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 Aiming at mobile robot localization and mapping Room problems, this paper proposes a method based on ROS 

(Robot Operating System) monocular vision mobile robot SLAM (Simultaneous Localization And Mapping) 

method. The method is divided into five parts: monocular camera captures image information; visual odometry 

does estimation of camera motion and local map building; map of back-end optimization; using loop detection to 

eliminate the accumulated error; building maps based on existing information. Through the two ways of off-line 

data set test and real-time test, we get satisfactory results, and prove the feasibility and rationality of the method. 
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1. Introduction 

The positioning and mapping of the mobile robot [1] means that 

the robot should understand its own state and comprehend the 

external environment, and the main problems are focused on the 

positioning. At present, mobile robot localization can be divided 

into two categories: one is sensors carried on the robot's body, such 

as robot's encoders, cameras, laser sensors and so on; the other is 

that sensors are installed in the environment, such as GPS, guide rail, 

two-dimensional code sign, and so on. The sensor equipment 

installed in the environment usually can directly measure the 

location information of the robot and solve the problem of 

positioning simply and effectively. However, as they have to be set 

in the environment, to a certain extent, the scope of the application 

of the robot is limited. For example, there are no GPS signals in 

some places, and some places are unable to lay a guide. So this kind 

of sensor constrains the external environment. Only when these 

constraints are met, their location schemes can work, so these 

sensors are simple and reliable, they cannot provide a universal and 

common solution. Relatively speaking, sensors carried on the 

robot's body can calculate their location indirectly by reading some 

observation technology in the external environment. It does not 

make any requirements for the environment, so that the location 

schemes can be applied to the unknown environment. Therefore, in 

this paper, a mobile robot monocular vision SLAM [2] method 

based on ROS is proposed to locate and map the experimental 

objects under unknown environment, and verify the correctness and 

feasibility of the method through theoretical analysis and 

experiment. 

2. Introduction of ROS 

The experimental platform of this paper is ROS. ROS is an open 

source robot operation system released by Willow Garage in 2007. 

It provides many excellent tools and libraries for software 

developers to develop robot applications. At the same time, there 

are also excellent developers who continue to contribute code to it. 

In essence, ROS is not a real operating system, but more like a 

software package based on an operating system. It provides a 

number of algorithms that may be encountered in real robots: 

navigation, communications, path planning, and so on. It supports 

the widely used object oriented programming language C++, as well 

as the scripting language Python. 

ROS provides some standard operating system services, such as 

hardware abstraction, underlying device control, common 

functional implementations, inter process messages, and packet 

management. ROS is based on a graph structure, so that different 

nodes processes can accept, publish and aggregate various kinds of 

information, such as sensing, control, status, planning and so on. At 

present, ROS is mainly supported by Ubuntu. 

ROS can be divided into two layers: the lower level is the 

operation system level described above; and the high-level is the 

various software packages that the majority of users contribute to 

http://www.ijamce.com/ijamce/index.html
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achieve different functions, such as location mapping, action 

planning, perception, simulation etc. 

ROS (low level) uses the BSD license, all of them are open 

source, and can be used for research and commercial use free of 

charge. The packages provided by a high level user can use a 

number of different licenses. 

3. Monocular camera 

3.1 Introduction of monocular camera 

The camera used in SLAM is not the same thing as the single 

mirror camera we normally see. It is more simple, not to carry 

expensive lenses, but to shoot the surrounding environment at a 

certain rate and form a continuous video stream. According to the 

different mode of work, the camera can be divided into three 

categories: single camera (Monocular), binocular camera (Stereo) 

and deep camera (RGB-D)[3]. 

A camera that works with a single camera is called monocular 

camera. The structure of the sensor is very simple, and the cost is 

very low, but there are some problems. The picture is essentially a 

projection on the camera's imaging plane when the scene is 

photographed. It reflects the three dimensional world in a 

two-dimensional form. In this process, a dimension of the scene is 

lost, that is, the lack of depth information. In a monocular camera, 

we can't use a single picture to calculate the distance between the 

objects in the scene and us. That is, in single image, we cannot 

determine the true size of an object, it can be a great but far away 

objects and may also be a very close but very small objects, because 

near the small, they become the same size in the image. Therefore, 

monocular camera in SLAM[4]-[5] will lead to a scale factor (Scale) 

between our estimated trajectories and maps and the real trajectories 

and maps, that is, the scale uncertainty of monocular cameras. 

3.2 Monocular camera model 

The geometric model of a camera is the process of mapping a 

point (unit meter) in a three-dimensional space to a two-dimensional 

image plane (unit pixel). The monocular camera model[6] is the 

same as our common pinhole camera model, as shown in Figure 1. 
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Set up camera coordinate system
c c c cO x y z− − − ，Physical 

coordinate system of image
iO x y z− − − ，Pixel coordinate system 

O u v− −  And world coordinate system
w w w wO x y z− − − . 

1) Conversion of camera coordinate system to image physical 

coordinate system 

Set the point of three-dimensional space ( , , )w w w wP X Y Z  

coordinate in the camera coordinate system [ , , ]T

c c cP X Y Z its 

projection falls on the physical imaging plane，point P  Coordinates 

in the physical coordinates of the image [ , , ]T

iP X Y Z ，the distance 

between the plane of physical imaging and the hole is focal length 

f (unit meter)，according to the principle of triangle similarity, the 

imaging plane is symmetrical to the front of the camera (the 

mathematical method for dealing with the real world and camera 

projection) to simplify the model： 
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2)Conversion of image physical coordinate system to pixel 

coordinate system 

In the image pixel coordinate system（the original point O  is 

located at the upper left corner of the image, the u  axial right is 

parallel to the axis x , the v  axial right is parallel to the axis y ）, 

the transformation relation of the point 
iP  to the point

0 0( , )uvP u v ： 
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In formula (2), ,dx dy  are the physical size of each pixel on x axis 

and y axis (per pixel per unit of meter) respectively； ,x yc c  are the 

coordinates of the u  axis and v  axis in the pixel coordinate 

system of the image physical coordinates system 
iO  (units are 

pixels)  respectively.          

3)Conversion of camera coordinate system to image pixel 

coordinate system 

The transformation relationship between P points in camera 

coordinates and pixel coordinates 
0 0( , )uvP u v  in camera 

coordinates can be obtained from (1) to (2)： 
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In the formula (3), f

dx

, f

dy

are merged into f

dx

, f

dy

,(units of pixels) 

respectively, after finishing： 
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    (4) 

In the formula (4) , P  is the homogeneous coordinates, the 

matrix K  is the internal non parameter of the camera. 

4)The transformation of the world coordinate system to the image 

pixel coordinate system  

The coordinates of the point P  in the world coordinate system 

are )w w w(X ,Y ,Z ，the transformation matrix of the world coordinate 

system to the camera coordinate system is T , the transformation 

relation between the world coordinate system and the pixel 

coordinate system is as follows: 
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    The rotation matrix R  and the translation vector t  in the 

form (5) indicate that the position of the camera is called the 

external parameter of the camera. The external participant changes 

with the motion of the camera, and it is also an estimated target in 

the SLAM. This parameter represents the trajectory of the camera. 

5)Normalization 

Finally, the coordinates P  are normalized and the projection 

point 
cP  on the camera normalization plane are obtained: 
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It is called the normalized coordinate, which is located on the 

plane Z = 1 in front of the camera, which is called the normalized 

plane. 

4. Monocular vision SLAM 

4.1 Visual SLAM 

The whole visual SLAM includes the following steps: 

1)Sensor information reading:  

In visual SLAM, it mainly reads and preprocesses the image 

information of the camera. 

2)Visual Odometry:  

The visual odometer is to estimate the motion of a camera 

between adjacent images, as well as the appearance of a local map. 

3)Back end optimization:  

The backend accepts the camera pose measured at different time, 

and the information of loopback detection, optimizes them, and gets 

the globally consistent track and map. 

4)Loop detection:  

Loop detection determines whether the robot has reached the 

previous position. If the loop is detected, it will provide information 

to the back end for processing. 

5)Composition:  

A map corresponding to the task requirements is established 

according to the estimated trajectory. 

The following figure2 is the framework for visual SLAM: 
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Figure 2 framework for visual SLAM 

4.2 The mathematical description of visual SLAM 

To simplify the problem, we divide the visual SLAM[7] into 

two parts: the motion part and the map section. Because cameras 

usually collect data at certain times, in motion part, we can turn a 

period of motion into something 1, ,t K=  in discrete time. At 

these moments, x is used to represent the position of the robot. 

The positions 
1, , Kx x  at all times are recorded as the trajectories 

of the robot. In the map part, we assume that the map is made up of 

many road signs. At any time, the camera will measure part of the 

road punctuation and get their observation data. Then the number of 

path punctuation is N , which is expressed by
1, , Ny y .  

On the basis of the above setting, the SLAM problem of robot 

vision can be expressed as the following mathematical model: 

a)Motion model                        

                   
1( , , )k k k kx f x u w−=            (7) 
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Among them, 
ku is the reading of the motion sensor and 

kw  

is the noise. Function f  is used to describe the process which 

does not specify its way of action, that is, this function can refer to 

any motion sensor, such as encoder or inertial sensor[8]. 

b)Observation model 

The observation equation[9] is described as, when the robot 

looks at the point of a path punctuation
jy in the position

kx , it 

produces an observation data 
,k jz  . So, you can  use a function to 

show it 

, ,( , , )k j j k k jz h y x v=               (8) 

Among them , 
,k jv is the noise in this observation. The 

function h  is the same as f , and does not specify the way of 

action. 

After these two models, we parameterize the state of the robot 

according to the types of the sensors we use: 

1)The robot moves in space, then its position can be described 

by three positions and three attitude angles, that is

 , , , , ,
T

k k
x x y z   = . At the same time, the motion sensor can 

measure the change of the position and attitude angle of the robot at 

any two time intervals  , , , , ,
T

k k
u x y z   =       , so the 

motion equation can be parameterized: 
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         (9) 

Among them, the pitch angle, the roll angle and the yaw angle 

are respectively expressed by , ,   .  

2)When moving a robot to observe a 3D path punctuation 

point through a camera the robot can get two quantities: the distance 

r  between the punctuation point and the robot body and the angle 

  between them. To mark the point of the road, the observation 

data is [ , ]Tz r = , then the observation equation is parameterized: 

           

2 2( ) ( )

arctan( )

x y

y

x

p x p y
r

p y

p x


 − + −
  

=  − 
   

− 

          (10) 

The above (7), (8), (9), (10) formulas describe the basic visual 

SLAM problem. 

4.3 Monocular vision SLAM 

1)The processing of the image obtained by the camera 

We use the SURF method to detect and extract the feature 

points collected by the single camera, so that the features have 

rotation invariance and scale invariance. Because of the real-time 

requirement, we use fast approximation nearest neighbor (FLANN) 

algorithm to match the feature points and add Hamming distance 

constraints to match the number of constraints and filter and get the 

correct matching. 

2)Estimate the motion of the camera and obtain the local map 

The information we can get from a monocular camera is 2D 

pixel coordinates. Therefore, we need to estimate the motion of 

cameras based on two sets of 2D points, and use the product 

geometric method to solve them on the premise of correct feature 

matching. The basic matrix E  and the essential matrix F  are 

obtained according to the pixel position of the matching points, and 

then the two ones are used to solve R 、 t . Then the position of the 

camera can be expressed as: 

1k kx Rx t−= +                (11） 

Among them, for the K amplitude diagram, R 、 t for the 

transformation matrix for the K-1 amplitude map to the K amplitude 

diagram. 

At the same time, we directly lead to the scale of monocular 

vision uncertainty as a result of the length normalization of t , so 

we need to have an initialization procedure in SLAM, that is, two 

images of the initial translation must have a certain extent, the later 

trajectories and maps are based on this translation. 

3)Optimize the position and local map that have been obtained 

We consider all the motions and observations, which form a 

least square problem. When we only observe the SLAM of the 

equation, we use the nonlinear optimization method to select the 

frames with common observations as the key frames to solve the 

BA, and pose and optimize the graph, so as to get the globally 

consistent trajectories and maps. 

4)Loop detection 

In order to ensure the correctness of our estimated trajectories 

and maps in long time, we use loop detection[10] to eliminate 

accumulated errors in the SLAM process based on the correlation 

between the current data and historical data. This part is mainly 

divided into two processes, which are loop detection and loop 

correction. The loop detection first uses the BOW to detect the 

dictionary, and then uses the DBoW3 library to calculate the 

similarity transformation. Loop correction is mainly the fusion of 

loop detection and the graph optimization of key frames. 

5)Mapping 

Maps are drawn for location, so we can draw different types 

of maps according to the requirements. Generally divided into two 
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types: the first is a sparse map map service to locate, only interested 

in the modeling part, is also characteristic; the second is a dense 

map service in navigation, obstacle avoidance or 3D reconstruction, 

modeling all seen, can clearly determine what parts of the map can 

pass where not through. This article draws a sparse map that serves 

the location of the map. 

5. Analysis of experiment 

5.1 Experimental platform 

The experiment platform is as follows: 

1)the experiment host computer is Acer aspire V5-471G 

notebook, its operating system is Ubuntu14.04 system. 

2)the experiment monocular camera is the HDwebcam of the 

notebook. 

3)the experimental platform is the ROS system. 

4)the experimental mobile platform is a four round 

omnidirectional mobile robot CA-OMinar. 

The following figure3 are the experimental platform for the 

experiment: 

 

Figure 3 experimental platform 

The experiment uses two ways to verify the correctness and 

feasibility of this method: 

Mode one: using the KITTI dataset to run the data set on this 

platform to analyze the positioning effect and the composition effect 

of the experimental method. 

Mode two: using a notebook single camera to collect real-time 

data to analyze the effectiveness and existing problems of the 

experimental method. 

5.2 Experimental result 

Mode one experimental results: 

 

Figure 4 some pictures of dataset 

We use part of the KITTI dataset for off-line operation. The 

data set consists of 153 grayscale images and some pictures some of 

them as shown figure 4. 

 

Figure 5 calculated trajectory 

Actual path

Calculation path

                         

   Figure 6 compares of two trajectories 

 

Figure 7 constructed sparse map 

The experimental results are shown in Figure 5-8. Figure 5 the 

camera running trajectory calculated by monocular SLAM system. 

Figure 6 the comparison between the calculated trajectory and the 

actual trajectory. Figure 7 a sparse map constructed by monocular 

SLAM system, and figure 8 the trajectory of the camera in the 

sparse map. 

Mode two experimental results. 

We use a notebook camera to collect image data directly and 

deal with it in real time. Figure 9 are the environment. Figure 10 are 
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the feature capture of camera on the environment. Figure 11 

Environmental sparse map built by camera. Figure 12 a sparse map 

constructed by monocular SLAM system. Figure 13 the comparison 

between the calculated trajectory and the actual trajectory. 

 

Figure 8 the trajectory of the camera in map 

 

 

Figure 9 the environment 

 

Figure 10 feature capture of camera                                   

 

Figure 11 constructed sparse map 

5.3 Analysis of experimental results 

According to the above two ways of experimental results, we can 
see: in positioning, two modes of positioning effect is ideal, and in 

composition, the effect of running on dataset is better than the actual 
operation effect. 

 

Figure 12 calculated trajectory 

Actual path

Calculation path

                       

 Figure 13 compares of two trajectories 

6. Conclusion 

The main reason why the mapping effect of running on dataset is 

better than the actual operation effect is that the dataset of the 

images are through processing and with relatively good 

performance of camera and camera pixels, but performance of 

camera and camera pixels of ours are very low, so the feature point 

extraction is obviously less than the dataset, the composition effect 

is no better than dataset. 
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