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 Starting from univariate truncated spline, continuous and discontinuous spline surfaces are obtained by rotating for 

the center with an endpoint of spline, and two kinds of partition form of spline surface are presented. In order to get 

the unified partition form of spline surface, by changing the position of the pivot point and making the spline surface 

rotate along one point outside the domain, the improved spline surface is obtained eventually. Furthermore, by 

promoting the improved form of spline partition, the general expression of spline surface based on the partition of 

concentric circles ( ) ( ), u

k mns r S     is set up. At the same time, the expression of partition surface is more 

concise by partitioning in spiral, and provides tools for complex surface modeling. 
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1. Introduction 

Spline function, or spline for short, is a piecewise polynomial. The 

polynomials between adjacent slices have some sort of connection 

properties. Thus spline not only maintains the simplicity of 

polynomial and the feasibility of approximation, but also keeps 

relatively independent local property between each piece. In 1946, 

Schoenberg I. J. studied univariate spline function systematically [1]. 

Since multivariate splines rely heavily on the geometric properties of 

domain decomposition, it presents a very complex situation. 

Regarding the study of multivariate spline functions, different types 

have emerged due to differences in use. 

In 1963, the tensor product of the univariate splines is tried, as a 

result of certain conditionality of multivariate splines control vertices, 

the control surface cannot be well demonstrated[2]. In 1975, by means 

of Bezout's theorem in algebraic geometry, a basic theoretical frame 

of multivariate spline for any partition is established and smooth 

cofactor method is proposed by professor Wang[3]. With the help of 

this method, any problem on multivariate splines could be essentially 

equivalent to a corresponding algebraic problem. In 1976, Duchon[5] 

derivated the interpolation method of the thin plate spline function by 

starting from the theory that thin plate bending energy is the smallest, 

and realized the so-called “Thin-plate spline” in the two-dimensional 

case. In essence, thin plate spline is not spline function in the sense 

of piecewise polynomial, but a radial basis function. A spline with a 

partial polynomial partial division is called a mesh spline. This article 

refers to a thin plate spline as a meshless spline. In 2007, the 

mechanical model of bivariate splines over some special partition 

was set up by professor Wang et al., and made the bivariate splines 

has the meaning of mechanics, that is, a deflection surface of bending 

of thin plate under the action of suitable load on the split line[6,8]. Due 

to the grid and meshless splines are the generalizations of univariate 

splines, Wu Zongmin[9] put forward the following conjecture: in the 

sense of mechanics, multivariate grid splines and meshless splines 

are unified, both can convert each other. To investigate the 

relationship between two types of spline, this paper discusses the 

conversion of grid and meshless spline on circular sector partition. 

The structure of this paper is as follows: The second section 

introduces the existence theorem and expression of the binary grid 

splines. In Section 3, we give the multivariate splines surface by the 

rotating of univariate spline, and point out that the partition of 

rotation spline surface is concentric ring. At last, the form of rotation 

spline partition is extended to give a sectorial partition, and the 

general expression of multivariate spline over sectorial partition is 

presented in Section 4. 

2. Theoretical Analysis of Univariate Spline Function 

The spline function is essentially a piecewise polynomial with a 

certain degree of smoothness. The polynomial on each adjacent 

segment has some kind of connection property, so it not only keeps 

the simplicity of the polynomial and the feasibility of approximation, 

but also the relatively independent local properties are maintained 
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between segments. Spline functions are widely used in many fields 

such as function approximation, data analysis, finite element and 

computational geometry. 

2.1 Bernstein-Bézier curve 

1962 Renault engineer the Bézier put forward a kind of simple and 

easy to use by the control polygon defined curve modelling method, 

push forward the curve surface design, laid a good foundation for 

surface modeling. 

2.1.1 Bernstein polynomial 

A function ( )  C 0,1f x ∈  the Bernstein polynomial is defined 

     
0
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nP .Each 

function ( )( )0,1,...,n

iB x i n= is called basis functions of Bernstein.
 

2.1.2 Bézier curve 

Define a curve of degree n ：
                                 

(2-2                    
                        (2-2) 

where, 
iP  is referred to as control vertices. Control the adjacent 

vertices connected by straight line of polygon after referred to as the 

control polygon. 

2.2 B-spline function 

The B-spline is a generalization of the Bézier curve. The B-spline 

method inherits the advantages of the Bézier method and overcomes 

its shortcomings. It can directly obtain the approximation function, 

which solves the local control problem well. 

2.2.1 B-spline basis function 

The unary B-spline basis function has many different definition 

forms. For example, the pyramid algorithm gives a definition form 

from the relationship of each step basis function, which is more visual 

and intuitive; the B-spline defined by the truncated power function is 

more convenient in theory. Analysis of B-splines; but more 

internationally, the B-spline recursive definitions given by de Boor 

and Cox, which make B-splines more widely used in computer-aided 

geometric design. The de Boor-Cox recurrence formula is given 

below: 

( )
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It can be seen from equation that any k-degree B-splines can be 

linearly represented by adjacent k-1-degree B-splines. 

 According to the recursive formula of the B-spline basis function, 

two adjacent quadratic B-spline basis functions ,2 1,2( ), ( )i iN u N u+  

can be obtained to obtain a cubic B-spline ,3 ( )iN u , as shown in the 

figure. 

 

Fig 1 Cubic B-splines 

If the segmentation of the node is uniform, then the basis function 

is called a uniform B-spline, and the images on the respective node 

intervals in the definition domain are the same, which is equivalent 

to the translation of the image of the other node interval. 

2.2.2 B-spline curve 

Given 1n+  control fixed points
ib  (also known as de Boor 

control points) ( 0,1,...,i n= ), is the k  degree B-spline basis 

function defined on the node vector  0 1 1, ,..., n kU u u u + += , then the 

k-order B-spline curve is 

, 1 1

0

( ) ( ), [ , ] [ , ]
n

i i k i i k n

i

P u d N u u u u u u+ +

=

=    

The polyline connected in order by the control fixed point

, 1,...,iN i V=   becomes a B-spline control polygon. 

In particular, when , ( ), [0,1]i kN x x   ( )kd N
 represents k  

degree  uniform B-spline basis function. ( )iV x ( 0,1, , )i k=  , 

represents the vertices of the control polygon, then a k   degree 

uniform B-spline curve can be expressed as 

      
( ) ( ) ( )  ,

0

, 0,1
k

i k i

i

p x N x V x x
=

=            (2-3) 

3. Basic Theorem of Multivariate Spline and Bending of 

Thin Plate 

3.1 Truncated spline function 

Given a set of nodes 

0 1 1... N Nx x x x +− =     =   

Let the piecewise function ( )S x  satisfy 

(1)For each interval ( )1, 0,...,j jx x j N+
  =   , ( )S x  is an 

algebraic polynomial of real coefficients of no more than n .  

(2) ( )S x has a continuous derivative up to the order 1n− , so

( )y S x=  is called n  degree spline function. It's often called the 

population of then degrees spline function. 1,..., Nx x   is called the 

spline node. 

The expression of ( )S x  is 

   ( ) ( ) ( ) ( )1 1 2,      
n

nS x p x c x x x x
+

= + − −     (3-1) 
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where 

( ) ( )
    0

max 0, ,   
0    0

m
m

x x
x x x x

x
+ + +


= = =


 

3.2 Smoothing cofactor method for multivariate splines 

Let D  be a domain in
2R  , and

kp  be the collection of all the 

bivariate polynomials with real coefficients and total degree k . A 

bivariate polynomial P is called irreducible polynomial, If and only 

if it can be completely divisible by the constant and polynomial itself 

and there is no other complex polynomial. Irreducible algebraic curve 

is defined by   

        ( ) ( ) 2: , 0, , kl x y l x y P R = =        (3-2) 

where ( ),l x y is irreducible polynomial.  

Using a finite number of irreducible algebraic curves to carry out 

the partition , we divide the domain D into a finite number of sub-

domains
1,..., ND D , each of the sub-domains is called a cell. The line 

segments forming the boundary of each element are called "edges"; 

the intersections of the edges are called "vertices"; the two vertices 

of the same side are called "adjacent vertices". The sets of cells with 

the vertices of V are called “associated domains or astral domains”, 

denoted by ( )St V  . The space of multivariate spline functions is 

defined by 

( ) ( ) : , 1,...,k i KS s C D s D P i N  =   =      (3-3) 

where s  is a piecewise polynomial of degree k  possessing   order 

continuous partial derivatives in D . Based on the Bezout's theorem 

of algebraic geometry, Wang[2] got the smoothing connection 

conditions of multivariate splines, shown as the following theorem:  

Theorem3.1   Let ( )ks S   , 
iD and jD  are two arbitrary 

adjacent cells of the partition   . If irreducible algebraic curve 

( ): , 0l x y =   is a common interior edge of 
iD  and jD  ,

,
i ji D j DP s P s= = , then there is 

      ( )( ) ( )
1

, ,i jP P l x y q x y
+

− =           (3-4) 

where ( ) ( )1
,

K d
q x y P

− +
 , ( )degd l= is called the smoothing 

cofactor on irreducible algebraic curve  . 

Theorem3.2 Let   be any partition of D , the multivariate 

spline function ( ) ( ), ks x y S    exists, if and only if for every 

interior edge, there exists a smoothing cofactor, which satisfies the 

global conformality condition 

( )( ) ( )
1

1

, , 0
N

u

i i

i

l x y q x y
+

=

=  

at each interior mesh point. 

Theorem3.3 Any ( )ks S    can be uniquely represented as 

follows: 

( ) ( ) ( )( ) ( ) ( )
1

*
, , , , , ,

u

ij ij

C

s x y p x y l x y q x y x y D
+

= +   (3-5) 

where ( ), kp x y P   is the expression of ( ),s x y   in the source 

cells, 
C

 . 

3.3 Multi-spline function space on the cross-cut partition 

If the partition   of the region D  is formed such that all of its 

mesh lines are cut by a straight line penetrating the region D . Then, 

such a partition  is "cross-cut partition". 

Let c  have L  cross-cut lines in D ,V  interior mesh points 

1,..., VA A and in  cross-cut lines intersect , 1,...,iA i V= . 

Let ( ) ( )1 1, ,..., ,N N      be pariwise linearly independent 

ordered paris, that is, , , , 1,...,i j j i i j i j N    =≠ ≠ ,and NV

be the solution vector space corresponding to the conformality 

condition at a point. 

( )
( )( )

1

1

1 1 1

, 0
: ,...,

,...,

N
i i i

N N

i N k

q x y x y
V q q

q q P





 
+

= − −

 +  
=  

  
   (3-6) 

Lemma 3.4 gives the dim NV  specific formula. 

Lemma 3.4 

( )

( ) ( ) ( )(

( )

1 1
dim : :

2 1

     1 1 3

1
     N-1

1

N kV d N k
N

N k N N

N

 






+

 +  
= = − −  −  

 − − + + −

+  
  −  

 

Theorem 3.5 

   ( ) ( )
1

2 1
dim

2 2
k c k i

i

k k
S L d n 

 

=

+ − +   
 = + +   

   
 (3-8) 

where L cross-cuts, 
in cross-cuts intersect at , 1,...,iA i V= ,V

interior mesh points. 

Theorem 3.6 Let qc   be a quasi-cross partition of simply 

connected region. qc  has 1L   cross-cuts and 2L   rays. Let qc  

have V  interior mesh points 1,..., vA A  ,and , 1,...,iN i V=   cross-

cuts and rays passing through iA . 

We have 
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( ) ( )1

1

2 1
dim

2 2

V

k qc k i

i

k k
S L d N 



=

+ − +   
 + +   
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where  is given by Lemma (3-8). 

Define the bivariate spline functions as 

( ) ( )
( ),

1

, , , ,

1

, ,

m i j

i j t i j i j

s

S q x y l x y
+

=

 =    

where ( ), 1,i j kq x y P − + . 

Clearly ( ) ( )( ), , , 1,..., ,i j t k c kS S t d m i j   =   and are 

supported in the angle measured counterclockwise from , ,1i jl  to 

( ), , ,i j m i j
l . 

Theorem 3.7 The collection of bivariate splines 

( )

( )
( )( )
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1

*

, ,

0

0 1
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1,..., ,
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ij
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S x y x y x y
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c d k

LB
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t d m i j

j m

i L







+

 
 

 +  
  +  − −
  

==  
    = 
 =
 

=  

       (3-10) 

is a basis of ( )k cS   . 

3.4 Elasticity and plate bending  

The equilibrium differential equation for the bending of elastic thin 

plates was obtained in 1811 by Lagrange in reviewing the research 

report on plate bending sent by Sophie Germain to the French 

Academy of Sciences. The bending properties of the plate largely 

determine its thickness. We only discuss the bending of the thin plate 

with small deflection. Within the framework of the elastic theory, the 

thin deflection theory of thin plates has the following basic 

assumptions:  

(1) The middle surface of the plate is not deformed and remains 

neutral when bent;  

(2) The straight line perpendicular to the middle surface of the 

plate before the bending deformation is still perpendicular to the 

deformed middle curved surface after the deformation, and the length 

of the line segment remains unchanged. The straight normal line is 

assumed, and the deflection w is independent of z at this time. , is 

only a function of two coordinates x and y in the plane of the board, 

ie ( ),w w x y= ;  

The lateral normal stress of the plate is much smaller than other 

stresses and can be ignored. This hypothesis completely optimises the 

material properties and permits the use of a stress-strain relationship 

expressed by two elastic constants E  and v . Based on the above 

assumptions, an effective approximation theory of plate bending is 

established. 

Under the above ideal assumption, the plate bending problem is 

attributed to solving a fourth-order differential equation, that is, the 

equilibrium equation. 

          

4 4 4

4 2 2 4
2 .

w w w q

Dx x y y

  
+ + =

   
            (3-11) 

where the lateral load ( ),q q x y=  represents the lateral load 

concentration perpendicular to the board surface. The general 

solution of the above fourth-order differential equation will have 

eight arbitrary constants. For a rectangular plate, each boundary 

should have two independent boundary conditions to determine the 

eight unknown constants. We briefly introduce the boundary 

conditions involved in practise. 

Simple support: there is no deflection and no bending moment on 

the simple support edge. Therefore, if x a=   is a simple support 

edge, then there is 

        2 2

2 2

0

0

x a

x x a

x a

w

w w
M D v

x y

=

=

=

 =


   
= − + = 

  

    (3-12) 

And because along the edge line , 0x a x= =  ,the change of the 

deflection w along the y -axis along the edge is equal to zero, that 

is 

2

2
0

w w

y y

 
= =

 
 

So the simple boundary condition can be written as 

                2

2

0

0

x a

x a

w

w

x

=

=

 =

  

= 
 

                  (3-13) 

Fixed edge: When the edge x=a is fixed, the deflection on the side 

line and the slope of the middle surface are 0, which is 

                 

0

0

x a

x a

w

w

x

=

=

 =

  

= 
 

                   (3-14) 

Free edge: If the edge x=a is completely free, there is no bending 

moment and torque on the edge, and there is no vertical shear 

force,therefore 

     ( ) 0, ( ) 0, ( ) 0x x a xy x a x x aM M Q= = == = =        (3-15) 

The latter two conditions can be combined into one, ie torque and 

shear can be combined into equivalent shear 

( )Ndk

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            0
xy

x x

x a

M
V Q

y
=

 
= − = 

 
          (3-16) 

Therefore, the free boundary condition is 

    

( )

2 2

2 2

3 3

3 2

0

2 0

x x a

x a

x x a

x a

w w
M D v

x y

w w
V D v

x x y

=

=

=

=

   
= − + =  

  


  
= − + − =     

    (3-17) 

3.5 Rectangular partitioning 

Starting with a given spline, there are usually two ways to generate 

a spline surface. The first method is a rectangular partition, and the 

second method is a rotation method of a spline. This section briefly 

introduces the rectangular partitioning, and the fourth section focuses 

on the rotation of the spline surface. 

When generating spline functions by using the method of 

rectangular partitioning, it can be divided into uniform rectangular 

partitions and non-uniform rectangular partitions. Here, we only need 

to briefly introduce the general situation of rectangular partitions. 

Generally, for any size rectangular plate, it has any rectangular 

partition, as shown in Fig2. Let us consider a 3×3 square plate and 

ignore the unit of measure. 

where 0, 0, 0, 0a b c d    such that 

1 2 1 2

2 1 2 1

   

2    2

cx x x cy y y

x x y y

M M M M M M

M M M M

= + = +

= =

，

，
 

Each small rectangle is a cell, represented by ( )1,2,3,4i i =  . 

where 

1 [0, ] [0, ];a c ：  

2 [0, ] [ ,0];a d  −：  

3 [ ,0] [ ,0];b d −  −：   

 4 [ ,0] [0, ];b c − ：  

In order to achieve balanced and pure bending of the plate, the 

bending moment and coupling should satisfy the following equation: 

2 1

2 1

1 2

1 2

: :

: :

x x

y y

cx x x

cy y y

M M a b

M M c d

M M M

M M M

=

=

= +

= +

            (3-18) 

The direction is shown in Figure 2. 

 

Fig.2 General Case 

Therefore, we can get a binary spline as the reflection surface 

equation of the plate, and the expression on each cell will be: 

2 2 2 2

1

2 2

1

1
( , ) ( ) ( ) ( )

2 2 4

             ,      ( , ) ,

a c
x y b x d y ba dc

bx dy abx cdy x y

 = − − − − −

= − − + 

 

2 2 2 2

2

2 2

2

1
( , ) ( ) ( ) ( )

2 2 4

             ,      ( , ) ,

a d
x y b x c y ba cd

bx cy abx cdy x y

 = − + + − −

= + − + 

2 2 2 2

3

2 2

3

1
( , ) ( ) ( ) ( )

2 2 4

             ,      ( , ) ,

b d
x y a x c y ab cd

ax cy abx cdy x y

 = − + + + + −

= − + − + 

2 2 2 2

4

2 2

4

1
( , ) ( ) - ( ) ( )

2 2 4

             ,      ( , ) ,

b c
x y a x d y ab dc

ax dy abx cdy x y

 = − + − + +

= − − − + 

 

It can be written as follows 

       

2

1

2 2

( , ) : ( , ) ( )(0 )

            ( )(0 ) ( )( 0)

s x y x y c d y

a b x c d y

 +

+ +

= + + −

+ − − − + − − −
 (3-19) 

Obviously, the results given in the first two subsections are two 

special cases in general, and in addition, as long as the external 

bending moment and the coupling acting on the plate, the rectangular 

partition can be arbitrarily changed or extended in the median plane 

of the plate. It can maintain balance and produce pure bending. 

Based on the above discussion, we can draw the following 

conclusion: A class of binary splines as equation ( ),s x y  It is a 

subspace of ( )1

2 mnS  , corresponding to a purely curved deformed 

surface that is advanced to the bending combination and coupling, as 

shown in Figure 2. Under the assumption of a thin plate with small 

deviations, the spline can be a sufficiently accurate model of pure 

bending. In addition, the 1C  continuity of the spline corresponds 

exactly to the continuity of the rotation angle caused by the coupling, 

while the discontinuity of the second derivative of the surface 

corresponds to the discontinuity of the bending moments on both 

sides of the coupled line, and the conformality condition acting on 

the inner apex corresponds to the uniqueness of the actual deformed 

surface of the panel. 

Since there is no lateral load, i.e 0q = , it is easy to prove that the 

above splines can satisfy the equilibrium equation (Eq. (3-11)) . 
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4 Spline Surface of Revolution and its Form of Partition 

4.1. Univariate truncated spline 

If truncated spline function is defined in the xoz  plane and 

 0,4x  , when  0,1x  , the expression of the function is 

2z x= , the remaining three truncated polynomial is 

( ) ( ) ( )
2 2 2

1 , 2 , 3x x x
+ + +

− − −  

respectively, and by default, the smoothing cofactor is 1  , then 

truncated spline can be represented as follows: 

         ( ) ( ) ( )
2 2 22 1 2 3z x x x x
+ + +

= + − + − + −          (4-1) 

The univariate truncated spline function is shown in Fig.3. 

 

Fig.3 The univariate truncated spline function 

4.2．Rotated multivariate spline  

4.2.1 Continuous rotated multivariate spline  

By rotating Eq. (4-1) around the z-axis, a surface of revolution is 

obtained. According to the knowledge of analytic geometry, Eq. (4-

1) also can be written as follows: 

   
( )

( ) ( )

2
2 2 2 2

2 2
2 2 2 2

1

     2 3

z x y x y

x y x y

+

+ +

= + + + −

+ + − + + −

       (4-2) 

The image of expressions (4-2) is shown in Fig.4. 

 

Fig.4 Continuous rotation spline surface 

Let  

2 2r x y= +  

spline function under cylindrical coordinate system is obtained by 

using coordinate transform to Expression (4-2) as follows: 

      ( ) ( ) ( ) ( )
2 2 22 1 2 3s r z r r r r
+ + +

= = + − + − + −      (4-3) 

According to Eq. (4-1), univariate spline function is first-order 

differentiable, denoted by 
1

2S . And we want to show that the spline 

of revolution is the 
1

2S  -spline. (It is essentially a radial basis 

function). 

Prove：According to Eq. (4-3), equation is as follows: 

  ( ) ( ) ( )2 2 1 2 2 2 3
dz

r r r r
dr + + +

= + − + − + −         (4-4) 

where the first derivative is continuous. Making use of the formula 

of polar coordinates, we have cos , sinx r y r = = , that is: 

         cos , sinx r y r  =   =                   (4-5) 

Then by chain rule, we have 

( ) ( ) ( )( )

( ) ( ) ( )( )

1
2 1 2 2 2 3

sin

1
2 1 2 2 2 3

cos

z dz r
r r r r

y dr y

z dz r
r r r r

x dr x





+ + +

+ + +

 
= = + − + − + −

 

 
= = + − + − + −

 

 

Multivariate spline function of the first order partial derivative is 

continuous when r or   take a constant value, that is multivariate 

spline function belongs to 
1

2S . 

The partition form of spline surfaces is obtained by projection on

xoy   plane of the continuous rotation spline, i.e., a class of 

concentric circles with o   is the center and r   is the radius. The 

partition form is shown in Fig.5. 

 

Fig.5 The partition of continuous multivariate spline 

Where the circular area with a radius of 4 and a center of ( )0,0  

is multivariate splines located, and partition lines of multivariate 

splines are a class of circles with radius of 1,2,3, respectively. 

4.2.2 Rotation multivariate spline without center 

javascript:void(0);
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According to Eq. (4-1), spline function in the neighborhood of the 

point of rotation is an even function, Therefore, when rotating the 

spline function, we can obtain continuous spline surfaces.  Spline 

surfaces that after rotated will appear a peak near the tip of the point 

of rotation, if the function in the neighborhood of the point of rotation 

is not even function. Such an example is given below, truncated 

spline function defined on xoz plane and  0,4x , where when

2x  , there is the original function of z x= , the remaining three 

truncated functions are ( ) ( ) ( )
2 2 2

1 , 2 , 3x x x
+ + +

− − −   respectively, 

and we default smoothing cofactor are 1. Hence, truncation spline can 

be expressed as follows: 

         ( ) ( ) ( )
2 2 2

1 2 3z x x x x
+ + +

= + − + − + −          (4-6) 

Rotating equation (4-6)  along the z  axis, we can get the  

rotation surface as follows: 

( ) ( )

( )

2 2
2 2 2 2 2 2

2
2 2

1 2

     3

z x y x y x y

x y

+ +

+

= + + + − + + −

+ + −

  (4-7) 

The image of Expression (4-7) is shown as below: 

 

Fig.6 Discontinuous rotation spline 

Let 2 2r x y= +  , spline function under cylindrical coordinate 

system is obtained by using coordinate transform to Expression (4-7) 

as follows: 

       ( ) ( ) ( ) ( )
2 2 2

1 2 3s r r r r r
+ + +

= + − + − + −          (4-8) 

where 2 2 1r x y= +   , the function is conic curve function, 

therefore, function on a neighborhood of the point of rotation is not 

smooth. From Fig. 4, we can clearly see a peak generated in the point 

of rotation. Hence, in the domain 2 2 4r x y= +  , the function is 

not spline function. But when removed part of the region

2 2 1r x y= +  , a spline surface will obtained in the region of 

2 21 4r x y = +  . 

Similarly, the partition form of spline surfaces is obtained by 

projection on xoy  plane of the discontinuous rotation spline, i.e., a 

class of concentric circles with o  is the center and r  is the radius. 

The partition form is shown in Fig.7. 

 

Fig.7 Partition form of discontinuous multivariate spline 

As shown in Fig.5, regions bounded by two circles of radius 1 and 

4,and the centre point ( )0,0 , are multivariate splines located, and 

partition lines of multivariate splines are a class of circles with radius 

of 2 and 3. 

4.2.3 Improved rotation multivariate splines 

Two of the above rotation multivariate splines, their rotation points 

are taken at one end of the truncated splines. Continuously rotating 

splines have good properties, but for those discontinuous splines 

encountered some problems in their discontinuities.In order to solve 

the problem of discontinuity, we adjusted the point of rotation of the 

spline, that is from the end of the truncated spline to the rotation point 

outside the spline function domain.For example, we shorten the 

domain of Eq.(4-6) to  1/ 2,4x  , thus under other conditions 

remain unchanged, the rotation spline surface as shown in the figure 

below: 

 

Fig.8 Improved rotation splines 

whose partition form is similar to Fig. 7. 

Improved rotation spline surfaces are defined on a hollow circular 
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domain, which overcome the problem of domain narrowed caused by 

the peak. So that we get the spline surfaces are more universal.  

5 Smoothing Cofactor Method on the Circular Domain 

5.1 Sectorial partition by concentric circles and rays 

There are two parameters 2 2,r a b +  under the cylindrical 

coordinate system, but the spline surfaces in above formula (4-3) and 

(4-8) are r  function. 

In this section, in order to do a more detailed study on multivariate 

splines under the cylindrical coordinate system, given new forms of 

partition, such that the spline surfaces can be written into expressions 

in terms of r and , denoted by ( , ) ( )u

k mns r s   , where n is the 

partition number in r , m  is the partition number in  , k  is the 

degree of spline function, u is the smoothness of the spline. 

Using concentric circles and rays to divide the ring through the 

center, our partitioned form looks like this: 

 

Fig.9 Spline partition by concentric circles 

Given a annular domain is 1 4r  , where partition lines are the 

rays , , , , , ,A B C D E F G , which through the center of a circle and 

1,l l represent the circles of radii 2 and 3 respectively, the source of 

spline function is labeled 1,the flow directions to  move forward 

sequentially, and V is the interior point of partition. 

In Fig.9, regions of 1,7,8,9 constitute a star-shaped domain. Four 

interior edges through V are 

( )

( )

( )

( )

17

78

89

91

, 0

, 0

, 0

, 0

i

i

i

i

G r

l r r r

G r

l r r r

  



  



= − =

= − =

= − =

= − =

 

respectively. Denote by 

( ) ( ) ( ) ( )17 78 89 91, , , , , , ,q r q r q r q r    , 

the smoothing co-factors over the corresponding four interior edges 

of the function ( ) ( ), k mns r S    . 

According to the conformality condition at V , we have 

( )( ) ( )( )
1 1

17 89 78 91 0
u u

i iq q q q r r 
+ +

+ − + + − =        (5-1) 

Case 1  If ( )2 / 2u k −  , because of ( )
1u

i 
+

−  and 

( )
1u

ir r
+

−   are relatively prime, ( )1 ,t r   and ( )2 ,t r    exist, 

which leads to 

( ) ( )

( ) ( )

1

17 89 1

1

78 91 2

,
u

i

u

i

q q r r t

q q t 

+

+

+ = − •

+ = − •
 

thus we have 

             ( ) ( )1 2, ,t r t r = − .                  (5-2) 

Case 2  If ( )2 / 2u k −  , we have 

( ) ( )

( ) ( )

17 89

78 91

, , 0,

, , 0.

q r q r

q r q r

 

 

+ =

+ =
 

Through the above derivation, we get the relation among the 

smooth factors. 

By theorem 3, we generalize the partition on circular domain, 

therefore, the expression of spline 

 Function ( ) ( ), k mns r S     is 

( ) ( ) ( )( )

( )( )

( )( ) ( )

1

1

1

1

1

1 1

, , ,

,

,

m
u

i i

i

n
u

i j

j

m n
uu

i i j

i j

s r p r b r

b r r r

d r r r

    



  

+

+
=

+

+
=

+

+ +
= =

= + −

+ −

−  −







 

5.2.  Partition by spiral lines and rays 

In addition to the above mentioned concentric circles and rays, you 

can also use spiral lines and rays to carry out the partition for the 

given circular region. The results obtained are very similar. 
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Fig.10  Partition by spiral lines 

There is a spiral line in the given region, where partition lines are 

the rays , , , ,A B C D E , which through the center of a circle, and the 

source of spline function is labeled 1, the flow directions to  move 

forward sequentially, and V  is the interior point of partition. 

The partition by spiral lines and concentric circles has a very 

similar form. The representation forms in the whole modelling region 

only have source function and ray equation under the condition of 

satisfying conformality condition at nodes. This makes some special 

surface modeling be easily expressed under the partition by spiral 

lines. 

6 Conclusion 

Rotation spline surfaces are obtained by rotating univariate 

truncated spline function. It overcomes the disadvantage of spline 

curves and surfaces can not represent any conical surface, provides a 

good styling tool of the surface design. There is a certain relationship 

in some way between rotation spline surface and circular plate of the 

shell theory. It is helpful for us to study mechanical background of 

circular thin plate. The promotion of spline partition can represent 

more complex spline surfaces, which is significant to the design of 

complex surfaces. 
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