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 This paper designed the driving control circuit of flow injection module based on single chip microcomputer 

technology, for agricultural irrigation water quality monitor flow sampling control system with high stability and 

high precision requirements, introduced the driving circuit of peristaltic pump and a number of valve control 

circuit, and performed a test for the circuit control accuracy. The experimental results showed that the design 

based on single chip microcomputer control circuit could improve the water quality monitor flow sampling circuit 

stability and the accuracy of the flow injection, laid the key technical basis for irrigation water quality moni tor to 

improve the reliability. 
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1. Introduction 

Water pollution has become one of the important factors that 

affect agricultural production. If water quality can be monitored in 

real time, and water pollution can be found and treated, this is for 

agricultural production. The development of an advanced online 

water quality monitoring system has important practical 

significance and huge market demand[1]. Most of the irrigation 

water quality monitoring instruments get the test results by 

comparing the standard curve between the target liquid and the 

standard liquid, so the precision of the instrument flow sampling 

module directly affects the accuracy of the water quality test results, 

accurate and stable sampling is very important. In order to improve 

the stability of the instrument and the accuracy of water quality 

detection, this paper studies the control circuit of the sampling 

module of the irrigation water quality monitor[2]. 

2. Flow system design of irrigation water quality monitor 

The overall structure of the irrigation water quality monitor 

system designed in this paper is shown in figure 1. The embedded 

control system adopts Linux operating system and the processor 

adopts ARM microprocessor. The embedded control system selects 

different reagent paths by controlling multiple valves, and then 

controls the peristaltic pump to pump a certain amount of reagent 

into the test chamber to accelerate the reagent reaction by stirring[3]. 

The light emitted by the light source is absorbed by the liquid in the 

detection chamber and received by the micro spectrometer through 

the light path. Then the micro-spectrometer transmits the 

absorbance data to the embedded control system through the serial 

port.  

 

Fig. 1. General structure of irrigation agriculture water quality monitor system 

 

Fig.2. Circuit diagram of the system design for water quality monitor 

The embedded control system determines the concentration of a 

component of the solution to be measured by comparing the 

absorbance of the solution to the standard solution absorbance and 
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concentration standard curve, so as to realize the rapid real-time 

monitoring of water quality parameters[4]. 

2.1 Overall circuit design block diagram 

The overall circuit system design diagram of the water quality 

monitor is shown in figure 2. This circuit takes the ARM 

microprocessor as the control core, and the peripheral circuit 

includes rich interfaces, which theoretically can well coordinate and 

stabilize the control system. ARM microprocessor peripheral circuit 

includes complex[5]. Bit circuit, LCD display circuit, touch screen 

circuit, serial port circuit used for communication with upper 

computer and some other debugging interfaces. The drive and 

control circuit of flow device mainly includes the serial control 

circuit of multi-valve and the drive and control circuit of peristaltic 

pump. The driving control circuit of several valves and peristaltic 

pump is the key content of this design and is also the important 

content directly related to the work effect of the sample injection 

module[6]. 

2.2 Power supply circuit 

In this paper, 24V dc power supply is adopted as the power 

supply of the system[7]. The 24V dc power supply can directly offer 

power to multiple valves, which is also the highest voltage required 

in the flow system. The drive circuit of peristaltic pump needs 12V 

and 5V as power supply, while the USB interface circuit and LCD 

display circuit need 5V as power supply. Figure 3 shows the power 

supply circuit designed according to the typical application circuit 

of the LM2596 switch voltage regulator with a fixed output of 12V. 

Capacitance C33 is an aluminum electrolytic capacitor of 220 F. As 

a by-pass capacitor, it is used to prevent large transient voltage at 

the input end and maintain the stability of dc input voltage[8]. The 

Schottky diode 1N5824 and inductance L1 are combined as the 

circuit's continuative diode to ensure the voltage stability and 

prevent the device from burning. Capacitor C34 adopts tantalum 

capacitance of 220 F as the compensation capacitance of output end 

to guarantee the stability of output voltage[9]. 

 

Fig.3. Principle diagram of 12V power supply circuit 

3. ARM microprocessor peripheral circuit 

The ARM microprocessor used in this paper is Samsung's 

S3C2410 chip. For this design, S3C2410 has an LCD controller, 

which provides 1 channel LCD dedicated DMA, 3 channel UART 

(Universal asynchronous transceiver), 8 channel 10-bit ADC and 

touch screen interface, and 2 port USB (universal serial bus) host /1 

port USB devices[10]. 

3.1 Numerical parameters 

The J12 pin of ARM microprocessor is the n RESET pin. To reset 

the microprocessor, a low level of at least four clock cycles must be 

added to the n RESET pin. In the circuit, STC811T chip is used as 

the generation chip of RESET signal. When there is a jump from 

low to high level on the chip's MR pin, the RESET pin will produce 

a low level lasting 200 S. As shown in figure 4, when the button 

SW1 is not pressed, the MR pin remains at high level. When the 

button is pressed, the MR pin changes to a low level. When the 

button is released, the level recovers to a high level. At this time, a 

jump from low to high level is completed. The RESET pin is 

connected to the J12 n RESET pin of the microprocessor, and the 

low-level time of 200 S ensures the microprocessor RESET[11]. 

3.1 LCD touch screen circuit 

The circuit design of the touch screen is shown in figure 5. In the 

circuit, two FDC6321 chips, namely four MOS tubes, are used to 

realize the switch control of the pin level of touch screen. The 

resistance R16 and capacitance C24, R17 and C25 in the circuit 

diagram constitute two low-pass filters, which are used to filter out 

high frequency noise of Y coordinate signal and X coordinate signal 

respectively[12]. 

 

Fig.4. Reset circuit 

 

Fig.5. Control circuit of the touch screen 

DNS have been performed for Re=180 and 400 (Reynolds 

number based on wall-shear velocity u  and channel half-height 

H ) in a periodic channel of streamwise and spanwise size 

0.4/ =HLx  and 0.4/ =HLz , where H2  is the distance 

between the plane walls. Two-dimensional and three dimensional 

ripples have been placed on virtual surface near the lower wall, 

which is shown in Fig. 1. 

4. Flow injection control circuit 

4.1 Micro step motor peristaltic pump driving circuit 

The micro-stepping motor peristaltic pump is driven by the 

two-phase micro-stepping motor drive circuit. The circuit diagram 

of the creep pump driving circuit is shown in figure 6. The upper 

part of the circuit is the control signal processing circuit, and the 

lower half is the stepper motor drive circuit. In order to enable the 

signal, EN controls whether the drive circuit works or not[13]. The 

step signal is the pulse signal required for the step motor. Because 

the output voltage of the ARM chip pin is 3.3 V and the driving 
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capacity is limited, the 3.3V power supply is connected in the 

circuit, and the transistor 9013 is used as the switch. The control 

signal controls the conduction of the subsequent circuit by 

controlling the base voltage of the transistor[14]. 

In order to reduce the mutual interference between the control 

circuit and the drive circuit, the front and rear end of the circuit is 

isolated by using the controllable photocoupler TLP521. In order to 

ensure the signal quality, the optocoupler output is connected to the 

4HC14D six-bit reverse Schmitt flip-flop. After 74HC14D shaping, 

the simulation results of the circuit are shown in figure 7. The real 

line in the diagram is the signal waveform after the inverse Schmitt 

flip-flop. The dashed line is the output signal after the light coupling. 

From the diagram, we can see that the waveform of the signal will 

be greatly improved[15]. 

 

 

Fig.6. Drive circuit of the peristaltic pump 

 

Fig.7. Simulation results of control signal processing circuit 

 

 

 

 

 

 

 

 

Fig.8. Communication circuit of multiposition valve ports 

4.2 Multi-valve control circuit 

The multi-position valve self-contained control module used in 

the flow path sampling module can communicate with the upper 

computer through the serial port. The level of serial port 

communication is 5V, and that of ARM microprocessor is 3.3V. so it 

is necessary to match the serial port of micro-processing S3C2410 

with the serial port of multi-bit valve module by means of serial 

port conversion chip MAX3232. The ARM chip can complete the 

control of the multi-bit valve by sending the corresponding 

instruction to the control module of the multi-bit valve through the 

serial port. The multi-bit valve serial communication circuit is 

shown in figure 8. 

5. Materials and methods 

4.1 Defining the problem 

We tried to use the Extreme Learning Machine algorithm to solve 

the  analysis problem of design of control system that are not easy 

to judge reliability. 

The machine-learning based single-frame SR is developed for the 

proposed contact-imaging. 

4.2 Establish a database 

The database used in this study was derived from a database of 

20 years of operation of a factory in a variety of industries using 

SCM as the main control software. 

4.3 Modeling 

According to the data we need, we can build a reliability analysis 

model based on deep learning algorithm. The output of this model 

should be consistent with our task objectives. By analyzing the data 

in the database and its weight, we define the following functions: 

( )
1

on obj B

obj

A
C f D

D

D

= =
 

+  
 

         (1) 

where A is the contrast amplitude, D is the characteristic distance, 

and B is the shape parameter. Guided by (1), we first discuss the 

design of microfluidic channel and then CMOS image sensor. 

 

Fig.9. Forming drawing of pcb 

Next, the CMOS image sensor chip was soldered on one lowcost 

5.6 cm ×65.6 cm printed circuit board (PCB) that provides the 

sensor with power supplies and digital control signals as shown in 

Fig.9. The data transferred from the CMOS image sensor to PC was 

through a USB interface (CY7C68013-56 EZ-USB FX2, San Jose, 

CA), which ensures high-speed imaging with maximum data 

transfer rates of 56 Mbytes per second. The sensor working status 

such as exposure time, ROI and number of frames to capture was 

controlled by the status registers that can be accessed through a 

two-wire serial interface, i.e., SCLK and SDATA. They are set 

through the custom designed GUI. We set 6406480 image ROI of 

the sensor to capture the flowing specimens at a sensor frame rate 

of ,200 frames/s (fps)[16]. 

In the experiments, the microfluidic chip was connected to a 

syringe pump (KDS Legato180, Holliston, MA) through silastic 

laboratory tubing and samples were pumped into the microfluidic 



Y. Wang et al. / IJAMCE 2 (2018) 136-142 

 

chamber continuously at a typical flow rate of ,5 mL/min under the 

illumination from a white light source (Olympus LG-PS2, Tokyo, 

Japan). The light source was placed 12 cm above the sensor and the 

light intensity at the sensor surface was 1.5 k Lux. The exposure 

time of the sensor was set 75 μs, corresponding to 3 rows of sensor 

readout time. The readout LR frames were buffered with digital 

image processing conducted to improve the resolution by 

single-frame ELM-SR processing. As such, the developed system 

can automatically recognize and count[17]. 

The ELM-SR includes off-line training and on-line testing. In the 

training step, a reference model is trained that can map the 

interpolated LR images with the HF components extracted from the 

HR images from the training library.  

In the off-line training step, given the input of HR image 

M NHR 
, where M is the row pixel number and N is the column 

pixel number, a corresponding LR image 𝐿𝑅𝑀×𝑁 is first generated 

through bicubic down sampling. Note that the down sampling factor 

is the same as the SR enhancement factor t, i.e., M=m × t, N=n × t. 

Next, the generated LR image 𝐿𝑅𝑀×𝑁 is interpolated back 

to 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′ , which has the same size of 𝐻𝑅𝑀×𝑁  but blurred and 

lack of HF component details. As such, by subtracting the HR 

image 𝐻𝑅𝑀×𝑁  with the interpolated LR image 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′ , the HF 

component 𝐻𝐹𝑀×𝑁  is obtained, i.e., 

M N M N M NHF HR LR  = −             (2) 

 

Fig.10. ELMSR Training A 

 

Fig.10. ELMSR Training B 

Based on p HF images 𝐻𝐹𝑀×𝑁 from the training library, the 

training targeting value T is obtained which is a p ∙ MN × 1 row 

vector of all the pixels intensity values in HF images. Meanwhile, 

the pixel intensity pattern existed in 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′  is extracted by a 

363 pixel patch P(i, j) centered at pixel (i, j) of 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′  to 

search through the whole image, where 1 1j M −  and

1 1j N − . As such, the column vectors extracted from all 

patches in p interpolated images 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′  compose the feature 

matrix X. Thus, the ELM training dataset (X, T) is generated. 

As such, ELM can take the input (X, T) to ELM to calculate a 

row vector β containing the weights by 

( )T G AX B= +                 (3) 

where G is a sigmoid function, and A and B are randomly generated 

matrix. The training data with A, B and β can be used for the 

ELM-SR reference model in figure 10 and in figure 11. 

In the on-line testing step, when a detected LR cell image 

𝐿𝑅𝑀×𝑁 is inputted, the corresponding SR image can be recovered 

using the same A, B and the trained b as follows. The resolution of 

L𝑅𝑀×𝑁
′  is first enhanced by t times through bicubic interpolation to 

𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′ . The same patch searching method used in the ELM-SR 

training is applied to extract the feature matrix X’ from 𝐿𝑅_𝐼𝑛𝑡𝑀×𝑁
′ . 

Thus, one can calculate the row vector T’ that includes the 

recovered HF components H𝐹𝑀×𝑁
′ for the input LR image L𝑅𝑀×𝑁

′ . 

As such, the final SR image S𝑅𝑀×𝑁
′  is recovered with the sufficient 

HF details for cell type recognition by 

' ' '_M N M N M NSR HF LR Int  = +       (4) 

when a detected LR cell L𝑅𝑀×𝑁
′  is inputted, two SR images, 

SR1𝑀×𝑁
′  and SR2𝑀×𝑁

′  can be recovered, each corresponding to 

one reference model. Afterwards, SR1𝑀×𝑁
′  and SR2𝑀×𝑁

′ are 

compared with the typical HR images HR1𝑀×𝑁 and HR2𝑀×𝑁   in 

the training libraries, where the mean structural similarity 

(MSSIM/SSIM) index is employed to characterize the similarity[18]. 

The SSIM is a full reference metric between 0 and 1 to indicate the 

similarity between one SR image with one distortion free reference 

HR image by 

( ) ,

2 2 2 2

(2 )(2 )
,

( )( )

SR HR SR HR

SR HR SR HR

SSIM SR HR
  

   
=

+ +
     (5) 

where μ𝑆𝑅  and μ𝐻𝑅  are the means of the SR and HR images, 

σ𝑆𝑅
2  and σ𝐻𝑅

2  are the variances of the SR and HR images, and 

σ𝑆𝑅,𝐻𝑅 is the covariance of the SR and HR images. It is proven to 

be consistent with human eye perception compared with traditional 

metric such as peak signal-to-noise ratio (PSNR) and mean squared 

error (MSE) . The MSSIM is the average of the SSIMs for one SR 

image with all the typical HR images 

( ) ( )
1

1
, ,

K

k

k

MSSIM SR HRlib SSIM SR HR
K =

=    (6) 

where K is the number of typical HR images in the HR training 

library. For SR1𝑀×𝑁
′  and SR2𝑀×𝑁

′ , MSSIM1 and MSSIM2 can be 

calculated. Then we categorize the cell to the type that has the 

stronger MSSIM.  

As such, with the ELM-based single-frame SR processing, the 

developed microfluidic machine can have much better imaging 

capability to distinguish in the continuously flowing 

microfluidic[19]. 

4.4Model performance evaluation 

With the use of extreme learning machine for single-frame 

super-resolution processing, one prototype of contact-imaging based 

microfluidic monitor is demonstrated for recognition and counting. 

The developed system resolves the resolution limitation of contact 

imaging by on-line image recognition based super-resolution 

processing, which enables continuous high throughput flowing cell 

recognition and counting. The developed system is validated with 

comparison to the commercial flow monitor[20]. 



Y. Wang et al. / IJAMCE 2 (2018) 136-142 

 

Mobile robot technology involves many research fields and has 

been widely used in all walks of life, representing the frontier of 

high technology. Mobile robots can obtain environmental 

information and their own state, in the presence of obstacles in the 

environment to complete specific tasks. At present, when solving 

path planning problems in complex environments, conventional 

algorithms have many defects, such as poor robustness and low 

efficiency, but rough set theory and genetic algorithm (GA) are a 

new type of intelligent optimization algorithm, with strong 

robustness, implicit parallelism, global optimization performance, 

and easy to sum up with other algorithms. The algorithm based on 

rough set theory and genetic algorithm provides a reasonable basis 

for the research of path planning of mobile robot[21]. 

Search space: mainly refers to the possible state, position and 

direction of the robot. 

Initial state and target state: this is how the robot moves from the 

initial state to the target state. 

Constraints: the "optimal" plan is primarily concerned with time, 

distance, safety, invisibility, and energy consumption constraints for 

the robot. 

Algorithm: analyze the relevant conditions of path planning, and 

apply the relevant algorithm to the path planning. 

Action: a path plan refers to the method from the starting point to 

the target point. 

Time: "at time t the robot will move to the point (x, y) or" 

consume the shortest time. "Time is simply expressed as A series of 

actions:" after action A is completed, the robot starts action B ". 

Planning: the sequence of actions from the start point to the target 

point[22]. 

There are many considerations in path planning that will affect 

the design and judgment criteria of the system: 

Environment: what does path planning adequately represent in 

the environment? Is the application space indoor or outdoor? Is it 

messy or relatively open? 

Space and time complexity: is it fast enough that the robot doesn't 

have to stop and think? 

Dynamic or unknown: path planning can process information or 

change targets. 

Optimization: requirements are based on the shortest distance, 

time, media security, etc. 

Integrity: does it find an optimal path to exist? 

The work plan or path planning algorithm in motion can be 

divided into three general decomposition methods: 

Cytolysis: the distinction between free and restrained cells. 

Roadmap: determine a group of routes in free space. 

Potential field: the space in which a mathematical function is 

implemented[23]. 

The potential field has the limitation that the target robot is stuck 

outside the local minimum. This defect has been overcome in 

potential field research. 

The potential field is often referred to as a local method rather 

than a global method, because the impact in the robot field is almost 

entirely based on nearby obstacles. Obstacles do not affect the 

movement of the robot, so it cannot be a useful planning method. 

There is a simpler and more efficient way to use potential field 

method for path planning. 

PRM usually USES secondary barriers based on other roadmap 

plans rather than gradual consumption. This means that obstacles 

require a well-defined outline and generate variable path costs that 

are more difficult than other approaches. When obstacles are added 

or removed from the map, the entire roadmap must be regenerated. 

Because first-generation roadmaps are slow to complete in time, 

planning functions are poor when information changes frequently or 

the original information is incorrect. Figure 3 shows the "sparse 

area" and "dense area" coverage of PRM. 

Assuming that A is an m×n order matrix, where all the elements 

belong to the real number domain or the complex number domain K, 

singular value decomposition of matrix A is carried out: where U is 

an m×m order unitary matrix; D is a semi-positive definitem ×

ndiagonal matrix; and V conjugate transpose 𝑉𝑇 is an n×n unitary 

matrix. That's the singular value decomposition of A. D diagonal 

element 
iD , where i is the singular value of A 

A UDVT=  

In the above expression, ( )1 2, , , ,qD diag   = and

1 2 , 0q q      . 

Define singular value： 

2

1

q

i

i

E 
=

=                    (7) 

Then, define the range difference and normality of singular 

values as shown below: 

( )
2 2

1i iP i
E

  +−
=                 (8) 

( ) ( )1 22 2
 i

s s

xf xf
f x sin u x

f f

 
= + + 

 
      (9) 

U is a constant, and the formula is expressed as follows: 

2

2L

C C C
D u

t xx

  
= −

 
             (9) 

( )

( )

( )

0

0 0 ,

, | 0,0

, | 0

, | 0, 0

t

x

x

C x t x

C x t C t

C x t t

=

=

→+

=   +

= 

= 

         (10) 

After Laplace changes, the formula of standard normal 

distribution function is as follows: 

0.11
2 L

x ut
C

D t

 −
= −  

  

                  (11) 

2 2 2 4
/T T

KT f
I U R

R


= =                (12) 

14T eU KTR f=                    (13) 

To solve the problem of path optimization, the model predictive 

control is called 
tX , which can be expressed by K  gaussian 

equation such as equation (14) and (15): 

( ) ( ), , , , ,P Xt wi t Xt i t i t =         (14) 
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( )

1

,

1
( , ) ( , )

2

1

2 2

, , , ,

2 ,

T

i t

Xt i t Xt i t

n

e
Xt i t i t

i t

 
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

−

− − −

=
（ ）

     (15)  

Through the combination of robust speed control and disturbance 

model, under the condition of constant output disturbance, is 

defined as: 

1 1( ) ( ) ( )T

ty t y t t = −           (16) 

A feasible solution can be obtained to predict the steady-state 

optimization problem. The equation is shown in (17)-(19) : 

, (1 ) , 1wi t wi t = −  − +           (17) 

, (1 ) , 1i t i t Xt   = −  − +            (18) 

2 2

, , 1(1 ) ( , , 1) ( , 1)T

i t i t Xt i t Xt i t     −= −  + −  − −   (19) 

Considering the delay, L  can be expressed as: 

0 0

0

0 0

ijkl kij

T

ikl ik

C e
L

e 
=

−
             (20) 

These functions can be expressed as follows: 

0 1

0 1

( ) ( )

( ) ( )

C x C C x

e x e e x

= +

= +
              (21) 

( ) ( )0 1

0 1( ) ( )

x x

x x

  

  

= +

= +
               (22) 

The difference between superscript 1 and superscript 1 is as 

follows: 

1 0 1 0

1 10 0

,

,

C C C e e e

p p p   =

= −

= − −

= −
            (23) 

The integral equation of the whole function can be simplified into 

the following form: 

0 ' 1 '

2 ' ' '

1 1

( , ) ( , ) ( )( ( )

( ) ( )] ( )

V

f x f x S x x L F y

g R T f y S y dy

 

 

= + −

+


     (24) 

( )F t  is defined as: 

2

( ) ( )f t t
t

 
 
+ =  

           (25) 

2

2

2

1
( , )

2

sin( )
( )

i t

t

e
g k t d

k i
c

ckt
c t e

ck






 



+ −

−

−

=
 

+ − 
 

= 



     (26) 

Based on the research of path planning of mobile robot, an 

optimization algorithm combining rough set theory and genetic 

algorithm is proposed. The second step is to find the global optimal 

path by combining rough set theory and genetic algorithm. The 

simulation results show that the proposed method has strong 

dynamic convergence and is optimized compared with other mobile 

robot global path planning algorithms[24]. 

In this paper, the viewable method is mainly used for 

environmental modeling to show the influence of ground 

environment modeling on braking distance path extension[25]. 

Combined with the method of combining rough set theory and 

genetic algorithm, an intelligent optimization method is used for the 

path planning and development of mobile robots. The simulation 

results show that the proposed method has strong dynamic 

convergence and is optimized compared with other mobile robot 

global path planning algorithms. 

6. Analysis of experimental results 

The hardware circuit is debugged by modules. After the 

debugging is correct, the flow sampling precision test platform is set 

up and the precision test is carried out to verify the stability and 

accuracy of the circuit. According to the target monitored by the 

irrigation water quality monitor and the requirements of the test 

project, the sample volume required to be determined in the 

experiment includes 0.2ml, 0.8ml, 1.0ml, 1.2ml, 2.0ml and 2.5ml. 

In order to ensure the precision of sample injection and facilitate the 

experiment, distilled water with a density of 0.9999 g/mL was used 

as the target reagent. The mass of reagent extracted from peristaltic 

pump is weighed by high precision electronic balance and its 

volume is obtained.  

 

Fig.10. Test data of sampling precision 

All the results recorded in the test are the best sampling results 

after the step adjustment of stepping motor. The experimental data 

of injection accuracy test is shown in figure 10. From the test data 

in figure 9, it can be calculated that the absolute value of the relative 

error between the measured value and the theoretical value is less 

than 2%. The flow-way injection precision is very high, which 

meets the design requirements[26]. The error relative to the mean 

value presents standard randomness, the variance is less than 0.0001, 

and the measurement precision is very high. Relative standard 

deviation is about 1%, and the flow control system has good 

reproducibility. 

7. Conclusion 

The development of advanced irrigation water quality monitoring 

system has important practical significance for the development of 

modern agriculture. In order to improve the stability and accuracy 

of the sampling module, the flow path sampling control circuit of 

the irrigation water quality monitor is designed by using the 

single-chip microcomputer control system. The experimental results 

show that the absolute value of the relative error between the 

measured value and the theoretical value is less than 2%, the 

variance is less than 0.0001, the sampling precision and the 

measuring precision of the flow path are very high, and the flow 
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path control system has good reproducibility. 
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