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 Although the research of quadruped robot’s stability has made great progress, most of the results are just local 

discriminant. However, there is no uniform standard for evaluating the stability of quadruped robots. In order to 

further study the static stability of quadruped robot and find a general method to describe the static stability of 

quadruped robots, a novel tetrahedron method is proposed to define the stability of quadruped robots. Firstly, this 

article describes the gait of the robot and obtains different duty cycle, which determines the form of the robot gait. 

Secondly, the tetrahedron method is briefly described, and the contact stability angle and diagonal stability angle 

are given. According to the relationship between the contact stability angle and diagonal stability angle that can 

obtain the minimum stable angle, which can be used to determine whether the quadruped robot is in a stable state. 

Thirdly, we analyzed the minimum tipping energy of the robot, and concluded that the centroid height and the 

minimum stable angle are the main factors that decide the minimum tipping energy of the robot. Finally, the 

influence of inclination angle, external force and external torque on the rollover performance coefficient is 

discussed, which provides a theoretical basis for robot design and control. 
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1. Introduction 

Mobile robots are widely used in dangerous and unstructured 

environment, the moving ability and adaptability determine the 

performance of robots [1-2]. The stability analysis of quadruped 

robots is especially important in unstructured environment, so 

building reasonable quadruped robots stability performance 

evaluation index is the basis for robot design and control. 

The judging method of static stability for the robot are the main 

focus of CG Projection Method [3], Static Stability Margin, SSM [4], 

Longitudinal Stability Margin, LSM [5], Crab Longitudinal Stability 

Margin, CLSM [6], Energy Stability Margin,  ESM[7]. The dynamic 

stability criterion are the main focus of Center of Pressure Method, 

COP [8], Effective Mass Center, EMC [9], Zero Moment Point, ZMP 
[10], and Dynamic Stability Margin, DSM [11].However, for different 

backgrounds, we need to use different criteria to analyze the 

stability of robots, and all the criteria are only local discriminant 

methods, which makes the evaluation results unreliable [12]. 

2.  The description of quadruped robot 

2.1 Quadruped robot ontology 

The quadruped robot’s legs are made up of hip and knee joints. 

The hip joint has two degrees of freedom, so the whole mechanism 

has 12 degrees of freedom. 

 

Fig. 1 Quadruped robot 

According to the characteristics of the quadruped robot, its 

structural parameters can be measured. The specific parameters are 

shown in Tab.1. 

Tab.1 Quadruped robot parameters 

Body parameters Unit（mm） 
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Length 300 

Width 300 

Height 150 

L1 60 

            L2 95 

L3 65 

Mass 2kg 

2.2 Duty radio 

The duty ratio refers to the ratio of the robot’s support time to 

the period of motion, which determines the gait of the robot. 

Supposing that the support time of quadruped robot is T4leg, the time 

taken by walking a cycle is Tcycle, and the air running time is Tsw, so 

that we can get the relationship between duty radio and time as 

shown in Fig.2[13]： 

1

sw
cycle

T
T


=

−
                        (1)

4 4leg cycle swT T T= −                   (2) 

Tab.2 The relationship between duty radio and time 

  
swT  

4legT  
cycleT  

0.75 1.00 0.00 4.00 

0.80 1.00 1.00 5.00 

0.85 1.00 2.67 6.67 

0.90 1.00 6.00 10.00 

0.95 1.00 16.00 20.00 

 

 
Fig.2 Cycle time of different duty radio 

Tab.2 and Fig.2 show the relationship between duty radio 

and cycle. When the duty ratio is 0.75 1  , the walking gait 

of the quadruped robot is static gait, which indicates that the 

quadruped robot always has three legs or four legs on the ground. 

3. The direct and inverse solution analysis 

Position analysis is one of the core contents of the kinematics 

analysis, which is the basis of the mechanism velocity analysis, 

acceleration analysis, workspace analysis and mechanics analysis. 

Denavit and Hartenberg proposed the D-H method in 1955 and 

used it to model the robot. Since then, this method has become the 

standard method for robot modeling and kinematics analysis [14-15]. 

 

 Fig.3 A brief description of robot 

3.1 Direct solution analysis 

Because the four legs of the robot are symmetrical, only one 

leg coordinate system needs to be established, as shown in Fig.3. 

According to the structure parameters and coordinate relations of 

the robot, we can get the D-H table, as shown in Tab.3. 

Tab.3 Quadruped robot parameters 

i  
1i −

 
1ia −

 
id  

i  

1 0 0 0 1  

2 900 L1 0 2  

3 0 L2 0 3  

4 0 L3 0 0  

The D-H parameters in Tab.3 can be taken into the general 

formula of the transformation matrix. General formula of 

transformation matrix 
1i

iT −
is given as follows. 

1 1 2 2 1

1 21 1

0 2

2 2

3 3 2 3

3 32 3

3

0 0 0

0 0 0 0 1 0
,

0 0 1 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0

0 0 0 1 0 0
,

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

w

c s c s L

s c
T T

s c

c s L L

s c
T T

− −   
   

−
   = =
   
   
   

−   
   
   = =
   
   
   

, 

Thus, we can have: 

 

0 0 1 2 3

w 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 1

1 2 3 1 2 3 2 1 3 1 2 3 1 2

2 3 2 3 2 3 2 3 31

0 0 0 1

wT T T T T

c c c c s s c c s c s c s p

s c c s s s c s c s s c c p

c c s c c c s s p

=

− − − 
 

− − − −
 =
 + −
 
 

  (3) 
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where: 

1 1 1 3 1 2 3 1 2 3 2 1 2( )p L c L c c c c s s L c c= + − +       (4) 

2 1 1 3 1 2 3 1 2 3 2 1 2( )p L s L c c c c s s L s c= + − +       (5) 

3 3 2 3 2 3 2 2( )p L c s s c L s= − +                  (6) 

3.2 Inverse solution analysis 

According to the geometric relationship of the 
mechanism, the foot position coordinates can be written as 

follows: 

 1 2 2 3 2 3 1cos cos( ) cosxp L L L   = + + +      (7) 

 1 2 2 3 2 3 1cos cos( ) sinyp L L L   = + + +       (8) 

 
2 2 3 2 3sin sin( )zp L L  = + +                     (9) 

Based on the Eq.(8) and Eq.(9), the next result is follows. 

 
1 arctan( )x

y

p

p
 =                   (10) 

Supposing that: 

1cosm =                      (11) 

According to Eq.(8) and Eq.(9), we can get: 
 

3 2 3 2 2sin( ) sinzL p L  + = −            (12) 

3 2 3 1 2 2cos( ) cosxp
L L L

m
  + = − −        (13) 

The following equations can be obtained by resolving 
Eqs.(12-13). 

2 2cos sinA B C + =                (14) 

where: 

2
1 2

2
2 xp L

A L L
m

= −  

22 zB L p=                        

2 2 2 2 2

3 2 1 1

2
( ) ( )x x

z

p p
C L p L l L

m m
= − − − − +  

Solving Eq.(14),we can get the next equation. 

2 2 2

2 2*arctan( )
B A B C

A C


 + −
=

+
            (15) 

Taking 
2 into Eq.(12),we can obtain 

3 . 

2 2
3 2

3

sin
arctan( )zp L

L


 

−
= −                (16) 

 

Fig.4 Direct simulation analysis 

 

 

3.3 Direct and inverse solution verification   

Given a set of parameters as follow: 0

1=-18 , 0

2 =25.2
0

3=-36 , according to Eqs.(4-6), we can obtain the position of the 

end point
1=190.028p ,

2 =-61.744p ,
3=28.269p .The specific 

simulation can be seen in Fig.4. Then, taking
1=190.028p ,

2 =-61.744p ,
3=28.269p  into Eqs.(10,15,16), we can get 0

1=-18 , 

0

2 =25.2
0

3=-36 . 

Thus, the above analysis proves the effectiveness of the direct 
and inverse solutions, which provides necessary preparation for 
future analysis. 

4. Tetrahedral method 

On the basis of the force angular stability metric method [16] and 

the stable cone method [19], the stability of tetrahedron method is 

presented in this paper. This is a general method to judge the 

influence of various factors on the stability of the quadruped robot. 

The following assumptions are made when describing the method. 

1) It is assumed that the mass distribution of the quadruped 
robot is uniform. 

2) The contact of the quadruped robot to the ground is a 
point contact. 

3) The foot and ground friction of the quadruped robot is 

infinite, and there is no skidding phenomenon. 
When a quadruped robot walks steadily, it has three legs or 

four legs to contact with the ground. When the quadruped support, 
the robot’s geometric center is coincided with centroid, so the robot 
is stable. However, when the three legs of the robot are in the 
supporting phase, the stability of the robot needs to be judged.  

 

Fig.5 Tetrahedral stability expression 

Fig.5 is the description of the robot stability by the tetrahedral 
method. ( 1,2,3)iA i =  represent the contact point of the quadruped 

with the ground, the dynamic coordinate system O xyz−  is 

established at the centroid O . At this point, 
1 2 3O A A A−  

constitutes a tetrahedral structure. The vector m  represents the 

direction of the centroid. ( 1,2,3)iL i =  are the vector that 

perpendicular with 
iB . We define the 

i  as the contact stability 

angle, and the 
i  as diagonal stability angle. 

The vector of the centroid O  to the endpoints of each foot can 

be expressed as. 

           ( , , )( 1,2,3)i x y zA A A A i= =             (17) 

According to the geometric relationship, we can get the 
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following. 

1 2 1B A A= −                      (18) 

     
2 3 2B A A= −                      (19) 

 
3 1 3B A A= −                      (20) 

 
1(1 ) ( 1,2,3)T

i Bi Bi iL e e A i+= − =                (21) 

where, 
Bie  represent the normal vector of 

iB . 

( 1,2,3)i
Bi

i

B
e i

B
= =                 (22) 

5. Stability discrimination 

When the robot is tilting along the diagonal line, we use the angle 

i  between diagonal normal vector 
iL  and the vector m of the 

centroid as the criterion of stability. According to the mathematical 

relationship we can get. 

cos( )i i m Liarc e e =                 (23) 

where, 

   
1,( ) 0

1, ( ) 0

i

i

m Li B

i

m Li B

e e e

e e e


+  
= 

−  

             (24) 

When the robot is tilting along the foot end, we use the angle 

i  between the vector of the centroid to the corner point 
iA  and 

the vector m of the centroid as the criterion of stability. According 

to the mathematical relationship we can get. 

cos( )
ii i m Ag arc e e =   

where: 

1, ( ) 0

1, ( ) 0

i

i

m Li B

i

m Li B

e e e
g

e e e

+  
= 

−  

            (25) 

In order to comprehensively evaluate the stability of 

quadruped robot, we will use the minimum value among the 

minimum contact stability angle 
i  and its contiguous two 

diagonal stability angles 
i  as the stability criterion. Thus, the 

results can be obtained. 

1 3 1 1min( , , )   =                  (26) 

2 1 2 2min( , , )   =                  (27) 

  
3 2 3 3min( , , )   =                   (28) 

    The minimum value of the above three angles is taken as the 

stability evaluation index. 

min( )ir =                         (29) 

From Eq. (29) we have the results, when 0r  , the robot is in 

a state of instability, when 0r = , the robot is in a critical state of 

stability, and when 0r  , the robot is stable. In general, the larger 

the r, the better the robot stability, and the robot will not tip-over. 

We set up a simulation time of 30s and take a discrete point per 

5s, and we can get the minimum stability angle at different times 

through the previous formula. In order to conveniently observe the 

relationship between the minimum stability angle and the time 

change, we have done the curve fitting. Here, three times 

polynomial, five degree polynomial, ten polynomial and thirteen 

polynomial are applied to curve fitting respectively. The fitting 

results show that the thirteen polynomial fitting result is not very 

different from the simulation value, so this paper adopts thirteen 

polynomial to do the curve fitting. 

 

Fig.6 Three order polynomial fitting 

 

Fig.7 Five order polynomial fitting 

 

Fig.8 Ten order polynomial fitting 

It can be seen from the fitting results of Fig.(6-9) that the robot 
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has good stability under the initial state, and when the robot on 

uneven ground, because the environment is incompatible with each 

leg, it will cause the minimum stability angle changing. At the same 

time, we can understand from Fig.(6-9) that the initial minimum 

stability angle of the robot is 35o, and the tilting phenomenon is 

issued when the minimum stability angle is 10o. 

 

Fig.9 Thirteen order polynomial fitting 

In the analysis of the dynamic stability, the minimum tipping 

energy consumed by the tilting axis and the flipping of the foot 

point must be considered in the dynamic condition. According to 

literature [16], the minimum tipping energy calculation formula is as 

follows. 

(1 cos )

cos

mgh r
E

r

−
=                   (30) 

As we can see from Eq. (30) that the change of the centroid 

height and the minimum stability angle will affect the minimum 

tipping energy. 

 

Fig.10 The relationship between energy and stability angle 

It can be obtained from Fig.10, as the centroid height increases, 

the greater the minimum tipping energy is needed. At the same time, 

we can see that the minimum tipping energy with the increase of the 

minimum stability angle shows certain regularity, but the minimum 

tipping energy at some points is mutated, this is because the robot’s 

legs are complicated with the contact environment. At this time, the 

robot is easy to lose stability, so that the robot needs more energy to 

make it not rollover. 

Quadruped robots are easily affected by external loads when 

they walk in irregular terrain. If F  and M  are the resultant forces 

and resultant moments respectively, which acting to the robot 

centroid respectively. The resultant force of the external load and 

gravity is ( )F mg+ , so the resultant force of robot tipping is as 

follows. 

(1 )( )T

i Bi BiF e e F mg= − +                  (31) 

If there is the existence of M , the force of the robot is 

equivalent to Eq.(32). 

( )T

i Bi Bi
e i

i

L e e M
F F

L
= +                   (32) 

According to the geometric relationship, we can get the 

following relation. 

 
1 1cos cosi i i ih L A + += =             (33) 

     Taking Eq. (21) into Eq. (33), we can gain the result. 

1(1 )cos cosT

Bi Bi i ie e   +− =          (34) 

     According to Eq. (31) and Eq. (34).     

1(cos )
( )

cos

i
i

i

F F mg



+= +                (35) 

1cos cos

cos

i i
e i Li

i

F F e M
 


+−

= +              (36) 

     The analysis shows that when the robot walks on the inclined 

plane, the angle of change in the direction of the centroid equals the 

inclination angle  of the inclined plane. At this time, the diagonal 

stability angle 
i  will take place change, where, we introduce a 

relational factor K . 

i

K



=                      (37) 

( )cosiF F mg = +               (38) 

Combined Eq.(35) and Eq.(38), we can obtain the next 

conclusion. 

1(cos )
cos

cos

i

i





+=                 (39) 

In order to evaluate the robot stability comprehensively, the 

rollover performance coefficient   is used as the criterion to 

determine the comprehensive influence of other components on 

robots [18]. 
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1

cos
max( )( 1,2,3)

1 cos

i

i i i

r
i

r

 
 

  +

= + + =
−

      (40) 

where:
ir is the minimum stability angle,  is the weight 

stability coefficient,  is the weight influence coefficient,  is the 

energy stability coefficient, 
i   represent the weight value of the 

axis tilting stability angle, 
i   represent the weight value of the 

foot point tilting stability angle, cos

1 cos

i

i

r

r


−
represent the weight 

value of the tilting energy,   indicates the danger of the robot 

tilting during a movement, The larger the   is, the more easy for 

the robot is to lose stability, so that it can be used as a 

comprehensive criterion for the stability analysis of the robot. 

When the robot is in a triangular stable gait, the weight 

coefficient , and can be obtained by Tab.4. In general,

0.5 = , 0.5 = and 0.5 =  are selected when there is no special 

requirement on the terrain, so that Eq. (40) becomes as follows. 

1

cos0.5 0.5
max( 0.5 )( 1,2,3)

1 cos

i

i i i

r
i

r


  +

= + + =
−

         (41) 

Tab.4 Weight coefficient table [19] 

weight coefficient tripod gait 

  1 0.5 0.5 

  1 1 0.5 

  1 0.5 0.5 

 

Fig.11 Response surface for the rollover performance coefficient (a) 

According to Eqs. (35-41), we can have the 

result. 

Assuming parameters are: 0 ~ 20M N m=  ,

00 ~ 50 = 2m kg= , 0 ~15F N=  , 1K = ,

max 150h mm= , it is can be obtained from Figs.(11-12) 

that how the parameters affect the stability of the 

quadruped robot. 

0.5 ccos
( )

0.5
max

arccos cos cos

cos
0.5

1 cos

( 1,2,3)

i

i

i

F
ar

F mg

k

k

r

r

i






 
 
 +
 
 
 

= + 
  
   

 
 
+ 

− 

=

     (42) 

 

Fig.12 Response surface for the rollover performance coefficient (b) 

It can be obtained from Fig.11 that the relationship between the 

rollover performance coefficient and the external force and the 

inclined angle when external moment is zero. The results show that 

the inclined angle has great effect on the rollover performance 

coefficient, and the force had little influence on the rollover 

performance coefficient, so the inclined angle is the main factor, 

which lead to the robot tip-over. As we can see from Fig.12 that the 

relationship between the rollover performance coefficient and 

external moment and inclined angle when external force is zero. 

The inclined angle and the external moment have a significant 

impact on the robot rollover performance coefficient, which 

indicates that the external moment and the inclined angle are the 

main factors leading to the tilting of the robot. In general, the robot 

should avoid in the steep road walking, and ensure that the external 

moment is as small as possible. 

6. Summary 

1) The gait of quadruped robots is briefly introduced. By 
analysis, it can be found that when the duty ratio is greater than 0.75, 
the robot is in a static gait. Then, the structure parameters of the 
quadruped robot are given, which lays the foundation for the robot 
analysis. 

2) The D-H model of the quadruped robot is established, and the 
forward and inverse kinematics algorithm of the quadruped robot is 

given. The effectiveness of the forward and inverse kinematics 
algorithm is verified by simulation. 

3) On the basis of the force angular stability metric method and 
the stable cone method, a novel tetrahedral method was introduced 

in this paper. We defined the contact stability angle 
i and the 
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diagonal stability angle
i  , and regard the minimum stability angle 

r as the stability discriminant standard. In order to clearly show 
the relationship between the minimum stability angle and time, we 
have done the curve fitting. Three times polynomial, five degree 

polynomial, ten polynomial and thirteen polynomial are applied to 
curve fitting respectively. The fitting results show that thirteen times 
polynomial fitting can satisfy the requirement of precision. 

4) The influence of the centroid height and the minimum 
stability angle on the minimum tipping energy for the robot is 
analyzed. The analysis results show that the higher the centroid 
height, the worse the stability of the robot.  

5) In order to synthetically evaluate the stability of the robot, the 

rollover performance coefficient  is proposed. The analysis 

results indicate that the inclined angle and external moment are the 

main factors that decide the tip-over of quadruped robot. These 

theories provide important reference values for robot engineering 

practice. 
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