma, we can obtain 

0cre → and 0 → , as t → .  The proof is completed.  ◇ 

From (43), we can see that through introducing the new leakage 

term ˆ( )M N  − , the modified adaptive law (41) will contain the 

real-time parameter estimation error  , which can guarantee the 



Y. Liu et al. / IJAMCE 1 (2018) 70-78 

 

convergence of ̂  to its real value ̂  exponentially. This new 

adaptive law can not only guarantee the convergence of the 

estimation error   apart from the control system, but also can 

alleviate the peaking phenomenon by achieving faster convergence 

speed of the tracking error cre and eliminating the influence of 

estimation error  . We will validate this claim later in the 

simulations. 

Remark 2: The traditional adaptive law (8) can only guarantee the 

convergence of the tracking error, i.e. 0,cre → as t → . It can 

not eliminate the impact of the unknown estimation error   

because only the boundedness of   can be proved by using this 

adaptive law. However, it is verified and claimed in Theorem 3 that 

both 0cre → and 0 →  for t → can be guaranteed by 

applying the new adaptive law (41). From the analysis given in 

subsection 3.1, we know that the estimation error   plays a 

dominant role in creating the peaking phenomenon. Hence, by using 

this new adaptive law, we can reduce the bound of   very fast, 

thus the peaking phenomenon due to the use of feedback gain   

in the CRM can be alleviated effectively.  

4.  Simulation results 

By using the wing rock aircraft model (Singh, Wells, & Yirn, 

1995), extensive simulations are provided in this section to validate 

the effectiveness of the modified scheme. The wing-rock dynamics 

are given by: 

 1 1

2 2

0 1 0
( )

0 0 1

x x
u f x

x xp

        
= = + +        

       
      (45) 

where represents for the roll angle of the wing-rock dynamics, p

stands for the roll rate of wing-rock dynamics and ( )f x denotes the 

unknown system dynamics which are given by: 
3

1 1 2 2 3 1 2 4 2 2 5 1( )f x x x x x x x x    = + + + +     (46) 

where the parameters  (i=0, 5)i are:
1 20.0748, 0.263 , = =  

3 4 50.0749, 0.0011, 0.0026  = − = = . 

To achieve satisfactory tracking response, the reference model 

matrices to be tracked are designed as:  

r2 2

0 1 0
     

2
r

n n n

A B
  

   
= =   

− −   
         (47) 

where 1 /n rad s = is the natural frequency of the system, 

0.707 =  is the damping ratio. Considering this reference model 

we can calculate the MRAC gains as [ 1 1.414]xK = − − 1rK = . 

The filter parameter used in the modified adaptive law (41) is set as

=0.001k , the learning rate is = ([100,100,100,100,100])diag . The 

initial conditions of simulations are: (0) [0 0 0 0 0 0]T = , 

and (0) [0.5 0]Tx = . The external command ( )r t used and the 

input of the reference model is a square-wave with the period 30 

seconds and its amplitude is 30 rad.  

  For comparison, the traditional CRM based MRAC shown in  

(Lavretsky, 2006; Stepanyan & Krishnakumar, 2010) is also 

simulated, where the adaptive law (8) is used instead of (41). The 

other simulation parameters (e.g. initial conditions, the learning gain 

and the feedback gains in the CRM) are the same as modified 

control scheme.  

  For showing the effect of different feedback gains   of CRM 

on the control response, different cases are simulated. Hence, the 

following four cases are considered: 

Case 1): Traditional CRM control system with adaptive law (8) 

and gain ([100,100])diag = . 

Case 2): Modified CRM control system with adaptive law (41) 

and gain ([100,100])diag = . 

Case 3): Traditional CRM control system with adaptive law (8) 

and gain ([1000,1000])diag = . 

Case 4): Modified CRM control system with adaptive law (41) 

and gain ([1000,1000])diag = . 

Simulation results of the above cases are provided in Fig.3-Fig.6. 

respectively. It is shown in Fig.3 and Fig.4 that satisfactory 

steady-state control responses can be achieved by using both the 

traditional CRM-based MRAC and the modified CRM-MRAC with 

improved adaptive law. However, comparing Fig. 3 with Fig.4, we 

can see that it is quite obvious that the peaking phenomenon (the 

error ( )cr rx x−
 
between the ORM and CRM) in Fig. 3 is worse 

than that in Fig.4. Hence, the transient control response of the 

proposed modified CRM-based MRAC can be improved (i.e. the 

tracking error ( )rx x−  between the system output and the original 

reference model can vanish very fast, leading to better transient 

control response). This is because the estimation error   can 

converges to zero in an exponential manner, and thus help to reduce 

the bound of ( )cr rx x−
 
as claimed in Theorem 2.  

 
(a) Tracking profile of state variables 
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(b) The peaking value 
Fig.3. Traditional CRM-based MRAC with feedback  

gain ([100,100])diag =  

 

(a) Tracking profile of state variables 

 

(b) The peaking value 

Fig.4. Modified CRM-based MRAC with feedback 

 gain ([100,100])diag =  
The above observation is more obvious when we further increase 

the feedback gain in the CRM to ([100,100])diag = . As analyzed 

in (15), the bound of ( )cr rx x−  can be enlarged for large feedback 

gain due to the induced term 
1/2

 , which may aggravate the 

peaking phenomenon. In fact, the peaking value of ( )cr rx x−

shown in Fig. 5 is almost double of that shown in Fig.3. However, 

from Fig.6, it can be seen that the modified CRM-based MRAC 

with new adaptive law (41) can retain almost the same peaking 

response as that shown in Fig.4, which means that the convergence 

of   can effectively alleviate the peaking phenomenon of the 

CRM control system, which is claimed in Theorem 2. Hence, the 

modified CRM scheme can allow us to use a large feedback gain 

  in the CRM, which will help to improve the transient 

convergence of the tracking error ( )cre t as pointed out in 

(Lavretsky, 2006; Stepanyan & Krishnakumar, 2010). Nevertheless, 

it is noted in Fig. 4 and Fig.6 that in the initial period (for first 5 sec) 

there exist smaller peaks in ( )cr rx x−
 
because of the unavoidable 

initial tracking error (0)cre . However, the peaking values in Fig. 4 

and Fig.6 are smaller than that shown in Fig.3 and Fig.5.  

The simulation results shown in these figures all verify the 

effectiveness of the proposed modified adaptive law, when it is 

incorporated into the CRM-based MRAC control. 

 

(a) Tracking profile of state variables 

 
(b) The peaking value 

Fig.5. Traditional CRM-based MRAC with feedback  

gain ([1000,1000])diag =        

 

(a) Tracking profile of state variables 
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(b) The peaking value 

Fig.6. Modified CRM-based MRAC with feedback  

gain ([1000,1000])diag =  

5. Summary 

Peaking phenomenon has been recognized as a critical problem 

for the recently proposed CRM-based MRAC system. The aim and 

contribution of this paper is to provide a new perspective for 

analyzing the peaking phenomenon by using the L2 norm and 

Cauchy-Schwartz inequality. Based on the provided analysis, this 

paper further provides a modified adaptive law with exponential 

convergence to alleviate the bound of peaking value in the 

CRM-based MRAC system. In this new framework, sufficiently 

large feedback gain in the CRM is allowed to achieve improved 

transient response. Comparative simulation results are provided to 

verify the theoretical claims. Both theoretical analysis and 

simulation results validate the effectiveness and the improved 

response of the modified CRM-based MRAC system over 

traditional CRM-based MRAC.  
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