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 A robust H
.control for linear parameter varying uncertain system with actuator saturation and state delay is 

described, in which norm-bonded parameter uncertainties are considered in this paper. An appropriate type 

Lyapunov functionals is used to investigate the delay-range-dependent stability problem of uncertain actuator 

saturation system, the conclusions of which is extended to the linear parameter varying (LPV) uncertain systems 

with actuator saturation. An robust H
.controller can be achieved by solving the corresponding linear matrix 

inequalities(LMIs), which provides a reference method for control design of time-delay systems with actuator 

saturation.  
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1. Introduction 

 There have been considerable research efforts on robust H
 

control problem for uncertain parameter varying systems (Moon 

and Park et al., 2001; Lee and Moon et al., 2004) and time-delay 

systems (Wu and He et al., 2004; Luo and Ge et al., 2018; Wu, 2018; 

Meng, 2018). The existing results method for time-delay system 

deal with stabilization either of delay-independence stabilization or 

delay-dependence stabilization, which can be can translated into 

problems of solve LMIs (He and Wu et al., 2004; He and Wang et 

al., 2007). In recent years, actuator saturation and disturbance 

problem was analyzed also, simple condition is derived in terms of 

an auxiliary feedback matrix for determining if given ellipsoid is 

contractively, and the condition can be expressed as LMIs (e.g., Hu 

and Lin et al., 2002). Based on Hu’s research on saturation and the 

robust H
control results of time-delay systems and uncertain 

system, the robust control problem of linear systems with actuator 

saturation and state delay was studied (Hu and Lin et al., 2002; Cao 

and Lin et al., 2002) and applied (Zhao and Sun et al., 2009; Fu and 

Ma et al., 2018). 

In this paper, we extend the research results for linear system 

with actuator saturation state delay of existing literature to the LPV 

system which considered the uncertainties also. A Lyapunov 

functional is established and used to investigate the 

delay-range-dependent stability problem. A robust H
 feedback 

controller can be achieved by solving the corresponding LMIs. This 

paper is organized as follow. Section 2 is the Problem formulation 

of uncertain system with actuator saturation and state delay. Section 

3 are the proof of robust H
 control theory, in which we introduce 

the robust H
 control theory for uncertain linear systems with 

actuator saturation and state delay firstly and then extend the result 

to the LPV system. Section 4 gives a concrete example according to 

the dynamic models of supercavitating vehicles. A brief concluding 

remark is given in Section 5. 

2. Problem formulation of uncertain system with actuator 

saturation and state delay 

Let us consider the following linear parameter varying uncertain 

system saturation delayed system (1) as follow: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

a

d d

b

x t A F t E x t

A F t E x t d t

B F t E u t B t





  

= +   

+ +  −  

+ +  +  

      (1) 

where ( ) ( )x t f t= ,  2 ,0t d − , and the time-varying 

continuous function satisfies: 

( )1 2d d t d                 (2) 
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( )d t                    (3) 

The uncertain matrices F , aE , bE , dE  are constant matrices,

( ) ( ) ( ) 1   ,... vt diag t v =   , with ( ) ( ) Δ ΔT

i it t I ,   1,...I v= . And 

the ( )A  , ( )dA  , ( )B   have affine dependence on a 

time-varying scheduling parameter vector  ,which are described 

by a polytope of vertices 
iu ,   1,2 ... i r=  as follow: 

( )

( )

( )

( )

( )

( )
1 1

: 10,

ir r

d i d i i i

i i

i

A A u

A A u

B B u 



   


= =

  
  

= =  
  

  





       (4) 

The saturation nonlinearity function is described by (5). where 

for every 1,2i q=  ， 

( )( )
( )

( ) ( )

( )
i

                    

             

    

          

imax i imax

i imax i imax

imax i imax

u u t u

u u t u u t u

u u t u

t




= −  
− 

    (5) 

Our goal is to design a state-feedback control law as (6), which is 

asymptotically stable and satisfies H
 performance requirements. 

( ) ( )u t tKx=                    (6) 

3.Robust H
 controller design 

3.1 Robust H
 design for a linear system with actuator saturation 

and state delay 

In this section, we consider the general saturation system with 

time-varying delay firstly, which does not contain parameter 

uncertain. And we will extend the conclusions to the systems with 

uncertainties in the next section. 

Consider system with time-varying delay and actuator saturation 

as follow 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ( )) ( )

T

dx t A t x t A t x t d t

B t u t B t

= + −

+ +
      (7) 

where the time-varying continuous function satisfies (2), (3), and 

the saturation nonlinearity function is described by (5). Lemma 1 

utilize the technique of auxiliary feed-back matrices referring to the 

Hu’s idea in [1], which is introduced in this in order to deal with the 

problem of actuator saturation. 

Lemma 1. Consider system (7) with time-varying delay and 

actuator saturation, existing a auxiliary matrix m nH R  , and 

feedback control K  in (6), for every (8) and (9), so that the 

following equations (10) and (11) hold. 

( ) ( )  ,1 : 1n T px P H x R p x   =          (8) 

( ) ( )   ,1 : 1, 1,n

iH hP x R x i m  =        (9) 

( ) ( )( ) ( ) ( ) ( )2 2 , ,T Tx TB Kx x t BW v K H x tt t    (10) 

( ) ( )( ) ( ) ( ) ( )2 2 , ,T Tx TB Kx x t BW v K H x tt t    (11) 

where matrix set as follow: 

( ) ( ), , { : [ 1 }q n

i i i iBW v K H W R W v k h=  = + −  

( )v v , ( )  : 0    1q

i iv R v or vv =  = =  

( )  ,1 : 1n TP X R x Px =    

and 
ik , 

ih  is the thi  row of K , H . 

Proof. Lemma 1 follow Hu’s idea, and the proof similar with Hu’s 

theorem 1 in literature [1]. 

Theorem 1. Consider system with time-varying delay and actuator 

saturation in (7), where the time-varying continuous function 

satisfies (2), (3), and the saturation nonlinearity function is 

described by (5). Given scalars 0  , 0  , 
1 20 d d  ,

0  and let 
12 2 1d d d−= . Then the closed-loop control in (6) is 

asymptotically stable and satisfies Z    for all nonzero 

 )2 0,L   under zero initial condition if there exist matrices 

0P   , 0T   0iQ   , 1,2,3i =  , 
iN , 

iS , 
iM , 

1,2,3,4,5i = , ( ), ,W v K H , satisfying (12). 

( )

2 12 12

2

1 2 1 2

12 2

                                 

*                  0                    0

*           *            0

*           *                 *             

ˆ

H

d N d S d N

d N

d d Z Z

d Z

 
 

− 
=
 − +
 
 −



 

   (12) 

where， 

11 1 1 12 13 14 15 16

22 23 24 25

33 34 35

44 45

55 56

2

* 0

* * 0

* * * 0

* * * *

* * * * *

ˆ

TC C



  +     
 

    
   

 =  
  

  
 

−  

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

, , , , ,0

, , , , ,0

, , , , ,0

T T T T T T

T T T T T T

T T T T T T

N N N N N N

M M M M M M

S S S S S S

 =  

 =  

 =  
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( )
3

11 1 1

1

12 2 1 1 1

13 3 1

14 4 1 

TT

i v v

i

T

d

T

T

Q N N AT TBW AT TBW

N N S M A T

N M

N S

=

 = + + + + + +

 = − + − +

 = +

 = −



 

( )

( )

15 5

16

22 3 2 2 2 2 2 2

23 3 3 2 2

24 4 4 2 4

25 5 5 2 5

33 1 3 3

34 3 4

35 5

44 2 4 4

45 5

55 2 1 12 2

56

 

 

1 2 2

2

TT

v

T T T

T T T

T T T

T T T

d

T

T

T

T

T

P T N AT TBW

TB

Q N N M M S S

N S M M

N S M M

TA N S S M

Q M M

S M

M

Q S S

S

d Z d Z T

TB







 = − + + +

 =

 = − − − − − + +

 = − + + −

 = − + + −

 = − + − −

 = − + +

 = − +

 =

 = − − −

 = −

 = + −

 =

 

Proof. Construct a Lyapunov functional for the system as (13) 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

3

2

1

2

1

2

3

0

1

1

t
T T

t d

t
T

t d

t
T

t d

t
T

d t

d t
T

d t

V t x t Px t x s Q x s ds

x s Q x s ds

x s Q x s ds

x s Z x s dsd

x s Z x s dsd









−

−

−

− +

−

− +

= +

+

+

+

+







 

 

     (13) 

where 0P  , 0iQ  , 1,2,3i = , 0iZ  , 1, 2i =  are 

matrices to be determined. Then we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1

2

1

1 1 1 2

2 2 2 3

3

2 1 1

12 2 2

1

T T T

T T

T T

T

t

T T

t d

t d

T T

t d

V t x t Px t x t Px t x t Q x t

x t d Q x t d x t Q x t

x t d Q x t d x t Q x t

d t x t d t Q x t d t

d x t Z x t x s Z x s ds

d x t Z x t x s Z x s ds

−

−

−

= + +

− − − +

− − − +

− − − −

+ −

+ −





 

Let 

( )

( )

( )( )
( )( )
( )( )

( )

( )

1

2

x t

x t d t

x t d
t

x t d

x t

t





 
 

− 
 −
 =
 −
 
 
 
 

 

Note that the following equations are true for any appropriately 

dimensioned matrices 0T   and N , S , M , 1,...,5i =  

( ) ( ) ( )( ) ( )2 0
t

T

t d
t x t x t d t x s ds

−

 − − − =
    

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( ) ( )( )

( )( ) ( )

2

1

2

1

2 0

2 0

2 0

t d t
T

t d

t d
T

t d t

dT T

t S x t d t x t d x s ds

t M x t d x t d t x s ds

x t Ax t A x t d t
x t T x t T

B Kx t B w t







−

−

−

−

 − − − − =
  

 − − − − =
  

 − + + −
   + = 

 + + 



  

Thanks to (10) and (11) in lemma 1, for every ( ),1x P (10) 

holds, 

( ) ( )
( ) ( ) ( )( )

( )( ) ( )

( )
( ) ( ) ( )( )

( )( ) ( ) ( )

( )
( ) ( ) ( )( )

( )( ) ( ) ( )

2[ ]

BW ,K,H

2
BW ,K,H

dT

dT

d

dT

d

x t T Ax t A x t d t
x t T x t T

B Kx t B w t

x t Ax t A x t d t
x t T

A x t d t v B w t

x t Ax t A x t d t
x t T

A x t d t v B w t









 − + + −
 +
 + + 

 − + + − +
 
 − + + 

 − + + − +
 +
 − + + 

 (14) 

Then using these relations (14) and some algebraic manipulations, 

we can obtain the following inequality. 

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1

2

1 1 1

2 1 12 12 2

1

1 1 1

1

2 2 2

1

3

3 3 3

[ ]

[ ]

[ ]

T T T T

t
T T T

t d t

t d
T T T T T

t d T

t d t
T T T T T

t d

V t t d NZ N d SZ S d MZ M t

t N x s Z Z t N x s Z ds

t M x s Z Z t M x s Z ds

t S x s Z Z t S x s Z ds

 

 

 

 

− − −

−

−

−
−

−

−
−

−

  + + +

 − + + 

 − + + 

 − + + 







where, 13 2=Z Z Z+ . 

Let, 

1 1 1

2 1 12 12 23

T T Td NZ N d SZ S d MZ M− − − =  + + +  (15) 

where, 

11 12 13 14 15 16

22 23 24 25

33 34 35

44 45

55 56

* 0

* * 0

* * * 0

* * * *

* * * * * 0

      
 

   
 
   

 =  
  

  
 
  

 

Because the last three integrals in (15) is all less than 0, we obtain 

(16) 
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( ) ( ) ( )T TV t t t                (16) 

By the Schur complement, (16) is equivalent to (17) 

2 12 12

2 1

12 1 2

12 2

* 0 0
0

* * ( ) 0

* * *

d N d S d M

d Z

d Z Z

d Z

 
 

−
  
 − +
 

− 

     (17) 

Next, we shall establish the H∞ performance of system under 

zero initial condition. Consider the following index: 

( ) ( ) ( ) ( )
0

dT TJ Z t Z t t t t



  = −   

Then, we have (14), for any nonzero  )2 0,L  . 

( ) ( ) ( ) ( ) ( )
0

dT TJ Z t Z t t t V t t



   − +     (18) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

HZ t Z t t t V t t t   − +      (19) 

If 0H   we have   0J  , i.e.
ωZ γ   . Hence H

 is 

guaranteed for all nonzero  )2 0,L  . Under zero initial 

condition, and the performance of system is established. 

3.2 Robust H  design for parameter uncertainties systems with 

actuator saturation and state delay 

In this section, we will extend the conclusions of the previous 

section to the parameter uncertainty system. 

consider parameter uncertainties system with saturation delayed 

as (20), 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( )1

[ ]

a

d d

b

x t A t F t E x t

A t F t E x t d t

B t F t E u t B t

= +   

+ +  −

+ +  +  

    (20) 

where the time-varying continuous function satisfies (2), (3), and 

the saturation nonlinearity function is described by (5). 

( ) ( )x t t= ,  2 ,0t d −  and F , aE , bE , dE  are constant 

matrices, and ( ) ( ) ( ) 1 1   diag ,...t t v =   , with ( ) ( ) Δ ΔT

i it t I ,

  1,...I v= denotes time-varying. Before proceeding further, we 

introduce lemma 2 in this in order to deal with the parameter 

uncertainties, which will be used in proof of Theorem 3. 

lemma 2. Let F , aE , bE , dE , be real matrices of appropriate 

dimensions, then for any real matrix  1   ,..., rdiag I I = , 

inequality (21) holds. 

-1T T T T TF E E F F F E E +   + +       (21) 

Lemma2 holds because of the fact: 

1 1 1 1

2 2 2 2 0

T

T TF E F E
   
         
   

− −     (22) 

Theorem 2. Consider parameter uncertainties system with 

time-varying delay and actuator saturation as (20), Given scalars 

  0  ,   0   1 20 d d  ,    0  , and let 12 2 1d d d−= , the 

time-varying continuous function satisfies (2) and (3), Then the 

closed-loop system (6) is asymptotically stable and satisfies 

Z    for all nonzero  )2 0,L  under zero initial condition 

if there exist matrices 0P  , 0T  , 0iQ  , 1,2,3i =  iN , iS , 

iM , 1,2,3,4,5i = , ( )  , ,W v K H , ( ), ,W v K H  and Diagonal 

matrix   0  satisfying (23). 

11 0
*

f E 
 

− 
              (23) 

where 

 

 

11

1 1

1 2

1

2

1

2

  0 0 0 0

  0 0 0 0

0 0 0 0 0

0 0 

  

  

 

0 0 0

T

H

T T

a b v d

a b s d

T

T

f F F

E E E

F F F

E E T TE W E T

E E T TE W E T

F

F

F

F

=  + 

= +

= +

= +

= +

 =  

 =  

 

Proof. Replaced the parameter of Theorem1as follow: 

( ) ( )

( ) ( )

d d d

b

A A t F t E

B B t F t E

= + 

= + 
 

Then the system (20) is asymptotically stable, only if, 

1 1 1 2 2 2 1 2

T T T T

H F E E F F E E F +  + + +  +     (24) 

1 2 2 2 1 2

T T T T T

H F F E F F E E F +  + + +  +     (25) 

By the Schur complement, (24) and (25) is equivalent to (23), this 

is the complete proof. 

3.3 Robust H  control of linear parameter varying uncertain 

system with actuator saturation and state delay 

In this section, we extend the result of theorem 1 and 2 to the 

systems linear parameter varying uncertain system with actuator 

saturation and state delay. We consider the general linear parameter 

varying saturation system with time-varying delay which does not 

contain parameter uncertain in theorem 3 firstly, and we will extend 

the conclusions to the systems with uncertainties in the theorem 4. 

Consider the time-delay LPV system (26) with affine dependence 

on scheduling variables. 
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( ) ( ) ( )( ) ( )( ) ( ) ( )dx t A A x t d t B u t B t   = + − + +  (26) 

where the time-varying continuous function satisfies (2), (3), and 

the saturation nonlinearity function is described by (5). 

( ) ( )x t f t= ,  2 ,0t d − , And  the ( )A  , ( )dA  , ( )B  , have 

affine dependence on a time-varying scheduling parameter vector 

 ,which are described by a polytope of vertices 
iu ,   1,2 ... i r=  as 

(4). 

Theorem 3. Consider system with time-varying delay and actuator 

saturation in (26), Given scalars 0  , 0  , 1 20 d d  , 

   0µ , and let 12 2 1d d d−= , the time-varying continuous function 

satisfies (2) and (3), Then the closed-loop control (5) is 

asymptotically stable and satisfies  Z   for all nonzero 

 )2 0,L   under zero initial condition if there exist matrices 

0P  , 0T  , 0iQ  , 1,2,3i = . iN , iS , iM , 1,2,3,4,5i = ,

( )  , ,iW v K H , ( ), ,iW v K H . For every i  satisfying (12) with 

( )iA A → , ( )d d iA A → , ( )iB B  →  and 
1

r
i

i

i

K K
=

= , 

where i  were defined in equation (4).  

Proof. Note that the system (26) have affine dependence on 

scheduling parameters ( )A  , ( )dA  , ( )B  , the matrix 

inequalities in (12) have affine dependence on A , dA , B , and 

the Variable relations satisfying (5). Then, replace with 

( ) ( ) ( ), d dA A A A  → → , and ( )iB B  →  , equations (31) 

are convex combinations of the vertex inequalities, which are 

defined vertex values ( ( ) ( ) ( ), ,i d i iA A B   ) of the parameter 

vector ( ( )A  , ( )dA  , ( )B  ). so if (8) hold for every 

( ( ) ( ) ( ), ,i d i iA A B   ) 1,2, ,i r=  ,it will be hold for 

( ( ) ( ) ( ), ,i d i iA A B   ), and then the system (26) is 

asymptotically stable and satisfies Z    for all nonzero 

 )2 0,L   under zero initial condition. 

In next theorem 4, we’ll extend the result of theorem 3 to the 

parameter uncertain LPV system with actuator saturation and state 

delay as (1)  

Theorem 4. Consider system with time-varying delay and actuator 

saturation in (1), Given scalars 0  , 0  , 1 20 d d  ,   0µ , 

and let 12 2 1d d d−= . Then the closed-loop control (6) is 

asymptotically stable and satisfies Z    for all nonzero 

 )2 0,L   under zero initial condition if there exist matrices 

0P  , 0T  ， 0iQ  ， 1,2,3i =  iN , iS , iM , 1,2,3,4,5i = ,

( )  , ,iW v K H , ( ), ,iW v K H ,   1,2, ,i r=  , for every i  satisfying 

(23) with ( )iA A → , ( )d d iA A → , and ( )iB B  → . and 

1

r
i

i

i

K K
=

= , where i  were defined in equation (4).  

The proof is straightforward by applying theorem 2 and theorem 

3. 

4. Example  

This section uses the supercavitation vehicle as an example to 

verify theorem 4. 

4.1. The dynamic model of supercavitation vehicle 

Supercavitation is a higher stage of cavitation, and it is a 

hydrodynamic process by which an underwater body is almost 

entirely enveloped in a layer of gas. Figure 1 shows a 

supercavitating vehicle traveling underwater. It can be seen that the 

whole of the vehicle is surrounded by a cavity. Only small regions 

of the vehicle are in contact with water. The condition is similar to 

traveling in air. Because the density and viscosity of the gas is 

dramatically lower than that of water, a supercavitating vehicle with 

proper design is able to achieve a tremendous reduction in skin 

friction drag and exhibit very high speed under water. 

Fins

Supercavity

Cavitator

V

Fig. 1. Supercavitating Vehicle 

Different from fully-wetted vehicles, a supercavitating vehicle is 

enveloped by gas surface and absence of the buoyant. The pressure 

center of the vehicle is typically located well forward with respect 

to the center of gravity. This requires a particular method to 

effecting hydrodynamic control. Control of the supercavitating 

vehicle presents a number of special challenges. 

In the literature the supercavitating vehicle dynamic models were 

developed in the constant velocity condition based on dynamics of 

supercavity and hydrodynamic force of vehicle (Shao and Mesbahi 

et al., 2003; Vanek and Bokor et al., 2007; Vanek and Bokor et al., 

2006). Despite these success, no model of Delay-range-dependent 

robust H∞ control method for a linear parameter varying uncertain 

system with actuator saturation and state delay problem for 

supercavitating vehicles is available in the open literature. 

The equation of state is  , , ,x z q =  and the equations of 

motion for the pitch-plane dynamics of the supercavitating vehicle 

from Dzielski and Kurdila (2003) are given as follows: 

 Z V = −                  (27) 

q =                     (28) 

1f

I I I grav plane

c

M A B F F
q L





 
    

= + + +    
    

    (29) 

where 

7
       

9

17
    

36

I

n n

mL m C
A CV

n nL
L

m n C

− − 
+ 

=  
− − +
  
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2

1
    

      0

I

n

mL mL
B CV

n

m

− 
 

=  
− 
  

          (30) 

2 2

7 17
                

9 36

17 11 133
    

36 60 405

I

L

M

L R L

 
 

=  
 +
  

 

7
 
9

17

36

gravF

L



 
 

=  
 
  

                 (31) 

and planeF 
 is the normalized value of the planing force planeF

defined as follows: 

2

22 1
1

1 2

plane

plane

plane

F
F

mR L

V h R

mL h h R





 =

  +   
= − −      + +     

    (32) 

( z  - depth；v  - velocity level；  - vertical velocity;   - angle 

of pitch; q  - rate of pitch; c  - angle of cavitator; f  - angle of 

fins.) 

where 

( )

2

2

0

1

2

1
1

2

n

x

n

x

c

R
C C

R

R
C

R

R R
R

R



 
=  

 

 
= +  

 

−
 =

           (33) 

( )
1

2

2

1
0.82c nR R K





+ 
=  

 
         (34) 

1

1

1
40 2
17

2 1

1.92
3 1

1.5
1 1

1

n

L
K

R

K K







−

 
= − − 

 

  
= − −  

+  

           (35) 

Considering the memory effect of cavity–vehicle interaction, the 

immersion depth h  and planing angle plane  are functions of 

both instant- and delayed-state variables, and they are modeled in 

Vanek et al. (2007) as follows: 

( ) ( ) ( )

( ) ( ) ( )

1
 bottom contant

                            0                            inside cavity

1
    top contact    

c

c

z t t L z t R R
R

h

R R z t t L z t
R

 

 


+ − − + −  


 = 


 − − − + −  


(36) 

( ) ( )
( )

( ) ( )
( )

   bottom contant

                  0                                   inside cavity

        top contact

c

plane

c

t R
t t

V

t R
t t

V

 
  



 
  

 − −
− − +


= 


− − − − +


(37) 

with the following planing conditions: 

( ) ( ) ( )

( ) ( ) ( )

bottom contant    +  

inside cavity                          oterwise 

top contact           +

c

c

if R R z t t L z t

if R R z t t L z t

 

 

 −  − −




−  − −

    (38) 

where 
L

V
 = .  

Order ( )
2

1

1
1

1 2

h R
h

h h R


  +   
 = −      + +     

 

We further define 

2

             bottom contact

      0               inside cavity 

                   top contact

c

c

R

V

R

V




−


= 




        (39) 

( ) ( ) ( )3 z t t L z t  = + − −           (40) 

and define variables 

2

1 1

V

mL
 =  and 2

2

3





=             (41) 

 If planing occurs, i.e., there is bottom contact or top contact, by 

the definitions of 
1 , 

2 , 
3 ,

1  and 
2 , we have 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) 

22

1

1 2

1

2

1
1

1 2

           

plane plane

plane

V h R
F

mL h h R

t
t t

V

t
t t

V

z t t L z t



 

 
    

 
   

  


  +   

= − −      + +     

= −

− 
= − − − + + 

 

−
= − − − + +



− − −  

    (42) 

( )

( )

( )

( )

( )

( )

( )

( )

3
3

1
1 3

1

 
   

 

      0

      0
 0

plane

z t z t

t tL
F

t t
V

q t q t

 


   


  





  −   −          −− −     = +       − −          −       

   (43) 

The LPV model with time-delay is obtained. The ( )c  and 

( )f  should not be too large, let's say 25°. And the 

supercavitating vehicle model can be expressed as 

( ) ( ) ( ) ( )dx t Ax t A x t B u = + − +         (44) 
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with        
T

x z q =  and   
T

c fu   =     

1
3 1

1

1
3 1

0 0 0 0
                                            

0 0 0 0

                 
0 0

         
0 0

        

I

A
V

M
L

L L
V


 


 

−

 
 
 
 − =   
  
 − −    

 

-1

0 1 0
            

0 0 0 1

0 0
            

0 0
I I

V

M A

− 
 
 +
 
 
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     (45) 

1

3 1
1

1

3 1

0 0 0 0
                                

0 0 0 0

                 
0

   
0

        

d

I

A
V

M
L

L L
V


 


 

−

 
 
 
 − =   
  
 − 

−    

      (46) 

-1

  0        0

=   0        0

     I I

B

M B

 
 
 
 
 

                (47) 

The parameters are shown in table 1 

Tab 1. System parameters for simulations 

Parameter  Value and units 

g  9.81 m s-2 

m 

n 

Rn 

R 

Rc 

�̇�𝐶  

L 

V 

σ 

𝐶𝑥𝑂 

 

 

 

 

 

 

 

 

 

 

2 

0.5 

0.0191 m 

0.0508 m 

0.0902 m 

-3.2965 

1.8 m 

75 m s-1 

0.03 

0.82 

4.2. Control design 

According to section 4.1, a time-delay saturated system is 

obtained. Among them, the supercavitation vehicle is disturbed by 

uncertain factors such as ocean current, such as formula (23) in 

theorem 2. 

According to theorem 4, using LMI toolbox in matlab to calculate 

the k  value. 

1

2

3

4

0.0197 0.0292 0.8953 0.9856

0.0064 0.0075 0.2899 0.2153

18.8030 5.2158 9.7020 5.6036

3.8567 1.3030 14.4852 1.4916

0.4280 3.6069 308.7058 5.6036

0.1451 1.2668 104.7102 0.4667

34.2192 1.46

K

K

K

K

− − 
=  

− − 

 
=  
 

− − 
=  

− − 

−
=

84 651.5831 6.7270

15.5092 0.2262 226.5051 1.7827

 
 
− − 

 (48) 

and the parameters 
i  can be calculated as 

( )( )

( )

1 1 2

2 1 2

1 1

1

  

  

= − −

= −
            (49) 

( )3 1 2

4 1 2

1  

  

= −

=
              (50) 

with 1  and 2  defined as 

1
1

865.625


 =  , 3

2
966.73


 =         (51) 

 

Fig. 2. System control input curve 
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Fig. 3. System state response curve 

The simulink simulation is shown below under the control rate of 

(48). In the initial value state, the control input signals are shown in 

Figure 2. And the input signals approach stability within 1 second 

above. The system response curve is shown in figure 3. We draw a 

conclusion from it that the system can operate stably at 25° 

saturation. 

5.Summary 

The control synthesis problem for a linear parameter varying 

uncertain system with actuator saturation and state delay is 

investigated in this paper. A delay-range-dependent Lyapunov 

function and auxiliary feedback have be considered to guaranteed a 

closed-loop performance, and the H  performance has been 

established via a Lyapunov approach. The robust H  controller 

can be achieved by solving the corresponding LMIs, which provides 

a reference method for control design of time-delay systems with 

actuator saturation. 
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