
International Journal of Applied Mathematics in Control Engineering 2 (2018) 119-126

* Corresponding author.

E-mail addresses: zhangyang@hebust.edu.cn (Y. Zhang)

 Contents lists available at YXpublications

 International Journal of Applied Mathematics in

Control Engineering

 Journal homepage: http://www.ijamce.com

An Automatic Refactoring Approach for Loop Parallelism

Dongwen Zhang, Mengmeng Wei, Yang Zhang*, Shixin Sun, Shicheng Dong

School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China

A R T I C L E I N F O

A B A S R A C T

Article history:

Received 9 April 2018

Accepted 9 July 2018

Available online 25 December 2018

 This paper proposes an automatic software refactoring approach to achieve the parallelism for loops. Our

approach uses pre-conditions and post-conditions to ensure the consistency of performance before and after

refactoring. The Thread Pool mechanism provided by Java Executor framework is used to complete the

parallelization of loops. We implement our approach as an automatic interactive refactoring tool (R-loop) based on

Abstract Syntax Tree (AST) of the Eclipse JDT environment. Several benchmarks from the JGF Benchmark Suite

are selected to evaluate R-loop. Experimental results show that the efficiency of programs execution has been

improved. R-loop can successfully implement the automatic refactoring in a short time without introducing other

parallelization errors.

Published by Y.X.Union. All rights reserved.

Keywords：

Loop parallelism

Safety analysis

Thread Pool mechanism

Abstract Syntax Tree

1. Introduction

As the modern processor technology shifts from its main

frequency to multi-core processing, multi-core processors are

getting closer to us. It makes programmers begin to use parallel

computing to improve program performance. As a basic structure of

iterative processing of data by many algorithms, the loop contains

abundant parallelism, but due to its complexity and variety, it is

often the most time-consuming part of programs. Therefore, loop

parallelism has become a hot research in high performance

computing.

The parallel technology is gradually rising with the development

of parallel computers. However, it is usually performed manually by

programmers in candidate programs through parallel mining,

parallel code generation and optimization. It is expensive,

time-consuming, error-prone and simply not scalable. The manual

parallelization is too complex and instabilities arising from newly

introduced bugs.

This paper proposes the software refactoring approach and

implements an automatic refactoring tool called R-loop. We present

the safety analyses to determine whether loops are conformed to the

conditions of parallelization and use R-loop to parallelize several

loops in real programs. It completes the automatic loop

parallelization efficiently and effectively.

The rest of the paper is organized as follows. The refactoring of

loop is introduced in section 2 which includes the safety analysis,

loop parallelization, and transformation. Experimental results are

presented in section 3 and related literatures are examined in section

4. Finally, conclusions are drawn in section 5.

2. Refactoring for loop

Refactoring is the process of changing internal structure of

software without changing the external behavior. It is a convenient

way to clean up code that minimizes the chances of introducing

bugs. Unlike a simple loop parallelization, refactoring is applicable

to a wide of possible parallel structure.

2.1 Architecture

The architecture of refactoring for loop is shown in Fig.1. It is

mainly composed of three parts: initialization, transformation, and

consistency detection.

The front-end and back-end of the process are a serial program

and a parallel program, respectively. We first check the

pre-conditions that may be used to check whether the target

program is suitable to be transformed or not. After validating

successfully, we need to add some thread-related operations to

convert a serial program to a parallel one. We use Java Executor

framework to complete the parallelization of loops. Code

transformation is the core of refactoring process, which usually

includes locating the source code, traversing the AST, and

generating JDT. The modified codes are not directly reflected in the

original program, but saved as a change object, which is easily to be

mailto:shengnan.wen@foxmail.com
http://www.yxpublications.com/ijamce/index.html

D. Zhang et al. / IJAMCE 2 (2018) 119-126

checked for programmers. The post-conditions are usually conducted to ensure that the behavior of program is not changed.

Pre-conditions

Executor

framework
Constructing AST

Traversing AST

Modifying AST

Creating JDT

Code positioning

Recording the

change

Post-conditions

Preview

The core

All the processes

TransformationInput Initialization Consistency dection Output

Serial

Program

Parallel

Program

Fig. 1. The architecture of refactoring.

2.2 Safety analysis

One of the most important considerations in our refactoring is to

preserve the original sequential semantics when executing methods

in parallel. Therefore, safety analysis becomes an indispensable part

of the whole refactoring, and it includes data dependence analysis

and loop iteration analysis.

The aim of data dependence analysis is to determine if loop

iteration may depend on data written in previous loop iteration. In

such cases, automatic loop parallelization is usually prohibited.

First, we show a couple of examples in Fig.2. On the left-hand of

example 1, S1: a[2] = b[1]+c; is obtained in the first iteration

(i=1), in which variable a[2] is written to memory. S2: d[2] =

a[2]+e; is obtained in the second iteration (i=2), while variable

a[2] is read but its read value is dependence on the write operation

in the previous iteration, in other words S2 is loop data

dependency on S1. In this case, there are two or more operations

simultaneously access a[i], and at least one is the write operation.

Similarly, in example 2 the control statement is the value written

of a[i] in the last iteration. And we call that S2 is loop control

dependency on S1.

To avoid reading and writing to the same memory address, a new

temporary variable x (in example 1) was allocated to hold the writes.

By comparing the simple code, it can be seen that the original write

twice, and read twice are reduced to the current write twice, and

read once, and the data dependence are removed. In example 2, we

define two temporary variables, temp and next. And the temp is

used to save the previous value of a[i].

Loop iteration analysis is to ensure that the loop parallelism

should satisfy the following three conditions: the upper and lower

bounds of loop variables should be a constant; conditional

expression in loop should be conformed to the form

"loop_variable<, <=, >,>= loop_invariant_integral"; and the loop

increment is integer one. If these values are not constant, we will

issue some warnings. And if the loop increment is not integer one,

we will normalize it by multiplying the loop counter by the original.

In our refactoring, the properties of input validity illustrates all

input from the users is legally, it is possible to apply the

transformation to the given program with the given inputs. Class

RefactoringWizard provides method addUserInputPages and

checkInitialCondition. The former is used to add user input page,

and the latter is used to check the initialization. If the security

degree is RefactoringStatus.FATAL, the refactoring cannot continue

unless it is passed.

example 1

1.for(inti=0;i<n;i++){

2. a[i+1] = b[i]+c; //S1

3. d[i] = a[i]+e; //S2

4.}

1.d[0] = a[0]+e;

2.for(inti=0;i<n;i++){

3. x = b[i-1]+c;

4. a[i] = x;

5. d[i] = x+e;

6.}

7.a[n] = b[n-1]+c;

example 2

1. for(inti = 1;i <n;i++){

2. a[i] = b[i]+c[i]; //S1

3. if(a[i-1]){ //S2

4. c[i] = a[i]+2;

5. }

6. }

1. temp = a[0];

2. for(inti=1;i <n;i++){

3. next = b[i] + c[i];

4. if(temp){

5. c[i] = next + 2;

6. }

7. a[i] = next;

8. temp = next;

9. }

Fig. 2. Examples of loop.

2.3Loop parallelism

We introduce the multi-thread mechanism to complete the

conversion form serial program to parallel program. Starting with

JDK 1.5, the Executor framework provided by Java concurrency

library begins to use thread pool to manage threads. The thread pool

can receive object Runnable or Callable directly without inheriting

class thread repeatedly. After the operation is completed, those

threads in this pool will not be destroyed but transformed their

current state into sleep state, thus decreasing the overhead of

repeated creation of threads.

D. Zhang et al. / IJAMCE 2 (2018) 119-126

To ensure the sequence of data, a linked-hash map is chosen to

save the input data, which is a First-In-First-Out (FIFO) queue. We

create some threads for initialization which number is related to the

amount of input data, and those threads are in wait state. It does not

bind threads with processor cores, but creates an ExecutorService

pool to manage threads.

To saving the invocation time, the original loop is encapsulated in

a static internal class, which is inherited from class thread. The

number of activated threads is determined by the parameter n in

method newFixedThreadPool(n). Each thread in the thread pool

fetches a data from the FIFO queue continuously, and finishes

method invocation by the method execute of class ExecutorService.

It should be note that, there is a barrier operation implemented by

method waitForAll of class ExecutorService at the end of each

thread. The barrier operation checks whether current operation is

finished. If not, it will wait until all the threads are processed.

2.4Transformation

Abstract Syntax Tree (AST) is an abstract grammar structure that

represents the intermediate representation of the refactoring process.

It can parse Java code into a tree. Programmers complete the

modification of original code by traversing it, changing its property,

inserting and deleting nodes and others operations.

Eclipse AST provides class ASTPaster for parsing source code,

which means that the transformation from Java to AST will be

completed by ASTPaster. If the input parameter is a whole java file,

method setSource completes this parsing process. If the input

parameter is other types (e.g., compilation_unit,

class_body_declarations, expression, andstatements), method

setKind will be used. We use the Method selectionChanged to

acquire the target refactoring object and saved them in

anICompilationUnit which represents a source file that can be

compiled.

After parsing, a corresponding abstract syntax tree is generated.

Eclipse AST provides recursive traversal methods for class Visitor,

ASTNode acts as an abstract element, ASTVisitor acts as an abstract

visitor. According to the order of access, it can be divided into

PreVisit(Node node), Visit(Node node), PostVisit(Node node),

respectively. Generally, programmers need to create a sub-class of

ASTVisitor. The traversal of variables, method domain and methods

are completed by modifying parameters of the sub-class to

TypeDeclaration, FieldDeclaration and MthodDeclaration. Note

that, TypeDeclaration and MthodDeclaration can obtain the related

properties and output directly, but there are other variables that

being declared under FieldDeclaration, therefore, we need to

traverse its sub-node (VariableDeclarationFragment).

After traversing, we need to get the list of all statements, and

generate the JDT code by inserting, deleting and repairing it. The

AST of statement ExecutorService pool =

Executors.newFixedThreadPool(n) is shown in Fig.3. We use it to

illustrate the correspondence between variables in code and nodes in

AST. This statement is a VariableDeclarationStatement, which is

the body of method buildTestData and whose type is

ExecutorService. The name of the fragment is pool, and its

initialization is an expression(Executors) named

newFixedThreadPool. The numberLiteral(n) represents the number

of running threads. Note that the binding should remain unchanged

throughout the whole process.

ExecutorService pool =

Executors.newFixedThreadPool(n)

ExecutorService
pool =

Executors.newFixedThreadPool(n)

ExecutorService pool = Executors.newFixedThreadPool(n)

ExecutorService pool Executors newFixedThreadPool(n)

VariableDeclaration

Statement

Type Fragments

Name Operator MethodInvacation

SimpleName identifire SimpleName SimpleName

Fig. 3. An example of AST.

We have implemented an interactive refactoring tool, R-loop,

which automates complete the safety analysis and the rewriting of

code. It is integrated with Eclipse’s refactoring engine, so it offers

some convenient features of a refactoring engine: previewing the

changes, preserving the formatting, undoing the changes. Our tool

performs the safety analysis and warns the programmer if some

pre-conditions are not met, then R-loop rewrites the code. The final

user interface is shown in Fig.4.

The left side of the interface is the original program, and the right

side is the program which has been refacted. The transformation

part of the automated refactoring is marked with a gray contrast, so

that the users can clearly understand which part has been changed.

In the preview interface, it can be initially determined whether the

automated refactoring program adds the thread-related operations or

D. Zhang et al. / IJAMCE 2 (2018) 119-126

not. For example, whether the Execute() method, wait for All()

method are correctly added, and whether a fixed-size thread pool is

created.

Fig. 4. The final UI of refactoring.

3. Experimental methodology

3.1 Experiment environment

We used Intel Xeon i5-6500 CPU with 8GB of RAM running

Windows 7 server (4 processors, 4 cores on each processors and

each core ran at 3.2 GHz; 4 hardware threads). At software level, we

used Eclipse4.5.1 and JDK1.8.0_31.

3.2Benchmarks

We evaluate our experiment using four benchmarks (Crypt,

LUfact, Series and SparseMatmulti) from Java Grande Forum (JGF)

Benchmark Suite (Smith and Bull, 2001). This suite contains a set

of benchmarks that can be used to test the performance of Java for

scientific computations. Crypt benchmark performs International

Data Encryption Algorithm on an array of N bytes. LUfact

benchmark performs an algorithm of Lu matrix decomposition.

Series benchmark performs an algorithm for solving the Fourier

coefficient. And The SparseMatMulti benchmark is mainly used to

perform multiplication of sparse matrices.

These benchmarks and their input data size are shown in Tab. 1.

Tab. 1. Benchmarks and the input data.

Benchmark Size A Size B Size C

Crypt 3000000 20000000 50000000

LUfact 500 1000 2000

Series 1000 100000 1000000

SparseMatmulti 250000 500000 25000000

3.3 Experiment results and analysis

Due to the uncertain time of parallel execution, we executed each

benchmark ten times, and calculated the average value. The

performance of Crypt, LUfact, Series and SparseMatmulti are

illustrated in Fig.5 (a), Fig.5 (b) , Fig.5 (c) and Fig.5 (d). The graphs

plot execution time, so lower is better. Considering the high

execution time of these benchmarks in Size C, we present the

results in two figures respectively.

The execution of Crypt benchmark is shown in Fig.5 (a). We can

see that the execution time is dramatically decreased when the

benchmark is executed from serial to parallel, the execution

efficiency is also significantly improved. With the increase of

number of software threads, the execution time is decreased and

gradually stabilized. Longitudinal comparison shows that when the

amount of input data in the program is different, the parallelization

effect generated is also different. It is illustrated that the size of data

is one of the important factors for influencing the effect of

parallelization. Similarly, this situation happens in Fig.5 (c) and

Fig.5 (d).

In general, the larger the input data of the program, the more

obvious performance comparison before and after refactoring, and

the better efficiency is gain. A reason that cannot be ignored is that

when the amount of data is sufficient, the time consumed by the

creation, management, release the threads is relatively reduced in

the total execution time, which makes the degree of parallelization

obviously.

The execution of LUfact benchmark is shown in Fig.5 (b), when

the number of software threads is equal to 8, the number of software

threads is more than the number of hardware threads, execution

time begins to increase. This result is inconsistent with the

conclusion that "the more threads, the less execution time". In this

situation, if we continue to increase the number of software, the

performance will continue to become poor. If the number of threads

is more than 64, the execution time even exceeds the execution time

of sequence. It occurs because the creation, management, and

release of a large number of threads bring time consuming when the

input data is not insufficient, thus reduces the efficiency of the

whole program.

D. Zhang et al. / IJAMCE 2 (2018) 119-126

（a）Crypt

（a）Crypt-sizeC

（b）LUfact

（b）LUfact-sizeC

（c）Series

（c）Series-sizeC

（d）SparseMatmulti

（d）SparseMatmulti-sizeC

Fig. 5. Execution time of benchmarks from varying threads

We evaluate refactoring time of each benchmark. When we run

the four benchmarks on R-loop, the automatic refactoring time is

365 ms, 668ms, 547ms and 399ms, respectively. All time are less

than 1 second, which illustrates R-loop is more efficient than

manual parallelization. We also evaluate execution time of each

benchmark. The difference of manual parallelization time and

automatic parallelization time is between 1% and 3%, which is

basically consistent with each other. Experimental results show

R-loop can get good scalability. The results are shown in Fig.6.

D. Zhang et al. / IJAMCE 2 (2018) 119-126

（a）Crypt - size A

（a）Crypt - size B

（a）Crypt - size C

（a）LUfact - size A

（b）LUfact - size B

（b）LUfact - size C

（c）Series - size A

（c）Series - size B

（c）Series - size C

(d) SparseMatmulti - size A

(d) SparseMatmulti - size B

(d) SparseMatmulti - size C

Fig. 6.The execution time of benchmarks by manual and automatic refactoring

In addition to comparing the execution time of the program

before and after refactoring, this paper also analyzes the speedup of

the program. The speedup is used to measure the performance and

effectiveness of parallel system or program parallelization.

Assumed that some parts of the program perform in the serial

execution. If the ratio of the serial execution part to the entire

program is f, the ratio of the parallel part is 1-f. So the total

execution time of using n threads is calculated as follows, and ts

represents the execution time of using a single thread.

()1 s

s

f t
ft

p

−
+ (1)

Therefore, the speedup of the program is calculated as follows:

() ()1 1 1

s

s

s

t p
S

f t p f
ft

p

= =
− + −

+

 (2)

The results of the speedup are given in Tab.2. It is illustrated that

the automated refactoring for loop parallelization can bring an

increase in execution speed. R-loop can successfully implement the

automatic refactoring in a short time without introducing other

parallelization errors.

D. Zhang et al. / IJAMCE 2 (2018) 119-126

Tab. 2. The speedup of each benchmarks.

Benchmark Size A Size B Size C

Crypt 2.41 3.43 3.69

LUfact 1.07 1.33 1.14

Series 4.71 4.91 5.82

SparseMatmulti 4.43 5.94 7.23

4. Related works

Some related works are discussed in this section. ReLooper (Dig

et al., 2009) is an automatic refactoring tool which developed by

Professor Danny dig that can help the programmer parallelize

regular loop nests in Java code. Parallelization is done using Parallel

Array framework, and relies on static data dependency analysis to

detect parallelism. To use ReLooper, the programmer selects a target

array or vector and is then told if the loops that access the array can

be parallelized safely. Our work is complementary to ReLooper. But

our approach is neither data-driven nor array-driven, whereas we

focus on loops. And we use Executor framework to implement the

parallelization of loops.

An interactive compilation feedback system (Larsenet al., 2012)

is developed which guided the programmer in iteratively modifying

the source code. Their compiler feedback suggested that the restrict

keyword be used to eliminate sets of dependence, and suggested

steps to resolve key issues. Vandierendonck et al. (Vandierendonck

et al., 2010) propose the Paralax infrastructure, which exploits

programmer knowledge for optimization. Paralax is tool that

suggests 0how the programmer may add annotations to the program.

It parallelizes irregular, pointer-intensive code and relies on

profiling information. Kale et al. (Kale et al., 2013) present a

method to capture dependence in loops with VD3 (variable distance

data dependences). They use a two variable LED and its parametric

solutions to analyze and mathematically formulate precise

dependence.

Rajam et al. (e.g., Rajam et al., 2015; Jimborean et al., 2014;

Sukunmaran-Rajam et al., 2014) propose a framework called Apollo

that implements a dynamic and speculative adaptation of the ploy

tope model. Apollo is able to optimize and parallelize loop nests

that cannot be handled at compile-time and that exhibit a linear

behavior at runtime. The next year, they will go further by

proposing a strategy to extend their framework to loop nests that

exhibit a non-linear behavior.

Mazaheri et al. (Mazaheri et al., 2015) extend DiscoPoP profiler

to create a specialized tool for identifying nested communication

patterns inside shared-memory applications and propose a static

analysis approach for annotating loop regions. Mata et al. (Mate et

al, 2013) achieved the cyclic structure's parallelism by analyzing the

regular code, separating data, selecting appropriate communication

strategies and eliminated the data competition.

Li et al. (Li et al., 2015) used the tree and graph recursive

algorithm to dealing with the irregular cyclic structure, and

proposed some different parallelization templates which are relying

on the dynamic parallel analysis technology. Dutta et al. (Dutta et al.,

2016) proposed a new algorithm for constructing dependency graph

of the parallel programs, which verifies the correctness of the

parallel programs by checking the equivalence of the original

sequence. Klimek et al. (Klimek et al., 2017) proposed a method of

parallelization of the non-synchronous mechanism in the nested

loop, which allows extracting any nested loop parallelism.

The research team led by Hammond and Brown (e.g., Brown et

al., 2013; Hammond et al., 2012; Danelutto et al., 2014; Loidl et al.,

2011) set up a formal refactoring rule to enhance programmability

of parallel programming, and implemented a parallel refactoring

tool ParaPhrase. They also proposed a language-independent

parallel refactoring framework; the Erlang program has been

refectory. In addition, they studied how to convert a serial Haskell

program to a parallel Haskell program.

Ruixia (Ruixia, 2018) proposed a novel adaptive parameter

identification method to identify the parameter vectors. Some newly

multil-ateration systems for monitoring and scene surveillance were

proposed by Tongjuan (Tongjuan et al., 2018) and Rui (Rui et al.

2018).

5. Conclusions

In this paper, we proposed an automatic software refactoring

approach for parallelization of loops. Our approach presented some

specific details of its implementation, such as safety analysis, loop

parallelization and transformation of parallel. We also developed an

automatic refactoring tool named R-loop, and evaluated it by

several benchmarks in JGF Benchmark Suite, such as Crypt, LUfact,

and Series. Experimental results had shown that R-loop can

complete the parallelization in a short time, and the efficiency of

programs execution has been improved.

Acknowledgements

This work is partially supported by National Natural Science

Foundation of China under grant No. 61440012, Natural Science

Foundation of Hebei Province under Grant No. F2016208007 and

Fundamental Research Foundation of Hebei Province under Grant

No.18960106D. The authors also gratefully acknowledge the

insightful comments and suggestions of the reviewers, which have

improved the presentation.

References

Smith, L. A., & Bull, J. M. (2001). A parallel java grande benchmarksuite.

Supercomputing, ACM/IEEE 2001 Conference (pp.8-8). IEEE.

Dig, D., Tarce, M., Radoi, C., Minea, M., & Johnson, R. (2009).

Relooper:refactoring for loop parallelism in Java. Companion to the Acm

Sigplan Conference on Object-oriented Programming (pp.793-794).

Dig, D. (2010)A Practical Tutorial on Refactoring for Parallelism. Proceedings of

IEEE International Conference on Software Maintenance. Piscataway, NJ:

IEEE.

Larsen, P., Ladelsky, R., Lidman, J., Mckee, S. A., Karlsson, S., & Zaks, A.

(2012). Parallelizing more loops with compiler guided refactoring. 410-419.

Vandierendonck, H., Rul, S., & Bosschere, K. D. (2010). The Paralax

infrastructure: automatic parallelization with a helping hand. International

Conference on Parallel Architectures and Compilation

Techniques(pp.389-400). IEEE.

Kale, A., Patil, A., & Biswas, S. (2013). Parallelization of loops with variable

distance data dependences. Computer Science.

Rajam, A. S., Campostrini, L. E., Caamano, J. M. M., & Clauss, P. (2015).

Speculative Runtime Parallelization of Loop Nests: Towards Greater Scope

and Efficiency. Parallel and Distributed Processing Symposium Workshop

(Vol.4, pp.245-254). IEEE.

Jimborean, A., Clauss, P., Dollinger, J. F., Loechner, V., & Caamaño, J. M. M.

(2014). Dynamic and speculative polyhedral parallelization using

compiler-generated skeletons. International Journal of Parallel Programming,

42(4), 529-545.

Sukumaran-Rajam, A., Caamaño, J. M. M., Wolff, W., Jimborean, A., & Clauss,

P. (2014). Speculative Program Parallelization with Scalable and

Decentralized Runtime Verification. Runtime Verification. Springer

International Publishing.

D. Zhang et al. / IJAMCE 2 (2018) 119-126

Mazaheri, A., Jannesari, A., Mirzaei, A., & Wolf, F. (2015). Characterizing

Loop-Level Communication Patterns in Shared Memory. International

Conference on Parallel Processing (pp.759-768). IEEE.

Mata, L. L. P. D., Pereira, F. M. Q., & Ferreira, R. (2013). Automatic

parallelization of canonical loops. Science of Computer Programming,78(8),

1193-1206.

Li, D., Wu, H., & Becchi, M. (2015). Nested Parallelism on GPU: Exploring

Parallelization Templates for Irregular Loops and Recursive Computations.

International Conference on Parallel Processing (Vol.17, pp.979-988). IEEE.

Dutta, S., Sarkar, D., Rawat, A., & Singh, K. (2016). Validation of Loop

Parallelization and Loop Vectorization Transformations. International

Conference on Evaluation of Novel Software Approaches To Software

Engineering (pp.195-202).

Klimek, T., Palkowski, M., & Bielecki, W. (2017). Synchronization-Free

Automatic Parallelization for Arbitrarily Nested Affine Loops. International

Symposium on Computer Architecture and High PERFORMANCE

Computing Workshops (pp.43-48). IEEE.

Brown, C., Hammond, K., Danelutto, M., Kilpatrick, P., Schöner, H., & Breddin,

T. (2013). Paraphrasing: Generating Parallel Programs Using Refactoring.

Formal Methods for Components and Objects. Springer Berlin Heidelberg.

Brown, C., Hammond, K., Danelutto, M., & Kilpatrick, P. (2012). A

language-independent parallel refactoring framework. The Workshop on

Refactoring TOOLS (pp.54-58). ACM.

Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., & Elliott, A. (2014).

Cost-directed refactoring for parallel erlang programs. International Journal

of Parallel Programming, 42(4), 564-582.

Brown, C., Loidl, H. W., & Hammond, K. (2011). ParaForming: Forming Parallel

Haskell Programs Using Novel Refactoring Techniques. Trends in

Functional Programming. Springer Berlin Heidelberg.

Ruixia Meng. (2018). Adaptive Parameter Estimation for Multivariable Nonlinear

CARMA Systems. International Journal of Applied Mathematics in

Control Engineering, 1, 96-102.

Tongjuan Zhao, Jiuhe Wang. (2018). Adaptive Parameter Estimation for

Multivariable Nonlinear CARMA Systems. International Journal of

Applied Mathematics in Control Engineering, 1, 55-61.

Rui Peng, Lei Chrng, Yating Dai, Xitong Zhao, Huaiyu Wu, Yang Chen (2018).

Adaptive Parameter Estimation for Multivariable Nonlinear CARMA

Systems. International Journal of Applied Mathematics in Control

Engineering, 1, 85-91.

Dongwen Zhang received her PHD
degree in School of computer at Beijing
Institute of Technology. She is an
professor in school of Information
Science and Engineering at Hebei
University of Science and Technology.
Her research interests focus on parallel
programming model and software
refactoring for parallelism.

Mengmeng Wei is currently a candidate for a
Master's degree at Hebei University of
Science and Technology. Her research
interests focus on parallel programming and
software refactoring for parallelism.

Yang Zhang received his PHD degree in
School of Computer at Beijing Institute of
Technology. He is an associate professor in
school of Information Science and
Engineering at Hebei University of Science
and Technology. His research interests focus
on parallel programming model and software
refactoring for parallelism.

Shixin SUN is currently a candidate for a
Master's degree at Hebei University of
Science and Technology. Her research
interests focus on parallel programming and
software refactoring for parallelism.

Shicheng DONG is currently a candidate for
a Master's degree at Hebei University of
Science and Technology. His research
interests focus on parallel programming and
software refactoring for parallelism.

