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 A special kind of back-stepping sliding mode control with unidirectional auxiliary surfaces (UAS-BSMC) method 

is proposed for HSV systems with attitude constraints in this paper. Based on the positively invariant sets, an 

innovative sliding surface is developed to guarantee the attitude constraints. Then the back-stepping control 

method is utilized to design the slow-loop and fast-loop controller. The convergence of all closed-loop signals is 

proved via Lyapunov analysis method under the control scheme. Simulation results are given to illustrate the 

benefits and properties of the proposed algorithm.  
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1. Introduction 

Recently, hypersonic vehicle (HSV) has drawn people's attention. 

To fully utilize the special characterizations of HSV, it is necessary 

to develop an efficient control scheme which meets the 

requirements of flight system. Nowadays, lots of flight control 

algorithms have been applied to HSV, like the back-stepping control 

method (e.g., Shao X et al., 2016), sliding mode control method 

(e.g., Zhang Y et al., 2016), adaptive control method (e.g., Bu X et 

al., 2016), fault-tolerant control method (e.g., Xu B et al., 2016) and 

so on. Back-stepping control is known as a construction approach in 

the sense that it has a systematic way of constructing the Lyapunov 

function along with the control input design. In the process of 

backtracking, the parameters can be modified and the stability of the 

system can be improved by some methods, such as designing a 

series of filters or Lyapunov functions. Finally, the controller to 

make the original system stable is obtained (e.g., Y. Zhu et al., 

2015). However, back-stepping control method is susceptible to 

disturbances (e.g., Yin C et al., 2018). Therefore, the sliding mode 

control method which is much more robust is used to enhance the 

stability of the system. 

The sliding mode control (SMC) strategy has attracted 

considerable attention in the last two decades in both industrial and 

academic communities. Due to its high robust features and 

convenience for real implementation, this control scheme has been 

widely applied in many applications such as magnetic bearing 

systems (e.g., Shi S et al., 2018), speed controller of permanent 

magnet synchronous motor(e.g., Yan L et al., 2009), spacecraft (e.g., 

Pukdeboon C et al., 2009) and robots (e.g., Luo X et al., 2018). 

However, most of the SMC control methods for HSV have not 

considered the attitude constraints. Thus, it is necessary to design an 

innovative sliding mode control method for HSV with attitude 

constraints. 

This work is motivated by the robust attitude control of HSV with 

attitude constraints. The control objective is to track a desired 

trajectory with attitude constraints. In this article, a technique called 

back-stepping sliding mode control with unidirectional auxiliary 

surfaces (UAS-BSMC) is presented to design positively invariant 

(PI) sets for the control design of HSV. The foundation of 

positively-invariant set Qi resulting in trajectories remaining in Qi 

for all subsequent times (e.g., Polyakov. et al., 2011).Unidirectional 

auxiliary surfaces, which naturally form PI sets, are utilized in this 

method. The main advantage of this design is that system states are 

constrained by unidirectional auxiliary surfaces instead of switching 

surfaces. Then, constraints are guaranteed when system states 

leaving the switching surfaces. Rigorous stability analysis is 

guaranteed with Lyapunov analysis which shows the asymptotical 

convergence of the closed-loop signals. And the structure of this 

paper is organized as follows: Problem statement is given in the 
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following section. Next, the stability of the system and the 

positively invariant sets are proved in this paper. Simulation results 

show the effectiveness of this method. Last section concludes the 

paper.  

2. Problem statement 

The six-degree-of-freedom kinematic equations for an HSV are 

given by (e.g., Han Z et al., 2014): 
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where 
3

1 2[ , , ]ax R   =  is the attitude angle vector of 

slow-loop states,
3

2 [ , , ]x y zx R  =   is the body axis angular 

rate vector of fast-loop states. C is the moment of inertia through the 

x-axis, A is the moment of inertia through the y-axis.

3[ , , ]xc yc zcu M M M R=   is the vector of control moments 

consisting of roll, pitching, and yaw control moments. 

3[ , , ]xs ys zsu M M M R=   is the vector of other states moments 

consisting of roll, pitching, and yaw control moments. 

With the time-scale separation principle, the above attitude 

motion equations can be rewritten as follows 

 
1 1 1 1 1 2

2 2 1 2 2 1 2

( ) ( )

( , ) ( , )

x f x g x x

x f x x g x x u

= +

= +
  (2) 

During the hypersonic phase, HSV is usually sensitive to the 

changes of attitude angles (e.g., Walton J. et al., 2002). Thus, 

attitude constraints are necessary to guarantee the performance of 

HSV. In this article, the control objective is to design the robust 

UAS-SMC controller which efficiently tracks a given desired 

attitude motion 1 2 3[ , , ]d d d dy y y y =  in the presence of attitude 

constraints. 

Assumption 1. The generalized matrix inverses of 1 1( )g x and   

2 1 2( , )g x x  are always existing for the nonlinear attitude motion 

model of the HSV. 

Remark 1. Actually, Assumption 1 is always satisfied from the 

detailed definitions (e.g., Fu J et al., 2013). 

Assumption 2. The elements in matrixes 1 1 1 1( ), ( )f x g x  ,

2 1 2 2 1 2( , ), ( , )f x x g x x  are always continuous for the nonlinear 

attitude motion model of the HSV. 

3. Robust attitude control with attitude constraints 

In this section, we consider the robust attitude control for HSV 

systems (1) with attitude constraints. UAS-BSMC method is used to 

design the controller for the attitude constraints, for simplicity, 

define  

 
1 1

2 2 1

de x y

e x 

= −

= −
  (3) 

where 
3

1 R   is a designed virtual control law. Then, considering 

equation (1), the derivatives
1 2,e e  can be written as 

 
1 1 1 1 1 2 1

2 2 1 2 2 1 2 1

( ) ( )( )
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= + + −

= + −
  (4) 

3

1 11 12 13[ , , ]e e e e R=   are the state errors of slow-loop states, 

3

2 21 22 23[ , , ]e e e e R=   are the state errors of fast-loop states. 

The attitude constraints can be rewritten as 

 ( ) 1 1 1, , 1, 2,3i i i ie e c e c c R i += −    =   (5) 

where  1 2 3, ,
T

   =  ,and ( ) 1 1 1,i i i i i ie e c e c = −   .  

Assumption 3. For all 0t  , there exists
1ie  which satisfies the 

constraints (5). 

Definition 1. (e.g., Blanchini F et al., 2002) The set Q is said 

positively invariant (PI) for nonlinear system (2), if for all  

( )1 0x Q  , the solution ( )1 , 0x t Q t   . 

Assumption 4. The initial state error ( )1 0 , 1,2,3ie i =  is located 

in
1iQ  where

1iQ  is the designed PI set in section ‘‘Slow-loop 

UAS-SMC controller design’’.  

3.1 Slow-loop controller design  

In this section, we address the PI sets for the constraints with 

UAS-BSMC method. The detailed design process is appended as 

follows. 

Step 1. Considering the slow-loop in system (1), the switching 

surfaces 11S  and 12S , are chosen as follows 
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where 
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11 12 0i i   , 1, 2,3.i =  
1e dt  is denoted by

1e for the sake 

of brevity. Conditions 11 0i  , 12 0i   is given to guarantee the 
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stability of switching surface
11 0iS = , 

12 0iS = . And condition

11 0i  , 
12 0i   is used to avoid the overlap of switching 

surfaces
11 0iS = ,

12 0iS = . 

 
Fig. 1. The switching surfaces dividing the state space into four subspaces. 

 

Fig. 2. The auxiliary surfaces and subsystems. 

Step 2. As shown in Fig. 2, the appropriate points

11 11 12 12, , ,S S S SP P P P+ − + −  should be selected on switching surfaces 

11 0iS = , 12 0iS = , where points 11 12,S SP P+ − are located in the 

fourth quadrant and points 11 12,S SP P− + are located in the second 

quadrant. Then, the lines 11 12S SP P− − , 11 12S SP P+ − , 11 12S SP P− + ,

11 12S SP P+ + in Fig. 2 are defined as UAS 10 11 12 13, , ,i i i ih h h h  

respectively. 

The formulas for these UAS are given as follows 

 
1 1 1 1 2 1ki ki i ki i ih x x m = + +   (7) 

where {0,1,2,3}k  , 1im is a positive constant. 

Step 3. The UAS in Fig. 2 would be utilized to design virtual 

control law 1  when the states are moving in 1 1 1 1.0 ,1 ,2 ,3i i i iNo  

Subspaces. The current UAS for state error 1ie  is given as: 

 
1 1 1 1 1 2 1 1i i i i i ih e e m = + +   (8) 
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Consequently, a compact form of current UAS can be rewritten as 

 
1 11 1 12 1 1h e e m= + +   (9) 

where 
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m is a positive constant vector. 

As shown in Figure 2, the UAS surfaces can form a convex set 

1iQ and the expression of the set 
1iQ  is written as 

 ( ) 1 1 1 1, 0i i i iQ e e h=    (10) 

The compact form of convex set 1iQ can be written as

 1 11 12 13, ,
T

Q Q Q Q=  ,where 1Q  implies 1i iQ  , 1,2,3i = . 

Step 4. The virtual control law 1  for nonlinear system is 

designed as 

 ( )1 1 1

1 1 1 11 12 1 11 1dg f y e N − − −= − + −  +   (11) 

where  1 11 12 13, ,
T

N N N N=  is the designed approaching law,

1 0, 1,2,3iN i = .  

Remark 2. The approaching law in traditional SMC method is 

often designed as 

 ( ), 0S K sign S K= −     (12) 

( )sign is a discontinuous sign function. From (12), ( )sign S  can 

be positive or negative according to the ( )sign S . We can say the 

direction of S is bidirectional in the traditional SMC method. On the 

other hand, there exists ( ) 0h u N=   in UAS-BSMC method. 

Then, the direction of auxiliary surface h is unidirectional. That is 

why h is called unidirectional auxiliary surface in this paper. 
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Remark 3. It is noted that the derivative of virtual control laws 

1  is used in the controller (11) for HSV system (1). Assistant 

filters are introduced to obtain the derivatives of 
1 , which avoids 

the spikes from differentiation in back-stepping control method. For 

brevity, the detailed design process is omitted here. 

Invoking equation (1), (8), and (11), it is obtained that 

 ( )( )
1 11 1 12 1

11 1 1 2 1 12 1

1 11 1 2= e

d

h e e

f g e y e

N g



=  +

=  + + − +

+

  (13) 

Remark 4. The set  1 1  0|i ie h   in Fig. 2 can be proved as a 

positively invariant set with UAS-BSMC controller. Thus, the 

UAS-BSMC method also can be called back-stepping sliding mode 

control with positively invariant set (PIS-BSMC) method. 

3.2 Fast-loop controller design  

In this section, robust sliding mode controller for the fast-loop 

system is designed by UAS-BSMC method. 

Step 1. Considering the fast-loop in system (1), we define the 

switching surfaces as 

 
12 2 21 2

22 2 22 2

0

0

S e e

S e e





 = + =


= + =




  (14) 

where  11 111 112 113, ,diag   = ,  12 121 122 123, ,diag   = ,

 11 111 112 113, ,
T

S S S S=  ,  12 121 122 123, ,
T

S S S S=  ,
11 12 0i i   , 

 1, 2,3.i =  

 

Fig. 3. The switching surfaces dividing the state space into four subspaces. 

Step 2. As shown in Figure 3, the 2 2 2 2.0 ,1 ,2 ,3i i i iNo  subspaces 

are defined with switching surfaces 21iS and 22iS . Then, we can also 

design the UAS 20 21 22 23, , ,i i i ih h h h following Step 2 in the previous 

section. 

 
2 2 1 2 2 2ki ki i ki i ih x x m = + +   (15) 

where {0,1,2,3}k  , 1im is a positive constant. 

Step 3. Invoking equation (16), the current UAS is given as:  

 
2 2 1 2 2 2 2 2i i i i i ih e e m = + +   (16) 
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Consequently, a compact form of current UAS can be rewritten as 

 
2 21 2 22 2 2h e e m= + +   (17) 

where 
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Step 4. Invoking equation (19), the UAS-BSMC controller for 

the fast-loop system (2) is given as 

 ( )1 1 1 1

2 2 1 21 2 21 11 1 2 21 22 2e eu g f N g− − − −= − + + −  −   (18) 

Step 5. Defining  1,1,1
TTE = , for considering the stability of 

states for the closed control system, the Lyapunov function 

candidate is chosen as 

 ( ) ( )1 1 2 2

T TV E m h E m h= − + −   (19) 

It is noted that Lyapunov function candidate V  is a continuous 

function for all
3e R  (e.g., Fu J et al., 2013).  

The time derivative of V  is invoking equations (11), (16), (18), 

and (19), the time derivative is 
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  (20) 

Thus, the system (2) is asymptotically stable under the control 

law. 

4. Results 

In this section, simulation results are given to illustrate the 
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effectiveness of the proposed adaptive UAS-BSMC schemes for 

HSV with attitude constraints. Suppose that the HSV vehicle lies in 

the cruise flight phase with the velocity 1700m/s and flight altitude 

5 km. The initial attitude and attitude angular velocity conditions 

are chosen as 

2=0deg, 0deg, 0dega  = =  

=0deg/ =0deg/ 0deg/s s s     = . 

The attitude constraints for the state error 

 1 1 2 3e , ,dy y e e e


= − =  

are given as 

 

11

12

13

0.1 0.1

0.02 0.02

0.1 0.1

e

e

e

−  

−  

−  

  (21) 

The UAS-BSMC approaching laws N for HSV is designed as 

 ( ) , 2, 0.5N h k m h k


= =  − = =   (22) 

 

Fig. 4. The attitude responses  under UAS-BSMC 

 

Fig. 5. The attitude responses a under UAS-BSMC 

In the simulation, we assume that the unknown time-varying 

disturbance moments imposed on the HSV are 
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  (23) 

The attitude responses are shown in Fig. 4 to Fig. 6 

 

Fig. 6. The attitude responses
2 under UAS-BSMC 

 

Fig. 7. The state error e11 under sliding mode and UAS-BSMC methods. 

 

Fig. 8. The state error e12 under sliding mode and UAS-BSMC methods. 

The simulation results of the HSV attitude flight control under 

designed controller are shown in Fig. 4 to Fig. 6. It can be seen form 

figure that the attitude angles output can quickly track the desired 
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trajectory 𝑦𝑑. 

To compare with the UAS-BSMC controller, we also design a 

traditional SMC controller for HSV. The switching surface S is 

defined as 

 ( ), 2, 0.5S k S sign S k


= −  = =   (24) 

The state error responses are shown in Fig. 7 to Fig. 9 under SMC 

and UAS-BSMC methods respectively. 

 

Fig. 9. The state error e13 under sliding mode and UAS-BSMC methods 

Since the attitude constraints are not considered in the design 

process of SMC scheme, the undesirable overshoots are often found 

with inappropriate approaching laws. And these overshoots are 

harmful for the HSV system because they might be out of the 

attitude constraints (21). From the state error responses in Fig. 5 to 

Fig. 9, the attitude constraints can be satisfied with UAS-BSMC 

method. And the harmful overshoots can be removed by the 

designed positively invariant sets. Therefore, we know that the 

proposed robust UAS-SMC control scheme can efficiently track the 

desired trajectories with attitude constraints. 

5. Summary 

In this article, a robust UAS-BSMC control scheme has been 

proposed for HSV with the attitude constraints. Rigorous analysis 

has been given for the convergence of all closed-loop signals under 

the proposed control schemes. Simulation results show the 

effectiveness of the robust UAS-BSMC scheme for the NSV. 

External disturbances may cause a system crash (e.g., Chen Q et al., 

2018), in the following study, the robust attitude control scheme can 

be further developed for the HSV with disturbances and 

time-varying attitude constraints. 
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