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 This paper proposes an automatic software refactoring approach to achieve the parallelism for loops. Our 

approach uses pre-conditions and post-conditions to ensure the consistency of performance before and after 

refactoring. The Thread Pool mechanism provided by Java Executor framework is used to complete the 

parallelization of loops. We implement our approach as an automatic interactive refactoring tool (R-loop) based on 

Abstract Syntax Tree (AST) of the Eclipse JDT environment. Several benchmarks from the JGF Benchmark Suite 

are selected to evaluate R-loop. Experimental results show that the efficiency of programs execution has been 

improved. R-loop can successfully implement the automatic refactoring in a short time without introducing other 

parallelization errors. 
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1. Introduction 

As the modern processor technology shifts from its main 

frequency to multi-core processing, multi-core processors are 

getting closer to us. It makes programmers begin to use parallel 

computing to improve program performance. As a basic structure of 

iterative processing of data by many algorithms, the loop contains 

abundant parallelism, but due to its complexity and variety, it is 

often the most time-consuming part of programs. Therefore, loop 

parallelism has become a hot research in high performance 

computing. 

The parallel technology is gradually rising with the development 

of parallel computers. However, it is usually performed manually by 

programmers in candidate programs through parallel mining, 

parallel code generation and optimization. It is expensive, 

time-consuming, error-prone and simply not scalable. The manual 

parallelization is too complex and instabilities arising from newly 

introduced bugs. 

This paper proposes the software refactoring approach and 

implements an automatic refactoring tool called R-loop. We present 

the safety analyses to determine whether loops are conformed to the 

conditions of parallelization and use R-loop to parallelize several 

loops in real programs. It completes the automatic loop 

parallelization efficiently and effectively. 

The rest of the paper is organized as follows. The refactoring of 

loop is introduced in section 2 which includes the safety analysis, 

loop parallelization, and transformation. Experimental results are  

 

presented in section 3 and related literatures are examined in section 

4. Finally, conclusions are drawn in section 5. 

2. Refactoring for loop 

Refactoring is the process of changing internal structure of 

software without changing the external behavior. It is a convenient 

way to clean up code that minimizes the chances of introducing 

bugs. Unlike a simple loop parallelization, refactoring is applicable 

to a wide of possible parallel structure. 

2.1 Architecture 

The architecture of refactoring for loop is shown in Fig.1. It is 

mainly composed of three parts: initialization, transformation, and 

consistency detection. 

The front-end and back-end of the process are a serial program 

and a parallel program, respectively. We first check the 

pre-conditions that may be used to check whether the target 

program is suitable to be transformed or not. After validating 

successfully, we need to add some thread-related operations to 

convert a serial program to a parallel one. We use Java Executor 

framework to complete the parallelization of loops. Code 

transformation is the core of refactoring process, which usually 

includes locating the source code, traversing the AST, and 

generating JDT. The modified codes are not directly reflected in the 

original program, but saved as a change object, which is easily to be 
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checked for programmers. The post-conditions are usually conducted to ensure that the behavior of program is not changed. 

Pre-conditions

Executor 

framework
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Modifying AST

Creating JDT

Code positioning

Recording the 

change

Post-conditions

Preview

The core

All the processes
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Serial 
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Fig. 1. The architecture of refactoring. 

2.2 Safety analysis 

One of the most important considerations in our refactoring is to 

preserve the original sequential semantics when executing methods 

in parallel. Therefore, safety analysis becomes an indispensable part 

of the whole refactoring, and it includes data dependence analysis 

and loop iteration analysis. 

The aim of data dependence analysis is to determine if loop 

iteration may depend on data written in previous loop iteration. In 

such cases, automatic loop parallelization is usually prohibited. 

First, we show a couple of examples in Fig.2. On the left-hand of 

example 1, S1: a[2] = b[1]+c; is obtained in the first iteration 

(i=1), in which variable a[2] is written to memory. S2: d[2] = 

a[2]+e; is obtained in the second iteration (i=2), while variable 

a[2] is read but its read value is dependence on the write operation 

in the previous iteration, in other words S2 is loop data 

dependency on S1. In this case, there are two or more operations 

simultaneously access a[i], and at least one is the write operation. 

Similarly, in example 2 the control statement is the value written 

of a[i] in the last iteration. And we call that S2 is loop control 

dependency on S1. 

To avoid reading and writing to the same memory address, a new 

temporary variable x (in example 1) was allocated to hold the writes. 

By comparing the simple code, it can be seen that the original write 

twice, and read twice are reduced to the current write twice, and 

read once, and the data dependence are removed. In example 2, we 

define two temporary variables, temp and next. And the temp is 

used to save the previous value of a[i]. 

Loop iteration analysis is to ensure that the loop parallelism 

should satisfy the following three conditions: the upper and lower 

bounds of loop variables should be a constant; conditional 

expression in loop should be conformed to the form 

"loop_variable<, <=, >,>= loop_invariant_integral"; and the loop 

increment is integer one. If these values are not constant, we will 

issue some warnings. And if the loop increment is not integer one, 

we will normalize it by multiplying the loop counter by the original. 

In our refactoring, the properties of input validity illustrates all 

input from the users is legally, it is possible to apply the 

transformation to the given program with the given inputs. Class 

RefactoringWizard provides method addUserInputPages and 

checkInitialCondition. The former is used to add user input page, 

and the latter is used to check the initialization. If the security 

degree is RefactoringStatus.FATAL, the refactoring cannot continue 

unless it is passed. 

 

example 1 

1.for(inti=0;i<n;i++){ 

2. a[i+1] = b[i]+c;  //S1 

3. d[i] = a[i]+e;    //S2 

4.} 

1.d[0] = a[0]+e; 

2.for(inti=0;i<n;i++){ 

3. x = b[i-1]+c; 

4. a[i] = x; 

5. d[i] = x+e; 

6.} 

7.a[n] = b[n-1]+c; 

example 2 

1. for(inti = 1;i <n;i++){ 

2.  a[i] = b[i]+c[i];  //S1 

3.  if(a[i-1]){      //S2 

4.    c[i] = a[i]+2; 

5.  } 

6. } 

1. temp = a[0]; 

2. for(inti=1;i <n;i++){ 

3.  next = b[i] + c[i]; 

4.  if(temp){ 

5.   c[i] = next + 2; 

6.  } 

7.  a[i] = next; 

8.  temp = next; 

9. } 

Fig. 2. Examples of loop. 

2.3Loop parallelism 

We introduce the multi-thread mechanism to complete the 

conversion form serial program to parallel program. Starting with 

JDK 1.5, the Executor framework provided by Java concurrency 

library begins to use thread pool to manage threads. The thread pool 

can receive object Runnable or Callable directly without inheriting 

class thread repeatedly. After the operation is completed, those 

threads in this pool will not be destroyed but transformed their 

current state into sleep state, thus decreasing the overhead of 

repeated creation of threads. 
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To ensure the sequence of data, a linked-hash map is chosen to 

save the input data, which is a First-In-First-Out (FIFO) queue. We 

create some threads for initialization which number is related to the 

amount of input data, and those threads are in wait state. It does not 

bind threads with processor cores, but creates an ExecutorService 

pool to manage threads. 

To saving the invocation time, the original loop is encapsulated in 

a static internal class, which is inherited from class thread. The 

number of activated threads is determined by the parameter n in 

method newFixedThreadPool(n). Each thread in the thread pool 

fetches a data from the FIFO queue continuously, and finishes 

method invocation by the method execute of class ExecutorService. 

It should be note that, there is a barrier operation implemented by 

method waitForAll of class ExecutorService at the end of each 

thread. The barrier operation checks whether current operation is 

finished. If not, it will wait until all the threads are processed. 

2.4Transformation 

Abstract Syntax Tree (AST) is an abstract grammar structure that 

represents the intermediate representation of the refactoring process. 

It can parse Java code into a tree. Programmers complete the 

modification of original code by traversing it, changing its property, 

inserting and deleting nodes and others operations. 

Eclipse AST provides class ASTPaster for parsing source code, 

which means that the transformation from Java to AST will be 

completed by ASTPaster. If the input parameter is a whole java file, 

method setSource completes this parsing process. If the input 

parameter is other types (e.g., compilation_unit, 

class_body_declarations, expression, andstatements), method 

setKind will be used. We use the Method selectionChanged to 

acquire the target refactoring object and saved them in 

anICompilationUnit which represents a source file that can be 

compiled. 

After parsing, a corresponding abstract syntax tree is generated. 

Eclipse AST provides recursive traversal methods for class Visitor, 

ASTNode acts as an abstract element, ASTVisitor acts as an abstract 

visitor. According to the order of access, it can be divided into 

PreVisit(Node node), Visit(Node node), PostVisit(Node node), 

respectively. Generally, programmers need to create a sub-class of 

ASTVisitor. The traversal of variables, method domain and methods 

are completed by modifying parameters of the sub-class to 

TypeDeclaration, FieldDeclaration and MthodDeclaration. Note 

that, TypeDeclaration and MthodDeclaration can obtain the related 

properties and output directly, but there are other variables that 

being declared under FieldDeclaration, therefore, we need to 

traverse its sub-node (VariableDeclarationFragment). 

After traversing, we need to get the list of all statements, and 

generate the JDT code by inserting, deleting and repairing it. The 

AST of statement ExecutorService pool = 

Executors.newFixedThreadPool(n) is shown in Fig.3. We use it to 

illustrate the correspondence between variables in code and nodes in 

AST. This statement is a VariableDeclarationStatement, which is 

the body of method buildTestData and whose type is 

ExecutorService. The name of the fragment is pool, and its 

initialization is an expression(Executors) named 

newFixedThreadPool. The numberLiteral(n) represents the number 

of running threads. Note that the binding should remain unchanged 

throughout the whole process. 

ExecutorService pool = 

Executors.newFixedThreadPool(n)

ExecutorService 
pool = 

Executors.newFixedThreadPool(n)

ExecutorService pool = Executors.newFixedThreadPool(n)

ExecutorService pool Executors newFixedThreadPool(n)

VariableDeclaration

Statement

Type Fragments

Name Operator MethodInvacation

SimpleName identifire SimpleName SimpleName

 

Fig. 3. An example of AST. 

We have implemented an interactive refactoring tool, R-loop, 

which automates complete the safety analysis and the rewriting of 

code. It is integrated with Eclipse’s refactoring engine, so it offers 

some convenient features of a refactoring engine: previewing the 

changes, preserving the formatting, undoing the changes. Our tool 

performs the safety analysis and warns the programmer if some 

pre-conditions are not met, then R-loop rewrites the code. The final 

user interface is shown in Fig.4. 

The left side of the interface is the original program, and the right 

side is the program which has been refacted. The transformation 

part of the automated refactoring is marked with a gray contrast, so 

that the users can clearly understand which part has been changed. 

In the preview interface, it can be initially determined whether the 

automated refactoring program adds the thread-related operations or 
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not. For example, whether the Execute() method, wait for All() 

method are correctly added, and whether a fixed-size thread pool is 

created. 

 

Fig. 4. The final UI of refactoring. 

3. Experimental methodology 

3.1 Experiment environment 

We used Intel Xeon i5-6500 CPU with 8GB of RAM running 

Windows 7 server (4 processors, 4 cores on each processors and 

each core ran at 3.2 GHz; 4 hardware threads). At software level, we 

used Eclipse4.5.1 and JDK1.8.0_31. 

3.2Benchmarks 

We evaluate our experiment using four benchmarks (Crypt, 

LUfact, Series and SparseMatmulti) from Java Grande Forum (JGF) 

Benchmark Suite (Smith and Bull, 2001). This suite contains a set 

of benchmarks that can be used to test the performance of Java for 

scientific computations. Crypt benchmark performs International 

Data Encryption Algorithm on an array of N bytes. LUfact 

benchmark performs an algorithm of Lu matrix decomposition. 

Series benchmark performs an algorithm for solving the Fourier 

coefficient. And The SparseMatMulti benchmark is mainly used to 

perform multiplication of sparse matrices. 

These benchmarks and their input data size are shown in Tab. 1. 

Tab. 1. Benchmarks and the input data. 

Benchmark Size A Size B Size C 

Crypt 3000000 20000000 50000000 

LUfact 500 1000 2000 

Series 1000 100000 1000000 

SparseMatmulti 250000 500000 25000000 

3.3 Experiment results and analysis 

Due to the uncertain time of parallel execution, we executed each 

benchmark ten times, and calculated the average value. The 

performance of Crypt, LUfact, Series and SparseMatmulti are 

illustrated in Fig.5 (a), Fig.5 (b) , Fig.5 (c) and Fig.5 (d). The graphs 

plot execution time, so lower is better. Considering the high 

execution time of these benchmarks in Size C, we present the 

results in two figures respectively. 

The execution of Crypt benchmark is shown in Fig.5 (a). We can 

see that the execution time is dramatically decreased when the 

benchmark is executed from serial to parallel, the execution 

efficiency is also significantly improved. With the increase of 

number of software threads, the execution time is decreased and 

gradually stabilized. Longitudinal comparison shows that when the 

amount of input data in the program is different, the parallelization 

effect generated is also different. It is illustrated that the size of data 

is one of the important factors for influencing the effect of 

parallelization. Similarly, this situation happens in Fig.5 (c) and 

Fig.5 (d). 

In general, the larger the input data of the program, the more 

obvious performance comparison before and after refactoring, and 

the better efficiency is gain. A reason that cannot be ignored is that 

when the amount of data is sufficient, the time consumed by the 

creation, management, release the threads is relatively reduced in 

the total execution time, which makes the degree of parallelization 

obviously. 

The execution of LUfact benchmark is shown in Fig.5 (b), when 

the number of software threads is equal to 8, the number of software 

threads is more than the number of hardware threads, execution 

time begins to increase. This result is inconsistent with the 

conclusion that "the more threads, the less execution time". In this 

situation, if we continue to increase the number of software, the 

performance will continue to become poor. If the number of threads 

is more than 64, the execution time even exceeds the execution time 

of sequence. It occurs because the creation, management, and 

release of a large number of threads bring time consuming when the 

input data is not insufficient, thus reduces the efficiency of the 

whole program. 
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（a）Crypt 

 

（a）Crypt-sizeC 

 

（b）LUfact 

 

（b）LUfact-sizeC 

 

（c）Series 

 

（c）Series-sizeC 

 

（d）SparseMatmulti 

 

（d）SparseMatmulti-sizeC 

Fig. 5. Execution time of benchmarks from varying threads 

We evaluate refactoring time of each benchmark. When we run 

the four benchmarks on R-loop, the automatic refactoring time is 

365 ms, 668ms, 547ms and 399ms, respectively. All time are less 

than 1 second, which illustrates R-loop is more efficient than 

manual parallelization. We also evaluate execution time of each 

benchmark. The difference of manual parallelization time and 

automatic parallelization time is between 1% and 3%, which is 

basically consistent with each other. Experimental results show 

R-loop can get good scalability. The results are shown in Fig.6. 
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（a）Crypt - size A 

 

（a）Crypt - size B 

 

（a）Crypt - size C 

 

（a）LUfact - size A 

 

（b）LUfact - size B 

 

（b）LUfact - size C 

 

（c）Series - size A 

 

（c）Series - size B 

 

（c）Series - size C 

 

(d) SparseMatmulti - size A 

 

(d) SparseMatmulti - size B 

 

(d) SparseMatmulti - size C 

Fig. 6.The execution time of benchmarks by manual and automatic refactoring 

In addition to comparing the execution time of the program 

before and after refactoring, this paper also analyzes the speedup of 

the program. The speedup is used to measure the performance and 

effectiveness of parallel system or program parallelization. 

Assumed that some parts of the program perform in the serial 

execution. If the ratio of the serial execution part to the entire 

program is f, the ratio of the parallel part is 1-f. So the total 

execution time of using n threads is calculated as follows, and ts 

represents the execution time of using a single thread. 

( )1 s

s

f t
ft

p

−
+                    (1) 

 

Therefore, the speedup of the program is calculated as follows: 

( ) ( )1 1 1

s

s

s

t p
S

f t p f
ft

p

= =
− + −

+

          (2) 

The results of the speedup are given in Tab.2. It is illustrated that 

the automated refactoring for loop parallelization can bring an 

increase in execution speed. R-loop can successfully implement the 

automatic refactoring in a short time without introducing other 

parallelization errors. 
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Tab. 2. The speedup of each benchmarks. 

Benchmark Size A Size B Size C 

Crypt 2.41 3.43 3.69 

LUfact 1.07 1.33 1.14 

Series 4.71 4.91 5.82 

SparseMatmulti 4.43 5.94 7.23 

4. Related works 

Some related works are discussed in this section. ReLooper (Dig 

et al., 2009) is an automatic refactoring tool which developed by 

Professor Danny dig that can help the programmer parallelize 

regular loop nests in Java code. Parallelization is done using Parallel 

Array framework, and relies on static data dependency analysis to 

detect parallelism. To use ReLooper, the programmer selects a target 

array or vector and is then told if the loops that access the array can 

be parallelized safely. Our work is complementary to ReLooper. But 

our approach is neither data-driven nor array-driven, whereas we 

focus on loops. And we use Executor framework to implement the 

parallelization of loops. 

An interactive compilation feedback system (Larsenet al., 2012) 

is developed which guided the programmer in iteratively modifying 

the source code. Their compiler feedback suggested that the restrict 

keyword be used to eliminate sets of dependence, and suggested 

steps to resolve key issues. Vandierendonck et al. (Vandierendonck 

et al., 2010) propose the Paralax infrastructure, which exploits 

programmer knowledge for optimization. Paralax is tool that 

suggests 0how the programmer may add annotations to the program. 

It parallelizes irregular, pointer-intensive code and relies on 

profiling information. Kale et al. (Kale et al., 2013) present a 

method to capture dependence in loops with VD3 (variable distance 

data dependences). They use a two variable LED and its parametric 

solutions to analyze and mathematically formulate precise 

dependence. 

Rajam et al. (e.g., Rajam et al., 2015; Jimborean et al., 2014; 

Sukunmaran-Rajam et al., 2014) propose a framework called Apollo 

that implements a dynamic and speculative adaptation of the ploy 

tope model. Apollo is able to optimize and parallelize loop nests 

that cannot be handled at compile-time and that exhibit a linear 

behavior at runtime. The next year, they will go further by 

proposing a strategy to extend their framework to loop nests that 

exhibit a non-linear behavior. 

Mazaheri et al. (Mazaheri et al., 2015) extend DiscoPoP profiler 

to create a specialized tool for identifying nested communication 

patterns inside shared-memory applications and propose a static 

analysis approach for annotating loop regions. Mata et al. (Mate et 

al, 2013) achieved the cyclic structure's parallelism by analyzing the 

regular code, separating data, selecting appropriate communication 

strategies and eliminated the data competition. 

Li et al. (Li et al., 2015) used the tree and graph recursive 

algorithm to dealing with the irregular cyclic structure, and 

proposed some different parallelization templates which are relying 

on the dynamic parallel analysis technology. Dutta et al. (Dutta et al., 

2016) proposed a new algorithm for constructing dependency graph 

of the parallel programs, which verifies the correctness of the 

parallel programs by checking the equivalence of the original 

sequence. Klimek et al. (Klimek et al., 2017) proposed a method of 

parallelization of the non-synchronous mechanism in the nested 

loop, which allows extracting any nested loop parallelism. 

The research team led by Hammond and Brown (e.g., Brown et 

al., 2013; Hammond et al., 2012; Danelutto et al., 2014; Loidl et al., 

2011) set up a formal refactoring rule to enhance programmability 

of parallel programming, and implemented a parallel refactoring 

tool ParaPhrase. They also proposed a language-independent 

parallel refactoring framework; the Erlang program has been 

refectory. In addition, they studied how to convert a serial Haskell 

program to a parallel Haskell program. 

Ruixia (Ruixia, 2018) proposed a novel adaptive parameter 

identification method to identify the parameter vectors. Some newly 

multil-ateration systems for monitoring and scene surveillance were 

proposed by Tongjuan (Tongjuan et al., 2018) and Rui (Rui et al. 

2018). 

5. Conclusions 

In this paper, we proposed an automatic software refactoring 

approach for parallelization of loops. Our approach presented some 

specific details of its implementation, such as safety analysis, loop 

parallelization and transformation of parallel. We also developed an 

automatic refactoring tool named R-loop, and evaluated it by 

several benchmarks in JGF Benchmark Suite, such as Crypt, LUfact, 

and Series. Experimental results had shown that R-loop can 

complete the parallelization in a short time, and the efficiency of 

programs execution has been improved. 
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