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 A novel adaptive parameter identification scheme based on hierarchical identification principle has been presented 

to identify the parameter information of the multivariable nonlinear controlled autoregressive moving average 

(CARMA) systems. First, by substituting the nonlinear block into the corresponding linear block, a typical linear 

regression identification expression is obtained in which the estimated parameters involve parameter vector and 

bilinear parameter matrix which makes the identification problem difficult. Second, to solve parameter matrix 

issue, the identification model is changed to two different form estimation models where the estimation models are 

linear to each parameter vector. In order to interactively identify the parameter vectors, a novel adaptive parameter 

identification method is proposed to estimate the parameter vector by virtue of hierarchical identification idea.  

Followed by the parameter convergence is studied by using the stochastic theory. Finally, compared with some 

publishing identification methods, the developed approach of this paper produce an outstanding identification 

performance through simulation example. 
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1. Introduction 

System identification is of great importance for the system 

modeling and control system when the parameters of the practical 

system are unknown in the control engineering. For example, 

system identification can provide a model analysis for control 

system and give a predictive result output (Kim et al., 2015). In the 

single argument the parameter identifications of the nonlinear 

systems, parameter identification methods are relatively mature 

compared to the that of multivariable nonlinear systems (Zhao, 

2010;  Giri et al, 2009;  Pouliquen et al, 2016; Caigny et al, 2009; 

Martensson et al, 2017;  Xiong et al, 2017; El-Koujok et al, 2014). 

However, the identification algorithms of single argument systems 

are not suitable for multivariable systems because the latter systems 

have coupled phenomenon on parameters and possess more 

complex nonlinear relationships on the parts of systems. These 

reasons drive us to search some appropriate estimation algorithms. 

The purpose of system identifications for the multivariable 

nonlinear systems is to describe the more complex nonlinear 

systems (Villalva et al, 2007). Therefore, it is interesting to discuss 

the parameter identification of multivariable systems. 

With extensive attention to multivariable systems, a large number 

of identification approaches for multivariable systems have been 

published by scholars and engineers (Zhang et al, 2017;  Jafari et 

al, 2014; Kim et al., 2015; Harnischmacher et al, 2007; Han et al, 

2010;  Ding, 2014; Sato et al, 2017; Wang et al, 2016). By 

developing the adjustable identification model which is decomposed 

into two sub-identification models for multi-input single output, two 

recursive parameter estimation methods are presented to estimate 

the parameters of the considered systems in (Salhi et al, 2015). In 

(Zhang et al, 2017), a frequency domain identification method is 

utilized to identify the multivariable plant model parameters 

through the usage of consistent estimator and input and output noise 

covariance matrix in which the estimated parameters need a high 

computation cost. Furthermore, the frequency identification method 

is difficult to apply in practical systems because the special input 

signal conditions are not met in practice. A blind estimation 

algorithm is studied for multiple channel state space systems which 

is composed of autoregressive system rather than FIR model, in 

which each channel model needs to use the cross relation estimation 

approach through the usage of mutual references among difference 

channels in (Yu et al, 2016). However, Blind identification model 

only approximates the whole model or partial model, which is not 

conducive to the design of the subsequent controller. In (Ding 2014), 

a hierarchical generalized least-squares scheme is discussed for 

multivariable systems in present of output error autoregressive 

noises by using hierarchical identification idea, in which the 

parameters of concerned systems are separately estimated by using 

three parameter update law based on interaction estimation theory.  
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Although, the developed hierarchical generalized method can 

effectively identify the multivariable systems, the identification 

accuracy is not so ideal owing to that the measured input and output 

data are polluted by noise or interference signal. To reduce the 

effect of noise on the identification data, a novel filter operator is 

proposed to relieve the noise effect in (Na et al 2014; Na et al 2015). 

It has been shown that Na’ algorithm is effective filter algorithm for 

a large class of the nonlinear systems. But, we need to modify the 

corresponding estimation algorithm for the multivariable systems 

when Na’ algorithm is applied to estimate the parameters of 

multivariable nonlinear systems.  

 Inspired by (Na et al 2014, 2015) and (Ding 2014), the focus of 

this paper is to develop an adaptive estimation approach identifying 

the parameters of the multivariable nonlinear CARMA systems, 

whose structure is show in Fig.1, by using filter operator and 

hierarchical identification principle. One of the contributions of this 

paper is to apply the filter operator filtering the noise effect on the 

identification data based on two constructed identification models, 

in which the estimation output expressions are linear to the 

corresponding parameter vectors; The other one is to develop an 

identification schemes interactive estimating the parameter vectors 

by using hierarchical identification idea, in which three adaptive 

parameter update laws are presented to obtain the estimated 

parameters through the usage of the corresponding consistent 

estimators. Moreover, the convergence of identification algorithm is 

discussed by using the stochastic theory. The developed algorithm 

can effectively estimate the unique parameter values rather than the 

coupled parameter values. Comparative examples are offered to test 

the usefulness of the proposed algorithm. 

 

Fig.1. Structure of multivariable CARMA systems 

The content of this paper is listed as follows. Problem 

formulation for multivariable CARMA systems is offered in 

Section2. The constructed adaptive identification scheme is derived 

in Section 3. In Section 4, the convergence of the presented scheme 

is discussed. In Section 5, simulation examples are given and 

followed by Section 6 offers some interesting conclusions. 

2. Problem statement 

In this section, the estimation model is provided through the 

usage of the interior relation between the nonlinear element and 

linear subsystem element. The identification scheme for the 

estimation model will be given in the next section by using the filter 

operator and hierarchical identification idea. 

According to Fig.1, the multivariable CARMA systems can be 

described by the following mathematical expression 

( ) ( ) ( ) ( ) ( ) ( )q y t q t q v t = + x      (1) 

where ( )y t  is measurable system scalar output signal; 

( )v t  represents scalar noise term with zero mean. 

( ) [ ( )], 1, ,i i ix t f u t i m= = ; the inner vector ( )tx  

and input signal ( )tu  can be defined by 
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The expression ( ),q ( ),q ( )q  are polynomials with 

backward shift operator 
1 ( ) ( 1)q u t u t− = −  and described 

by 
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The nonlinear element if  can be approximated by some 

basis functions 
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where ij denotes the coefficients of basis functions; p is 

number of the functions. If the p is sufficiently large, the 

nonlinear element can be effectively approximated. 

Assumption: The orders ,m n  are known and the initial state 

of systems are zero, i.e., ( ) 0y t = , ( ) 0t =u  and ( ) 0v t =  

when 0t  ; The linear elements are stable, minimum phase. 
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1 1 1
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 (3) 

This paper aims to develop an adaptive identification 

scheme for the considered identification model (3) based on 

the filtering technique and hierarchical identification idea, to 

identify the parameters of (3), i.e., ,ik  ,ij k and 
k from 

measured input and output data and to test the estimation 

performance through the usage of the illustrated example. 

3. Adaptive estimation algorithm 

In this section, an adaptive identification approach is presented to 

estimate the parameters of (3). 

Based on the define some variables, (3) can be written as follows 

1
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m
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where the variables are summarized as follows: 
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Note that the first term on the right side of (4) includes the 

bilinear parameter on the product of  and  . If we directly 

develop an estimation algorithm to estimate the bilinear parameter, 

it will obtain some coupled parameters and may be a heavy 

computational cost for identification algorithm. One of the effective 

solutions is hierarchical identification idea to handle the above 

difficult (Ding et al, 2005). Then, two constructed identification 

models are defined by the following expression, respectively. 
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where the variables are defined by 
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and the other one model is defined by 

( ) ( ) ( ) ( )Ty t t t v t= + +  F
          

 (6) 

where the variables are listed as follows 
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It is note that when the defined variables ( )tF  and ( )tF  

are seen as the two information vectors, then (5) and (6) are linear 

to the parameter vectors   and , respectively. The parameter 

vector  can be estimated by using (5) or (6). To obtain unique 

identification model, ‖ ‖  is set as a constant (e.g., 1=‖ ‖ ) 

(Wang et al, 2015). 

To enhance the estimation accuracy, the system data is filtered by 

using filter operator. Then, the filtered signals ( )f tF , ( )f tF ,

( )f t  and ( )fy t can be expressed by 
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where the constants , 0k h  . ˆ ( )tF denotes the estimate of ( )tF . 

ˆ ( )f tF  and ˆ ( )f t  have similar representations. 

Then the following regressive matrices 1( ),M t 2( ),M t  
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The corresponding adaptive laws are described by 

1( ) ( 1) ( )t t W t= − −               (17) 

2( ) ( 1) ( )t t W t= − −              (18) 

3( ) ( 1) ( )t t W t= − − 
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where the variable can be defined by  

1( ) 1( ) ( 1) 1( ) ( )W t M t t N t v t= − − +    (20) 
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3( ) 3( ) ( 1) 3( ) ( )W t M t t N t v t= − − +   (22) 

where ( )t  is the estimation of ( )t , ( )t is the estimation ( )t , 

( )t  is the estimation of ( )t  . 

Note that the ( )t  can be replaced by using the estimation 

value ( )t , which is written as follows: 

ˆ ˆ( ) [ ( 1), , ( ), ( 1), , ( )]Tt y t y t n v t v t n= − − − − − −   
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Then, (7), (8), (11), (12) and (17) construct an adaptive estimation  

scheme to estimate the parameter  ; (7), (9), (13), (14) and (18) 

constitute an adaptive estimation approach to estimate the parameter

 ; (7), (10), (15), (16) and (19) construct an adaptive estimation 

method to estimate the parameter . 

 

4. Convergence 

In this section, the convergence of the developed scheme is 

briefly introduced. Then, the following assumptions and theorem 

are offered. 

Assume that  ( ), tv t is a bounded martingale, in which the 

 algebra sequence  t is constituted by the noise{ ( ) | }v s s t , 

and the noise ( )v t satisfies the following conditions (Goodwin et 

al, 1984): 

(A1) 
1[ ( ) | ] 0, . .tE v t a s− =  , 

(A2) 
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Theorem 1: For the adaptive algorithm in (7)-(22), if (A1)-(A3) 

hold and ( )f tF , ( )f tF and ( )f t are also persistently exciting. 

Then, the persistently exciting conditions are written as 
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where , 1,2,3iC i = are positive constants. I denotes unit matrix. 

Proof: The similar proof of Theorem 1 can be found in (Na et al, 

2014). 

5. Examples 

In this section, the proposed scheme and several published 

estimation algorithms are applied to identify the parameters of the 

considered system. 

The persistent excitation input signal is random signal ( )tu  

with the zero mean and unit variance, while the white noise with 

zero mean is chosen as noise term ( )v t  which is irrelevant with 

input signal. The length of sample is set to N=1000. The initial 

values of the filtered variable and auxiliary models are set to 0.001. 

Moreover, to validate the usefulness of the proposed scheme, the 
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different signal-noise ratio (SNR) values are considered. 

To show the advantage of the presented scheme, two popular the 

identification methods are chosen as comparison algorithms. 

(1) H-ESG: Extended stochastic gradient algorithm based on 

hierarchical identification idea in (Wang et al, 2016). The 

parameter estimation for multivariable CARMA systems are 

implemented based on the following initial parameter values. 

The initial parameter of  is (0) [0.1,0,0,0.48]T = , 

(0) [0.299,0.664,0.00001,0.49]T = , the parameter  

(0) 10[0,0.077,0.141,0.111] .T =    

(2) Proposed algorithm in Section 3: The initial parameter can be 

chose as follows: 20,k = 80,L = 0.001h = , 

100 ([5.63,0.64,3.12,0.5])diag = , the initial 

parameter of  is (0) [4,1,2.2,0.61]T = , the initial 

parameter of   is (0) [7.99,5.71,6.74,7.85]T = , 

the initial parameter of  can be chose as follows

(0) 10[0.134,0.084,0.121,0.11]T =  . 

(3) D-LS: Decomposition based recursive least squares in (Liu et 

al, 2014).The parameter [0.01,0.08,0.02,0(0) .1]T = , 

[0.9,0.85,0.9,0(0 5]) . T = , the initial parameter value 

[0.000001,0.179,0.00001,0.0(0 .) 1]T =

610P = I . 

Comparative estimation curves by the considered estimation 

algorithms with SNR= 2.7088 (the variance of noise is 0.01) are 

compared in Figs.2-4. The estimated parameters can reach their true 

values after 500 samples. Specifically speaking, the estimated result 

by proposed algorithm and H-ESG algorithm can convergence to 

their expected values while the D-LS method produces some serious 

vibrations and gives close to their true values. Compared estimation 

results also show that the proposed algorithm has an outstanding 

estimation result 

 

Fig.2. Comparative estimation histories for  with SNR= 2.7088 

 

Fig.3. Comparative estimation histories for   with SNR= 2.7088 

 

Fig.4. Comparative estimation histories for  with SNR= 2.7088 
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Fig.5. It can be clearly seen that the estimation errors by 

identification algorithms produce the satisfactory results. Compared 

with the H-ESG and D-LS algorithms, the presented method 

produces faster convergence speed and higher estimation accuracy. 

 

Fig.5. Comparative estimation errors with SNR= 2.7088 

In order to illustrate the identification performance of three 

estimation approaches, the model verifications by identification 

algorithms are implemented based on the estimation results. Due to 

the limitation of the space, the model validation by presented 

approach is only offered. The model validation curve is shown in 

Fig.6. From Fig.6, we know that the predictive output can track the 

actual output with small model error, which shows that the proposed 

method produces the better model validation result and has an 

excellent identification performance than the H-ESG and D-LS 

algorithms under the other test condition constant. 

 

Fig.6. model validation with SNR= 2.7088 

To further demonstrate the effectiveness of the presented 

approach, the SNR is reduced to SNR=1.1276 (the variance of noise 

is 0.25), which means the considered system is added to strong 

noise. Parameter estimations by three identification methods are 

plotted in Figs.7-9. From Figs.7-9, we observe that the proposed 

method produces some closer to the real values while the H-ESG 

algorithm give close to the their real values, but D-LS algorithm has 

strong oscillation phenomenon which is far away from their real 

values. Compared with the shown estimation results by Figs.2-4, 

although the estimation performance is deteriorating with the 

increase of noise, the parameter estimation curves by H-ESG and 

presented algorithm tend to near real values. 

 

Fig.7. Comparative estimation for   with SNR= 1.1276 

 

 Fig.8. Comparative estimation for   with SNR= 1.1276 

 

 Fig.9. Comparative estimation for   with SNR= 1.1276 
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Estimation errors by the considered algorithms are depicted in 

Fig.10 and model validation by proposed approach is shown in 

Fig.11. According to Fig.10, One can find that the proposed 

approach has better estimation accuracy and convergence rate 

comparing to the H-ESG and D-LS algorithm. From Fig.11, we see 

that the output of proposed method can capture the actual output, 

which demonstrate the effectiveness of the presented algorithm. 

 

Fig.10. Comparative estimation errors for the algorithm with SNR= 1.1276 

 

Fig.11. Model validation for the algorithm with SNR= 1.1276 

From the above comparison results, it can be seen that the 

proposed algorithm can achieve better results than the H-ESG and 

D-LS algorithms under the different SNR values.  
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