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1. Introduction 

The control system with saturated nonlinear constrains is very 

common in real practical application, as input saturation often leads 

to degradation of system performance and instability. For this 

reason, many researchers have studied the topic of input saturation 

from practical and theoretical aspects (Wang, Ni and Yang 2013; 

Corradini, Cristofaro and Giannoni 2011; Hu, Xiao, and Friswell 

2011) and a lot of methods have been proposed in the literature (Hu, 

Teel and Zaccarian 2008; De Santis and Isidori, 2001; Hu, Lin and 

Chen 2002). Low-gain design is important for controller design of 

systems with input saturation, and low-gain feedback refers to a 

family of feedback gains that approach zeros as a parameter. The 

low-gain feedback laws are constructed by eigenstructure 

assignment in (Lin and Saberi 1994), also a different way of 

constructing low-gain feedback laws is parameterized Riccati 

equation (ARE)(Teel 1996), and the value of the low-gain parameter 

is adjusted on line to achieve global results, instead of semi-global 

ones. Recently, Zhou proposed a new low-gain design approach in 

(Zhou, Duan and Lin 2008; Zhou, Duan and Lin 2009), the new 

approach possesses the advantages of both the eigenstructure 

assignment approach and the ARE-based approach, and it leads to a 

feedback gain that is a function of the Lyapunov matrix equation 

can be easily obtained(Zhou, Duan and Lin 2008). 

Parameter uncertainty problem is another common question in 

real systems, it is well known that parameter uncertainty can affect 

both the performance and stability of the control systems, and the 

problem may come from modeling errors, variations in material 

properties, and changing load environments. So enhancing the 

robustness against system uncertainties is an important issue. 

In literatures, invariant ellipsoids theorem has been widely used 

in stabilization problem analysis and performance optimization 

(Wang and Miao 2006; Yang, Sun and Ma 2013; Lu, Lin and Fang 

2010). A classical method for establishing set invariance has been 

by application of the absolute stability analysis tools, such as circle 

and Popov criteria(Zhang, Yan, Fu and Zhao), where the saturation 

function is treated as a invariance of level sets of quadratic and 

Lur’e type Lyapunov functions are established, the method is too 

conservation. A new sufficient condition for an ellipsoid to be 

invariant was developed. The condition is less conservative and it 

can be solved as an optimization problem with LMI constraints (Hu 

and Lin 2001). However, to the best of our knowledge, the problem 

of linear systems with input saturation and parameter uncertainty 

has not been fully investigated and there is still some room to 

improve. 

Motivated by the above observations, in this paper, we study the 

problem of stability analysis for linear systems under actuator 

saturation. A set of conditions under which an ellipsoid is 

contractively invariant with respect to linear system under a 

saturation low-gain feedback is first established. The determination 

of the largest contractively invariant ellipsoid that satisfies these 

conditions is solved as an optimization problem with LMI 

constraints. With the feedback gain viewed as an additional variable, 

http://www.ijamce.com/
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this optimization problem can be readily adapted for the design of 

low-gain feedback. 

2. Problem Statement 

Consider the following uncertain linear system with input saturation  

( ) ( ) ( )x A A x B B sat u= +  + +     (1) 

where nx R  is the state vector, mu R  is the control input, 

and sat  is the vector valued standard saturation function defined 

as 

( ) ( ) ( ) ( )1 2[sat sat ]T

msat u u u sat u= , 

( ) ( )  min ,1i i isat u sign u u=  

we have assumed, without loss of generality, unity saturation level. 

Nonunity saturation levels can be absorbed into the matrices B  

and u . A  and B  represent parameter uncertainties, the 

admissible parameter uncertainties in this paper are assumed to be 

modeled as  

   1 2A B DF E E  =       (2) 

where D ,
1E  and 

2E  are known real constant matrices. F  

is an unknown matrix satisfying  
TF F I        (3) 

Parametric Lyapunov equation based low-gain design relies on 

the solution to the following parametric ARE: 

T TA P PA PBB P P+ − = −  

where A  and B  are two given constant matrices and   is a 

scalar. With the solution ( )P  , a state feedback law can be 

constructed as follows: 

( )Tu B P x= −                  (4) 

Based on the parametric Lyapunov equation method, some 

properties will be given in Lemma 1. 

Lemma 1(Zhou and Lin 2009) Assume that ( ),A B  is 

controllable. Let 

( )( ) 2min Re A  −  

where ( )( )Re A  denotes the set of the real parts of the 

eigenvalues of A . Then the ARE has a unique positive definite 

solution ( ) ( )1P W −= , where ( )W   is the unique positive 

solution to the following Lyapunov equation: 

 

2 2

T

T

n nW A I A I W BB
    

+ + + =   
   

 

moreover, ( ) 0, 0
d

P
d

 


   and  

( )( ) ( )2Ttr B P B tr A n = +  

For matrix 
m nH R  , let 

( )   : 1, 1,n

iL H x R h x i m=       (5) 

where ih  represents the i-th row of matrix H . ( )L H  

represents the region in 
nR  where Hx  does not saturate. 

Let D  be the m n  diagonal matrices whose diagonal 

elements are either 1 or 0. There are 2m
 elements in D . 

Suppose that these elements of D  are labeled as , 1,2m

iD i    . 

Denote 
i iD I D− = − . We can see, 

iD D−   if 
iD D . 

Lemma 2(Hu and Lin 2001) 

Let , m nF H R  . Then, for any ( )x L H , it  

holds that 

( )   , 1,2s ssat Fx co D Fx D Hx s− +     (6) 

where co stands for the convex hull. 

By Lemma 2, we can see that control input can get into the 

nonlinear area. The saturated control can be treated as a series of 

linear convex hull form in this method. 

To present our main results, we need the following Lemmas. 

Lemma 3(Boyd, Ghaoui and Feron, 1994) (Schur Complement 

Lemma) Let the partitioned matrix  

11 12

21 22

S S
S

S S

 
=  
 

 

be symmetric. Then 0S   if and only if  

1

11 22 12 11 120, 0TS S S S S− −   

or 

1

22 11 12 11 120, 0TS S S S S− −   

Lemma 4(Boyd, Ghaoui and Feron, 1994)  Let D , E  and 

Y  be real matrices with appropriate dimension, with Y  

satisfying TY Y= ,then 

0T T TY DFE E F D+ +   

for all TF F I , if and only if there exists a scalar such that 

1 0T TY DD E E  −+ +   

3 Main results 

3.1. Stability analysis 
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  In this paper, we will solve the problem of the system with 

actuator saturation by using the auxiliary matrix method. Next we 

will consider the low-gain feedback stabilization, and two theorems 

will be given. 

Theorem 1 Assume ( ),A B  is controllable, the ARE has a  

unique positive definite solution ( )P  , for a given  

n nP R

  and 
m nH R  , F  satisfying (3) and 

( )0 ,1x P ,such that  

1 2
0

* I

  
 =  

− 
             (7) 

where 

1P Q 

− =  

1 ( ( ) )

( ( ) )

T T T T T T

s s

T T

s s

Q A Q D B P D H B AQ

B D B P Q D HQ DD

  

  

−

−

 = + − + +

+ − + +

( )( )( )2 1 2 ( ( ) )
T

T

s sE Q E D B P D H Q  − = + − +  

and ( ) ( ),1P L H  , then the close-loop system is 

asymptotically stable. Moreover, ( ),1P  is a contractively 

invariant set. 

Proof: At first, ( ),A B is controllable. According to Lemma 1, 

the ARE has a unique positive definite solution ( )P  . By lemma 2, 

for every ( ),1x P ， 

( )( )

( )   

( )

( ) , 1,2

T

T

s s

sat B P x

co D B P x D Hx s



 −

− 

− + 
 

It follows that 

( ) ( ) ( )( )

( ) ( ) ( )

 

( )

( ( )

) , 1,2

T

T

s

s

A A x B B sat B P x

co A A x B B D B P

D H x x s





−

+  + +  − 

+  + +  −

+ + 

 

Define a Lyapunov function  

( ) TV x x P x=  

The derivative of this Lyapunov function along the trajectory of 

the closed-loop system is given by 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2

1

2

1

2

1

2

2 ( ( ))

2 ( ( ) )

2 ( ( ) )

m

m

m

T

T T

T T

i i i

i

T T

i i i

i

T

i

i

V x P x

x P A A x B B sat B P x

x P A A x B B D B P D H x

x P A A B B D B P D H x

x x











 

 



−

=

−

=

=

=

= +  + +  −

= +  + +  − +

 +  + +  − +

 







By using (2), we have 

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

1 2

1 2

( ( ) )

( ( ) )

( ( ) )

( ( ) )

( ( ) )

( ( ) )

( ( ) )

( ( ) )

T
T

s s

T

s s

T
T

s s

T

s s

T
T

s s

T

s s

T
T

s s

T

s s

A B D B P D H P

P A B D B P D H

A B D B P D H P

P A B D B P D H

A B D B P D H P

P A B D B P D H

DFE DFE D B P D H P

P DFE DFE D B P D H

































−

−

−

−

−

−

−

−

 = + − +

+ + − +

+  +  − +

+  +  − +

= + − +

+ + − +

+ + − +

+ + − +

 

By using Lemma 4, we obtain 

( )( )

( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

1 2

1 2

1 2

1 2

1 2

1 2

( ( ) )

( ( ) )

( ( ) )

( ( ) )

1
( ( ) )

( ( ) )

T
T

s s

T

s s

T

s s

T
T T T

s s

T T

T
T

s s

T

s s

DFE DFE D B P D H P

P DFE DFE D B P D H

P DF E E D B P D H

E E D B P D H F D P

P DD P

E E D B P D H

E E D B P D H









 
















−

−

−

−

−

−

+ − +

+ + − +

= + − +

+ + − +



+ + − +

+ − +

(8) 

( )( )

( )( )

( )( )( )

( )( )( )

1 2

1 2

( ( ) )

( ( ) )

1
( ( ) )

( ( ) )

T
T

s s

T

s s

T T

T
T

s s

T

s s

A B D B P D H P

P A B D B P D H

P DD P

E E D B P D H

E E D B P D H





 












−

−

−

−

 = + − +

+ + − +

+

+ + − +

+ − +

  

By the Schur complement Lemma, we get 

( )( )( )

( )( )( )

1 2

1 2

( ( ) )

( ( ) )
0

T

s s

T
T

s s

E E D B P D H

E E D B P D H

I







−

−


 =

+ − +

+ − +
 
− 

  

  (9) 
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where 

( )( )

( )( )

( ( ) )

( ( ) )

T
T

s s

T T T

s s

A B D B P D H P

P A B D B P D H P DD P



  



 

−

−

 = + − +

+ + − + +
 

Pre-multiplying and post-multiplying (9) by 

   1, ,diag P I diag Q I 

− = , we obtain 

( ( ) )

( ( ) )

T T T T T T

s s

T T

s s

Q A Q D B P D H B AQ

B D B P Q D HQ DD

  

  

−

−

 = + − + +

+ − + +
 

Then the (9) can be written as 

1 2
0

* I

  
 =  

− 
              (10) 

where 

1 ( ( ) )

( ( ) ) 0

T T T T T T

s s

T T

s s

Q A Q D B P D H B AQ

B D B P Q D HQ DD

  

  

−

−

 = + − + +

+ − + + 

( )( )( )2 1 2 ( ( ) )
T

T

s sE Q E D B P D H Q  − = + − +  

In view (10), we have 

( )  0, ,1 \ 0V x P    

which indicates that ( ),1P is contractively invariant, and the 

closed-loop is asymptotically stable.  

  If 0A B =  = , in the Case, the system reduces to the 

general system.  

3.2. Estimation of the domain of attraction 

The estimation of the domain of attraction boils down to the 

determination of the largest invariant ellipsoid ( ),1P . We 

measure the ( ),1P  with respect to a shape reference set RX  

by the largest  , and we have ( ),1RX P  . Thus the 

determination of the largest ( ),1P  can be formulated into an 

optimization problem.  

  Here are two optimization problems of the Case: 

Case: 0, 0A B     

( )

( ) ( )
( )

( ) ( ) ( )

0, ,

sup

. ,1

(7)

,1

P P H

Rs t a X P

b

c P L H









 









 

If RX  is an ellipsoid  : 1m T

RX x R x Rx=   , then 

constraint (a) is equivalent to 2P R  .  

By Schur complement Lemma, the constraint (a) is further 

equivalent to 

2

1

1

0
R I

I P


−

 
  
 
  

 

The constraint (c) is equivalent to 

1

1

1 1

1
1 0

iT

i i T

i

h P
h P h

P h P





 

−

−

− −

 
   

  
. 

Let 1Q P 

−=  and 
2

1
k


= ,then the two optimization 

problems can be written as the following LMI problems: 

Case : 0, 0A B     

( )

( ) ( )

( )

,
inf

. 0

7

1
0

Q H

i

T

i

k

kR I
s t a

I Q

b

h Q
c

Q h Q







 

 
 

 

 
 

 

 

4 Numerical simulation examples 

In this section, we will give two numerical examples to demonstrate 

the effectiveness of the present results 

Considering the mathematical model of pitch/yaw channel 

control system of missile is as follows: 

( ) ( ) ( )x A t x B t sat u= +  

( )

1 2 3

4

5 6 7

8

1 0
57.3

0 1
57.3

x y

x x

z

x

z x

x x

y

x

J J
a a a

J

a

A t
J J

a a a
J

a

 



 



− 
 
 
 

− 
 =
 −
 
 
 
 
 

,  
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( )

1

2

3

4

0

0

0

0

b

b
B t

b

b

 
 
 =
 
 
 

 

where 
T

z yx     =   , 
T

z yu   =   , and  

1.8780 -2.1298 -5.2356 1.9895

1.0000 -1.5060 0 -6.9808

5.2356 -2.0593 -1.9500 -3.7606

0 6.9808 1.0000 -0.7710

A

− 
 
 =
 
 
 

，

-1.5787 0

 -0.2430 0

0 -1.4948

0 -0.1910

B

 
 
 =
 
 
 

， 

The initial condition is  

( )  0 0.9566 0 0.56063 0
T

x = . 

Case : 0, 0A B    : 

   ( )1 2A B DF E E  =  

-1.1302 33.6195 53.4600 3.7794

0.0018 -0.7010 0.0250 -0.0144
1

-0.3248 3.5318 3.7399 2.4304

-0.0010 -0.3385 0.1790 -0.0027

E

 
 
 =
 
 
 

， 

-1.9425 0.2172

0.0153 0.0072
2

-0.4989 -0.0044

-0.0386 0.0041

E

 
 
 =
 
 
 

 

-0.10 -0.1298 -0.2356 0.9895

0.01 -0.5060 0 -0.9808

0.2356 -0.593 -0.9500 -0.07606

 0 0.9808 0.01 -0.7710

D

 
 
 =
 
 
 

 

If  3.9994 = , 

 ( )

0.8034 -0.0856 -0.0119 0.2188

-0.0856 0.1554 -0.1901 -0.0078

-0.0119 -0.1901 0.7392 -0.0779

0.2188 -0.0078 -0.0779 0.1591

P 

 
 
 =
 
 
 

, let the 

shape reference set be given by R I= . The solutions of the 

optimization problem can be obtained by LMI: 

3.3932 1.5794 0.1220 -0.5368

1.5794 2.6609 0.3634 -0.0091

0.1220 0.3634 3.4211 1.7600

-0.5368 -0.0091 1.7600 2.8663

P

 
 
 =
 
 
 

. 

1.1389 -0.1952 -0.0842 0.3430

0.0397 -0.2769 0.9722 -0.1933
H

 
=  
 

. 

0.0330k = , 0.1818 = . 

 

Fig. 1. The states 
1x  and 

2x  for Case  

 

Fig. 2. The states 
3x  and 

4x  for Case  

 

Fig. 3.  Control inputs 
1u  and 

2u  for Case  

Figs. 1, 2, 5 and 6 show that the proposed controller guarantees that 

the systems are asymptotically stable, The control inputs 
1u  and 

2u  for two Cases are shown in Figs. 3. From these figures, we can 

observe that control input 
1u  is saturate at the beginning of the 

simulation time.  

5 Conclusions 

In this paper, some new results of the parametric Lyapunov 

equation based low-gain design feedback laws were established. By 

constructing a Lyapunov function, two inequalities for a class of 

linear systems with input saturation have been designed such that 

the closed-loop systems are asymptotically stable. Also the estimate 
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domain of attraction problem can be converted into optimization 

problem with LMI constraints. Finally, the simulation results are 

given to demonstrate the effectiveness of the results. 
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