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Two numerical examples are given to verify the validity of the results. 
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1. Introduction 

Fractional calculus differentiates the differential and integral from 

the general integer order to any real number, as a branch of calculus, 

which has been developing for more than 300 years (Podlubny, 

1999, Luo et al., 2018, Shi et al., 2018). Because the fractional order 

calculus compared with classical calculus, has a special complexity, 

so at the beginning of the study, although there are a lot of scholars 

devoted to them, but in a very long period of time is just the 

problem in the field of fractional order calculus as pure mathematics 

(Li and Deng, 2007, Cao and Zhou, 1998, Gupta et al., 2003, Yu et 

al., 2013), and can't apply it to the actual background and physical 

significance. In 1974, k.b. idham and j.s. panier published the first 

treatise on fractions in New York press, prompting people to start 

paying attention to fractions. In 1993, Samko created <Fractional 

Integrals and Derivatives: Theory and Applications>. This book 

systematically and comprehensively elaborates some related 

properties of fractional derivative and integral and related 

applications (Samko et al., 1993, Wu et al., 2018). 

Fractional order calculus has a unique advantage, the theory of 

differential model overcame the classical integer order differential 

model results match well with the experimental results of defects, 

and simply rely on fewer parameters can well describe the physical 

memory and genetic properties (Shi and Wang, 2011, Koeller, 1984, 

Yu et al., 2014). The concept of artificial neural network was first 

proposed by psychologist McCulloch and mathematician Pitts in 

1943. In 1982, the United States biophysicist J. Hopfield named 

after the name of Hopfield neural network model, and studied it’s 

stability, at the same time also gives a stability criterion to 

determine the neural network equilibrium (Mandelbort, 1982). 

In the 1880 s, D.Rumelhart et al. developed to solve the 

multilayer neural network weights are revised BP algorithm, and 

shows that the multilayer neural network has strong learning ability, 

can solve many problems in real life, to promote the sustainable 

development of the neural network study (Wang et al., 2015). In 

1998, the stage for the first time, scientists such as cellular neural 

network system consists of an integer order differential across to the 

fractional order calculus (Diethelm, 2010), on this basis, the 

analysis of system dynamic properties. In the real world, the 

mathematical model of neural network can appear not only systems 

with time-delay and parameter selection problem such as in stability, 

also will be affected by such as all kinds of uncertainty, complexity 

of model itself, such as impact (Petras, 2011, Arena et al., 2000, Yan 

et al., 2010). The fractional order neural network as the main object 

of study, analysis of system stability, pattern recognition, the respect 

such as projection, optimization problems, of both theoretical 

results and practical application results are with very high value of 

exploration. 

As one of the basic characteristics of the differential system, 

stability can guarantee the normal operation of the control system. 

The earliest literature on the stability of fractional differential 

system is shown in (Matignon, 1996). In this paper, a class of 

fractional order Caputo is studied. With the development of 

fractional differential equations, how to determine the stability of 
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fractional differential equations gradually becomes an important 

subject (Li et al., 2009, Delavari, et al., 2012). In the real world, 

time-lag is prevalent in many fields, such as economy, 

electromechanical engineering, biology, finance, etc. (Boroomand 

and Menhaj, 2009, Corduneanu, 1971, Li et al., 2009). To a certain 

extent, time delay affects the working status of all systems, and 

becomes a major source of unstable factors and poor performance 

of the system (Ren and Zhang, 2007, Ma and Chen 2015, Luo, 

2007). And the dynamic behavior of the neural network system 

which we face would mostly appear in the limited time range. So 

the system's finite time stability dynamics behavior is more popular. 

However, there is still less literature on the limited time stability of 

neural network. In Aghababa (Aghababa et al., 2011), studied the 

limited time synchronization of two different chaotic systems by 

using synovial control technology. In Wu (Wu et al., 2013) studied 

the finite time stability analysis of complex neural networks with 

time delay using Laplace transform, mittag-leffler function and 

generalized Gronwall inequality. 

In recent years, a special type of time-varying delay is introduced 

in many neural network models. What differs from the traditional 

type is that it appears in the domain of the Internet is unbounded 

time change. In the neural network model with proportional delays, 

the system is determined by ( )x t and ( )x qt together in the dynamic 

state of time t , 0 1q  is a constant, indicating the time ratio 

between the current state and the historical state. 

In Yang (Yang and Cao 2013), based on the theory of differential 

equation and the M - matrices, is derived from the perspective of 

matrix inequality new explicit conditions, The finite time stability of 

a class of non-autonomous neural networks has been studied. In 

Hien (Hien and Son, 2015) and Liu (Liu, 2017) is by means of 

differential inequality technique, discussed two kinds of 

heterogeneous proportional delays and oscillation leakage 

coefficient of non-autonomous cellular neural networks limited time 

stability problems. 

The rest of the paper is organized as follows. Some necessary 

definitions and lemmas are recalls in Section 2.The obtained results 

on finite-time stability of non-autonomous FONNs with 

heterogeneous proportional delays are presented in Sect.3. Two 

examples with numerical simulations are givens in Section 4. 

Throughout the paper, {1,2, , }n n


= for a positive integer n , 

For any two vectors ( ) n

iu u R=  and ( ) n

iv v R=  , if 
i iu v , 

then u v ; if 
i iu v , then u v . For a vector

nR  , 

0 , we denote maxu

i n i = and min .l i n i =  

2. Preliminaries 

Definition 2.1 (Podlubny, 1999) The fractional integral is defined 

as 

11
( )= ( ) ( )d

( )

t
RL p p

a
a

tD f t t f
p

  − −−
   

where 0p  , ( )  is the Gamma function, 

1

0
( ) d ,( ( ) 0).z tz t e t e z

+
− − =    

Definition 2.2 (Podlubny, 1999) The Riemann-Liouville 

derivative of fractional order p of function ( )f t   

1

1 ( )
( )= d ,

( ) ( )

n
t

RL p

a t n a p n

d f
D f t

n p dt t




 − + − −  

where 1n p n−   . 

Definition 2.3 (Podlubny, 1999) The Caputo derivative of 

fractional order p of function ( )f t   

1 ( )( ) 1
( ) ( ) ( )d

( )( )

p
t

C p n p n

a t p a

d f t
D f t t f

n pd t a
  − −= = −

 −−   

where 0p  , 1n p n−   . 

Definition 2.4 (Ren and Zhang, 2007) Topological space X and 

Y , if the mapping :F X Y→ satisfies: 

1) F is bijection;  

2) F is continuous;  

3) F have continuous inverse functions 
1F −
;  

then F is a homeomorphism mapping. 

Definition 2.5 (Ren and Zhang, 2007) Assume that real matrix 

( )ij n nB b = satisfies that if ,i j= 0ijb  ; when i j , 0ijb  ,

, 1,2, , .i j n= And all of the matrices are positive, then B is a

M -matrix. 

Lemma 2.1 (Ren and Zhang, 2007) The following conditions are 

equivalent to matrix 
n nB R  : 

1) B is a M - matrix; 

2) The real part of all the characteristic roots of B is positive; 

3) B is reversible and 
1 0B−  ,

1B−
non-negative; 

4) for a vector 0,  0B  ; 

5)There is a positive diagonal matrix Q , making 
TQB B Q+ the 

positive definite. 

Lemma 2.2 (Ren and Zhang, 2007) ( )f x is continuous, and 

1) ( )f x is an injective on 
nR ;  

2) lim ( )
x

f x
→+

→+ ; 

then, ( )f x  is homeomorphism mapping on 
nR . 

Lemma 2.3 (Cauchy-Schwartz inequality) For any two real 

numbers , , 1,2, ,i iu v i n=  

2

2 2

1 1 1

,
n n n

i i i i

i i i

u v u v
= = =

    
    

    
    

when , 1,2, ,i iu v i n= = ,the inequality is medium, where 

is a constant. 

Lemma 2.4 (Podlubny, 1999) For a function 
1( ) [0, )f C   and 

a scalar 0 1p  , if the function ( )  and all its derivatives are 

continuous on [0, ],  0t t  , then the following Leibniz rule for 

fractional differentiation holds  

0 0

0

( )
( ( ) ( )) ( ) ( ),

kn
RL p RL p k p

t t nk
k

p d t
D t f t D f t R t

k dt


 −

=

 
= − 

 
  

where n  is an integer such that 1n p + , 

( 1)
               ,

! ( 1)

p p

k k p k

   +
= 

 − + 
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1
1 1

0 0

( 1) ( )
( ) ( , , ) ,

! ( )

n n p
p

n p

t p
R t F t u v dudv

n p

− +− −
=

 −    

( 1)      ( , , ) ( ) ( ( )).n

pF t u v f vt t u v uv += + −  

3. Main Results 

In this section, two sufficient conditions are derived for a class of 

fractional order neural networks with proportional delays. 

Consider the following fractional non-autonomous time-varying 

delay systems: 

      

0

1

1

0

( ) ( ) ( ) ( ) ( ( ))

                 ( ( )) ( ),    0      (1)

(0) , 1,2, , .

n
C p

t t i i i ij j j

j

n

ij j j ij i

j

i i

D x t d t x t a t f x t

b g x q t I t t

x x i n

=

=


= − +




+ + 

 = 







   
 

n is the number of units in a neural networks, ( ) n

ix t R is 

the state variable of i th neuron at time t , ( )iI t is the external 

input, ( )id t  is the self-inhibition
 
rate at which the i th neuron 

will reset its potential to the resting state in isolation when 

disconnected from the network and external input;

( ) , ( )ij n n ij n nA a B b = = are time-varying connection weights,

( ( ))j jf x t  and ( ( ))j jg x t are the neuron activation functions,
 

ijq represents the connection proportional delay from i th 

neuron to j th, where  

0 1,    (1 ) ,ij ij ijq q t t q t  = − −  

(1 )ijq t− is signal transmission delay function,when t →+ ,

(1 ) ,ijq t− → +  the time-delay term is an unbounded time delay 

function of model (1).
0 0[ , ],J t t T J R= +  ( T is a positive 

number or + ).
  

Assume that 1 2( ) ( ( ), ( ), , ( ))T

nx t x t x t x t= and
1( ) ( ( ),y t y t=

2 ( ), , ( ))T

ny t y t are any two solutions of (1) with different initial 

functions
 

C and C  , let
1 2( ) ( ) ( ) ( ( ), ( )z t y t x t z t z t= − =

, , ( ))T

nz t , 0,t  ,i n .  = −  One has the error system 

( )

( )

0

1

1

0

( ) ( ) ( ( )) ( ( ))

                 ( ( )) ( ( )) ,

( ) ( ),       0,     .

n
C p

t t i i i ij j j j j

j

n

ij j j ij j j ij

j

D z t d z t a f y t f x t

b g y q t g x q t

z t i n   

=

=


= − + −




+ −

 + =  







  

(2) 

where C  is the initial function of system (2), define the norm

(0, ]sup ( ) .T  =  

Definition 3.1. System (1) is said to be finite-time stable w.r.t.
 

 0, , ,t J   , if and only if 0z  implies ( )z t  , t J 

0 0[ , ]t t T= + ,where
0 0( )z t z= ,

0t is the initial time of observation,

, ,T  are real positive numbers and  . 

In order to obtain main results, make the following assumptions: 

(N1)
id is continuous defined on R , for any two scalars ,u v

 
( ) ( )

,    1,2, .i i

i

d u d v
D i n

u v

−
 =

−  

(N2)The neuron activation functions , 1, 2, ,j jf g j n= （ ）are 

Lipschitz continuous, that is there exist positive constants ,jF

0jG  such that 

( ) ( ) ,j j jf u f v F u v−  −

( ) ( ) ,        ,j j jg u g v G u v u v R−  −  
 

We denote  

1 2

1 2

1 2

( , , , ),

( , , , ),

( , , , ).

n

n

n

D diag D D D

F diag F F F

G diag G G G

=

=

=
 

In addition, time-varying connection weights ( ), ( )ij ija t b t and 

the coefficients ( )id t and the input vector ( ) ( ( ))iI t I t=  are 

assumed to be continuous on R+
. 

Assuming that the equilibrium point of the system (1) is solution 

1 2( , , , )T

nx x x x   = , then 

1 1

( ) ( )) 0

1,2, , .

n n

i i ij j j ij j j i

j j

d x a f x b g x I

i n

  

= =

− + + + =

=

 
 (3)

 

According to equation (3), the nonlinear mapping is taken     

( ) ( ) ( ) ( ) ,F x d x Af x Bg x I= − + + +
      

(4) 

The resulting solution ( ) 0F x =  is the equilibrium point of 

system (1). 

Assume that ( )F x is a homeomorphism mapping defined on 

nR , according to Definition 2.4, ( )F x is a surjection, then, there 

has a point
1 2( , , , )T

nx x x x   = makes ( ) 0F x = ; ( )F x is an 

injection, so there is a unique x  makes ( ) 0F x = . So we know 

the existence and uniqueness of the system equilibrium point. Then, 

we turned to prove ( )F x to be a homomorphic mapping. 

Theorem 3.1. If (N1) and (N2) hold, D A F B G− − is a M - 

matrix, the system (1) has a unique balance。 

Proof: ( )F x is continuous on
nR , we prove it in two parts 

according to the Lemma 2.2. 

1) First, let's prove ( )F x  is a injective. 

 Assume that , nx y R satisfy , ( ) ( ),x y F x F y = then 

according to assumption (N1) and (N2), 
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( )

( ) ( )

( ) ( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) .

F x F y

d x d y A f x f y B g x g y

d x d y A f x f y B g x g y

D A F B G x y

−

= − − + − + −

 − − − − −

 − − −

 

Known that ( ) ( ),F x F y= so ( ) ( ) 0,F x F y− =  

( ) 0.D A F B G x y− − −   

According to Lemma 2.1,
 

1( ) 0,D A F B G −− −  then 

1( ) ( )

0.

D A F B G D A F B G x y

x y

−− −  − − −  

= − 
 

This contradicts what was mentioned above 0x y−  ，so ( )F x

is a injective on
nR 。 

2) The proof of lim ( )
x

F x
→+

→+ is followed. 

According to Lemma 2.1, there is a positive diagonal matrix 

1 2( , , , )nQ diag Q Q Q=  

( ) ( )

( ) ( )

( ) ( ( )) 0,

T

T T

T

Q D A F B G D A F B G Q

Q D A F B G D A F B G Q

Q D A F B G Q D A F B G

− − + − −

= − − + − −

= − − + − − 
 

Instead of the positive definite matrix transpose, and also not 

positive, so 

( ) 0,Q D A F B G x y− − −   

There must be a minimum 0,  an unit matrix
nE , make 

( ) 0.nQ D A F B G x y E− − −    

Note that ( ) ( ) ( )F x F x F x= − , from assumptions (N1) and 

(N2) and equation (4), one has 

( )

2

( ) ( )

( ) ( ) (0) ( ( ) (0)) ( ( ) (0))

( ) (0) ( ) (0) ( ) (0)

( ) .

T

T

T

T

Q x F x

Q x d x d A f x f B g x g

x Q d x d A f x f B g x g

x Q D A F B G x x

= − − + − + −

  − − − − −  

  − −   

(5) 

From Lemma 2.3, 

 

1 21 1 2 2

1 21 2 1 2

2 2 2
2 2 2 1/2 1/2

1 21 2

( ) ( )

( )

max , , , ( )

( , , , ) ( )

= ( ) .

T

T T

nn n

nn n

nn

Q x F x

x Q F x

x Q F x Q F x Q F

Q Q Q x F x F x F

Q x x x F F F

Q x F x

=

= + + +

 + + +

 + + +

  

(6) 

From equation (5) and (6), one obtains 
2

( ) ,Q x F x x

that is 

( ) .
x

F x
Q




 

It means that x →+，when ( )F x →+，it follows that

( ) .F x →+  

To sum up, we have the conclusion that the system (1) has a 

unique equilibrium point x . 

In order to prove our conclusion, the following conditions are 

given: 

(C1)There is a constant 0r  that satisfies the inequality 

2 1

1

( )
( ) ( ( ) ( ) ) 0, .

(2 )

n
j

i ij j ij p p
j ij

G p p
d t a t F b t i n

q r p

−

=

+
− + + +   

 −


 
Theorem 3.2 If the Assumptions (N1) and (N2) and the 

conditions (C1) are all set up, the system (1) is finite-time stable. 

Proof: System (1) has a unique solution. Let 

1 2( ) ( ( ), ( ), , ( ))T

nx t x t x t x t=  

1 2( ) ( ( ), ( ), , ( ))T

ny t y t y t y t=  

be any two solutions of system (1). Define ( ) ( ) ( ),i i iz t y t x t= −

0, .t i n 
0 0

1 2(0) .z x x= −  

From system (1)，one has  

( )

( )

0

1

1

( ) ( ) ( ( )) ( ( ))

                ( ( )) ( ( )) , 0

n
C p

t i i i ij j j j j

j

n

ij j j ij j j ij

j

D z t d z t a f y t f x t

b g y q t g x q t t

=

=

= − + −

+ − 





  

 (7) 

According to Assumption (N2), hence 

( )

( )

0 0

1

1

1

1

( ) sgn( ( )) ( )

( ) ( ) ( ) ( ( )) ( ( ))

  ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( )

  ( ) ( ) ,        ,      0.

C p C p

t i i t i

n

i i ij j j j j

j

n

ij j j ij j j ij

j

n

i i ij j j

j

n

ij j j ij

j

D z t z t D z t

d t z t a t f y t f x t

b t g y q t g x q t

d t z t a t F z t

b t G z q t i n t

=

=

=

=



 − + −

+ −

 − +

+   









   (8)

 

Consider the following function 

( ) ( ) ( ),      0.pV t t r t t= + 
 

We denote,  

0

( ) ( ) , ( ) sup ( ),i
s t

t z t t s  
 

= =
0

ˆ ( ) sup ( ).
s t

V t V t
 

=  

Then we show that 

 
2 1

0 0

ˆ( ) ( )
( ) ( ) ( ) , 0.

(2 )

C p p C p

t t p

p p V t
D V t t r D t t

r p


−+
 + +  

 −
(9)

 

According to the relationship between Caputo derivative and 
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Liemann-liouville derivative and Lemma 2.4. One has 

0 0

0

0

1 1

0

2 1 1

0 0

(0)
( ) ( )

(1 )

(0)
( ) ( )

(1 )

(0)
( ) ( )

(1 )

( 1)
( ) ( )

( )

=( ) ( ) ( ) ( )

(0)
  ( ) ( )

(1 )

C p RL p p

t t

p
RL p p p

t

p
p RL p p

t

p RL p

t

p C p p RL p

t t

p p

V
D V t D V t t

p

r
D t r t t

p

r
t r D t t

p

p
p t r D t

p

t r D t p t r D t

t r r

p t t









 



−

−

−

− −

− −

= −
 −

= + −
 −

 + −
 −

 +
+ +



+ + +

+
+ − − 

0

2 1 1

0

1

0

2 1 1

0

(0)
( ) ( )

(1 )

( ) ( )

ˆ( )
( ) ( )

(2 )

( ) ( )

p C p

t

p RL p

t

p C p

t p

p RL p

t

t r D t
p

p t r D t

p V t
t r D t

r p

p t r D t










− −

−

− −





 + +
 −

+ +

 + +
 −

+ +

   (10) 

In the formula above, 

2 1 1

0

2
1

0

2
1

0

2
1

2

( ) ( )

( ) ( ) ( )
(1 )

( ) ( ) ( )
(1 )

= ( )( )
(1 ) (1 )

ˆ( )
(2 )

 0

p RL p

t

t
p p

t
p p

p

p

p t r D t

p
t r t s s ds

p

p
t r t t s ds

p

p t
t

p p t r

p
V t

r p

t









− −

− −

− −

−

+

= + −
 −

 + −
 −

−  − +


 −






      

 (11)

 

From (10) and (11), 

2 1

0 0

ˆ( ) ( )
( ) ( ) ( ) , 0.

(2 )

C p p C p

t t p

p p V t
D V t t r D t t

r p


−+
 + +  

 −
 

From (8), the Caputo derivative of ( )t meets  

0

1

1

1 1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( )

             ( ) ( ) ( ) ( ) ( ) ( )

( )
             ( ) ( ) ( ) ( ) ( )

( )

   

n
C p

t i i ij j j

j

n

ij j j ij

j

n n

i ij j ij j ij

j j

n n
ij

i ij j ij j p
j j ij

D t d t z t a t F z t

b t G z q t

d t t a t F t b t G q t

V q t
d t t a t F t b t G

q t r



  

 

=

=

= =

= =

 − +

+

 − + +

 − + +
+





 

 

1 1

( )
          ( ) ( ) ( ) ( ) .

( )

n n
ij

i ij j ij j p
j j ij

V q t
d t a t F t b t G

q t r

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 
 − − + 

+ 
 

For ( )V t  
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1

2 1

1
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( )
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( )
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p
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j

n
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ij j p p
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j
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p
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r p
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G
d t a t F b t

q
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
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−

=

−

=

=

−

+
 + +

 −

  
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  
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
− + +


+

+
 −






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ˆ( ).
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V t


 
 
 
 
 
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where 

2 1

1

( )
( ) ( ( ) ( ) ) .

(2 )

n
j

i ij j ij p p
j ij

G p p
d t a t F b t

q r p


−

=

+
= − + + +

 −
  

If ( ) ( )V t V t= , estimation(12) gives 0 ( ) 0.C p

tD V t  If 

( ) ( )ˆV t V t , then there exists a 0  , such that

ˆ( ) ( ), [0,V t s V t s+     ). Therefore, ( ) ( )V t V t+  for all 

[0, ),  which also yields 0 ( ) 0.C p

tD V t  We can conclude by 

the above argument that 0 ( ) 0.C p

tD V t   holds for all 0t  ,and 

hence ( ) (0).V t V   

So 

0 0

1 2

( ) ( ) (0)
( ) ( )

( ) ( ) ( )

(0)
                  ,    0.

( ) ( )

i i p p p

PP

p p

V t V t V
y t x t

t r t r t r

r x xr
t

t r t r



− =  
+ + +

−
=   

+ +

 

Hence, 

 
0 0

1 2( ) ( )
( )

p

i i p

r
y t x t x x

t r
−  −

+
 

when 
0 0

1 2x x −  and
( )

p

p

r

t r






+
, ( ) ( ) .i iy t x t −   

According to Definition 3.1, the system (1) is finite-time stable. 

4. Numerical Examples 

In this section, we give two numerical examples to verify the 

validity of the results. 

Example 1. Consider the following non-autonomous fractional 

neural network model 
2

0.9

0

1

2

1

( ) ( ) tanh( ( ))

                  tanh( (0.8 )) ( ),    0

C

t i i i ij j

j

ij j i

j

D x t d x t a x t

b x t I t t

=

=

= − +

+ + 




 

The system parameters , ,i ij ijd a b are given by 
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diag(0.5,0.5)D = ,
1 0.2

0.4 0.8
A

 
=  
− 

−
, 

0.1 0.5

0.3 0.1
B

 
=  
 

−
, ( 10,5)TI = − , 

the neuron activation functions ( ) ( ) tanh( ), 1,2.i i if g x ix x == =

where 1,j jf g= = 0.9.p = Thus 

1.8778 0.8112
( )     .

0.7667 3.0778

pK D A q B−
− 

− = − + =  
− 

 

K is a nonsingular M - matrix. Next it needs to verity the 

finite-time stability w.r.t.  

 0 0; 0.1; 1; 0.8 ,t q = = = = where 
( )

p

p

r

t r






+
,the system 

satisfies all the assumptions，Simulation results with six groups 

initial conditions of
1 2( ), ( )x t x t   

( ) ( ) ( )

( ) ( ) ( )

20,9 , 14, 14 , 9, 4.5 ,
.

9,18.7 , 14.5,13.9 , 5,10

T T T

T T T

 − − 
 
− − −  

 

Which show that the neural network system with the above 

parameters is finite time stable, see Fig 1. and Fig 2. 

 

Fig. 1. Trajectories of 
1( )x t  with 0.9p =  

Example 2  Consider the following model of FONNS 
3

0.9

0

1

3

1

( ) ( ) tanh( ( ))

                  tanh( (0.8 )) ( ),    0

C

t i i i ij j

j

ij j i

j

D x t d x t a x t

b x t I t t

=

=

= − +

+ + 




 

where 0.9.p = The system parameters , ,i ij ijd a b  are given by 

diag(4,3.5,3.8)D = ,

0.4 1

0.1 1.1

0.4 0.8

0.8

0.1

0.4

A

 
 

= −

− −

−

 −




, 

0.1 0.25 0.5

0.1

0.2 0.

0.15 0.1

0.4 15

B

 
 

= 

− −

−


 − 

, (10, 10,10)TI = − , 

the neuron activation functions ( ) ( ) ta )nh(i i ix g xf x= = ,

1, 2,3.i = Note that 1,j jf g= = thus 

3.0778 0.7056 1.6112

( ) 0.2834 3.2778 1.2222 .

0.6445 1.2890 3.2166

pK D A q B−

 
 
 
 


− −

− = − =

− 

+ − −

−

 

K is a nonsingular M -matrix. 

 

Fig. 2. Trajectories of 
2 ( )x t  with 0.9p =  

  

 

Fig. 3. Trajectories of 
1( )x t  with 0.8q =  

 
Fig. 4. Trajectories of 

2 ( )x t  with 0.8q =  

Note that 0 0; 0.1; 1; 0.8 ,t q = = = =  where .
( )

p

p

r

t r






+
 

In finite-time, the system satisfies all the assumptions. 
Simulation results with six groups initial conditions of

1 2 3( ), ( ), ( )x t x t x t , 
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( ) ( ) ( )

( ) ( ) ( )

5,0,3 , 7.3, 3.5,3.5 , 11.2, 7.5,7.5 ,
.

0,3.4, 3.2 , 6.3,7.2, 7.5 , 7.4,11, 11.5

T T T

T T T

 − − 
 

− − − −  

 

 
Fig. 5. Trajectories of 

3( )x t  with 0.8q =  

Which show that the neural network system with the above 
parameters is finite time stable, see Fig 3-5. 

5. Conclusions 

In this paper, we study the finite-time stability of fractional 

non-autonomous neural networks with heterogeneous proportional 

delays. According to the homeomorphism mapping principle, the 

nonlinear mapping is constructed, and the existence of unique 

solution is proved. By using the extended comparison technique of 

Leibniz rule for fractional differential, a time-series neural network 

model based on delay is derived to ensure the global stability of the 

considered fractional neural network model. Two numerical 

examples are given to verify the effectiveness of the results. 
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