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 In this paper, a composite neural dynamic surface control is proposed for voltage-driven robotic manipulators with 

friction and dead zone. The dead zone inverse technique is adopted to compensate for the effect of the dead zone, 

and the friction behavior is described by constructing a dynamic model. Then, an adaptive neural controller is 

designed using the dynamic surface technique, such that the complex explosion problem is eliminated. According 

to the Lyapunov stability theory, the uniform ultimate boundedness of all the signals in the closed-loop system can 

be guaranteed. With the proposed scheme, no prior knowledge is required on the controller design, and the 

effectiveness of the proposed control scheme is illustrated by comparative simulations. 
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1. Introduction 

Over the past decades, the use of robotic manipulators in 

industrial applications has extensively increased, and the control of 

robotic manipulators has received considerable attentions (e.g, Cui 

et al.,2013; He et al.,2017). As the robotic manipulators is a 

complex and coupled system, the control of effect is a challenging 

task.  

In practical applications, there usually exists some nonlinear and 

uncertain characteristics, in order to solve these problems, many 

effective control algorithms have been developed, such as sliding 

mode control (e.g, Luo et al.,2018; Shi et al.,2018), active 

disturbance rejection control (e.g, Wei et al.,2018) and adaptive 

parameter estimation (e.g, Meng et al.,2018). Especially, friction 

(e.g, Huang et al.,2007; Bona et al.,2006; Wang et al.,2015) and 

dead zone (e.g, He et al.,2016; Na et al., 2011; Zhang et al.,2008) 

are inevitable obstacles to high-performance positioning and 

tracking control. As one of the most common input nonlinearity, the 

dead zone may cause the inaccuracy in a control system (e.g, Chen 

et al.,2013). Moreover, the friction between a moving part and a 

guide surface always leads to the problems such as stick slip, limit 

cycle, and steady-stated error (e.g, De et al.,1995). Consequently, 

the method of disposing the system with friction and dead zone is 

necessary, and many efforts have been devoted to the compensation 

of the dead zone. The traditional adaptive inverse models of the 

dead zone were built for systems to compensate the effect of the 

dead zone. Besides, a brief review about the development of friction 

compensation is hereby provided. The LuGre and Elastoplastic (Yao 

et al.,2015; Bona et al.,2006) models could construct a friction 

estimator relatively easily by virtue of their systematic structure and 

lower complexity compared to other available modes. In (Wang et 

al.,2015), friction effects were captured by expanding the static 

model to the dynamical model. In the robotic systems, most of the 

existing literatures developed the torque-control scheme (e.g, Kwan 

et al.,2000; Wang,2015), and the actuator dynamics are typically 

excluded from the robotic behavior. However, considering the 

factors of high-velocity moment, highly varying loads, friction and 

actuator saturation in a complete robotic system, actuator dynamics 

are of vital importance (Wai et al.,2004; Gao et al.,2006), and the 

interactions between robot and actuator dynamics cannot be 

neglected.  

Furthermore, the traditional back-stepping method is frequently 

proposed to design the controller (Song et al.,2011). Although the 

back-stepping control technique is theoretically tractable, it has an 

explosion of complexity because of the repeated differentiation of 

the virtual functions (Cheng et al.,2005). In order to eliminate the 

explosion of complexity of the back-stepping design, the dynamic 

surface control (DSC) scheme was designed (Han et al.,2012). In 

this scheme, the virtual control was passed through a first-order 
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filter to obtain the derivative by systematic recursive steps. Besides, 

radial basis function neural networks (RBFNN) has been usually 

used as a tool for handling systems with high uncertainties due to 

the capability of approximating any smooth functions over a 

compact set to arbitrary accuracy (e.g, Chen,2010; Patre et al.,2008). 

The composite design was studied using prediction error with a 

slightly different serial–parallel estimation model (Wang et al.,2005; 

Xu et al.,2014) in which the NN modeling-related prediction error 

was defined between the state and the serial-parallel estimation 

model, and the dynamic surface technique is incorporated into the 

radial-basis-function neural network (RBFNN)) to design the 

adaptive controller.  

 Motivated by the aforementioned discussions, this paper focuses 

on the design of a voltage controller using composite neural 

dynamic surface for robotic manipulators. The dead zone and 

friction problems are both overcame by the proposed control 

scheme. The dynamic surface control technique is incorporated into 

the neural network, and a serial-parallel estimation model and the 

prediction error are combined to construct the composite NN weight 

update laws. With the proposed scheme, no prior knowledge is 

required on the bound of dead zone and friction, and the uniform 

ultimate boundedness of the position tracking error is guaranteed 

via the Lyapunov synthesis. 

2. Problem formulation and preliminaries 

2.1 System description  

In this paper, we consider an electrical robot manipulator system 

with friction and dead zone, and the motor voltages as the inputs of 

system. Then the model is described by the following dynamic 

equation 

( )( )( ) ( , ) ( , ) ( )

( )

f L

t

m m b

M q q C q q q T q q G q T D v t

v t nk i

di
L R i k q u

dt


 + + + + =


=

 + + =


  (1) 

where q , q and q denote the joint position, velocity, and 

acceleration vectors,
n(q) R nM   is the symmetric positive 

definite inertia matrix, ( , ) n nC q q R  is the centrifugal and 

Coriolis matrix, 
1( , ) n

fT q q R   is the nonlinear friction torque 

vector, 
1( ) nG q R  is a vector of gravitational forces, 

1n
LT R 

is an external disturbance, i is the motor current vector; n is the 

velocity of the motor, tk  is the torque constant, mL  and mR  

are the inductance and resistance of the motor, respectively, bk  is 

the back emf constant of the motor, u  is the voltage vector applied 

to drive  the motor, ( )( )D v t  denotes the plant torque vector to 

dead zone described as shown in Figure 1 

      ( )( )

( )

( )

( )

( ) ( )

0

( ) ( )

r r r

l r

l l l

m v t b v t b

D v t b v t b

m v t b v t b

 − 


=                 


− 

          (2) 

where rm and lm are the slope of the dead zone, and rb , lb  stand 

for the unknown dead zone width parameters, ( ) 1nv t R   is the 

dead zone input. The dead zone output ( )( )D v t  are not available 

for measurement. Without loss of generality, we assume 0rb  ,

0lb  , 0rm  , 0lm  . 

mr

ml
br

bl

D(v(t))

v(t)
0

 

Fig. 1. Dead zone model 

The dead zone inverse technique is a useful method to 

compensate the dead zone effect, as shown in figure 2, letting ( )D t  

be the torque vector from the manipulator that does not consider the 

dead zone (Tao,2003; Liang et al.,2012). The following signal ( )v t

is generated according to the certainty equivalence dead zone 

inverse described by 

( ) ( )( ) ( )( )( ) −+++= −− 1ˆˆˆˆ 11
mllmrr btDmbtDmtv   (3)              

where ˆ ˆˆ ˆ,  ,  ,  r l mr mlm m b b are the estimates of , , ,r l r r l lm m m b m b , 

respectively, and   can be given by 

        
( )

( )

1 0

0 0

v t

v t



= 



                (4) 

The resulting error ( )t  ,which between ( )( )D v t  and ( )v t  

are given by 

( ) ( )( ) ( )

( )( )( )
( )( )( )( )

1

1

ˆˆ

ˆˆ 1

mr r mr r

ml l ml l

t D v t v t

b m D t b m

b m D t b m







−

−

= −

= − +

+ − + −

  (5) 

Considering the modeling uncertainties and external disturbances, 

defining 1x q= , 2 1x q x= = , 3 =x i , 1y x= . Then the motor 

system can also be described as 

 

( )

( )

( )

1 2

1
2 1 3

1
1 1 2 2

1 1
1

1 1
3 3 2

( )( + )

( )[ ,

] ( ) ( )

( + )

t

n

n f u

m m b m

x x

x M x nK x t

M x C x x x

G x M q T M q T

x L R x k x L u

−

−

− −

− −

 =


=


−


+ − +


= − +

    (6) 

where ( ) ( ) ( )1 2 1 2 1,u f LT M x x C x x G x T T= − −  −  −  − ,

uT  is a lumped uncertainty, ( )1M x , ( )1 2,C x x , ( )1G x ,

fT ， and LT  are bounded, which represent the unknown 

uncertainties of ( )M q , ( , )C q q , ( )G q , fT ，and external 

disturbance, respectively. The uncertainties of ( )1M x ,

( )1 2,C x x , ( )1G x , and fT  are bounded by some positive 
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constants ( ), , ,i i m c g f =  such that mM   , 

cC   , gG   , and f fT   . For the disturbance, 

it is assumed that  2 0,LT L T , for all  )0T  ， , and LT is 

bounded by some positive constant :d L dT  . Thus, the 

lumped uncertainty is assumed to be bounded by a finite value.  

     

1/mr

1/ml

br

bl

D(t)

v(t)

0

 
Fig. 2. Inverse dead zone  

Defining
1= ( )ng M q −

, ( )+d n n uT g t g T= , 2 n tb g nK= ,

1
3 mb L−= , ( ) ( ) ( )2 1 2, ( )[ , ]n n nf x x g q C q q q G q= + and

( ) 1
3 3 3 2( + )m m bf x L R x k x−= − ,  (6) can be rewritten in terms of  

    
( )

( )

1 2

2 2 3 2 1, 2

3 3 3 3

1

n f d

x x

x b x f x x g T T

x f x b u

y x

=


= − − +


= +


=

           (7) 

where u  is the voltage control signal, and fT  is the nonlinear 

friction force. 

2.2 Friction model  

The nonlinear friction forces are described as 

          0 1 2fT z z x  = + +                     (8) 

where 0  is the stiffness of the elastic bristle, 1  denotes the 

damping coefficient, and 2  denotes the viscous friction 

coefficient, and z  is the internal friction state satisfying 

              
( )

x
z x z

h x
= −                       (9) 

The first term gives a deflection that is proportional to the 
integral of the relative velocity. The second term asserts that the 

deflection z  approaches a steady state value sz  given by 

             z ( )sgn( )s h x x=                     (10) 

When x  is constant, the function ( )h x  is given by 

        ( )
( )

2

0

s

x
x

c s cF F F e
h x



 − 
 + −

=            (11) 

where 0 , cF , and sF  are all unknown constants. ix  is the 

relative velocity between two contact surfaces. sx  is the Stribeck 

velocity (Graf et al.,2015). 

Defining sz z = − , the friction force is rewritten as 

( ) ( )

( ) ( )

2

2

2

1
0

[ ( ) ]sgn

[1 ]

x
xs

x
xs

f c s c

c s c

T x F F F e x

x

F F F e




 

−

−

= + + −

+ −

+ −

 (12) 

2.3 RBF neural network approximation 

Due to good capabilities in function approximation, radial basis 

function neural network (RBFNN) is usually used for the 

approximation of nonlinear functions (Ge et al.,2002). The 

following neural network is used to approximate the continuous 

function 

          ( ) ( )*TH X W X = +               (13) 

where 1 2* n nW R 
  is the idea weight matrix, ( )X  is the 

basis function of the neural network.   is the approximation error 

which satisfies N  , with N  being a positive constant.

( )X  can be chosen as 

( )
2

exp , 1,2,...,
2

i

i

x c
X i n



 −
= − = 

  

 (14) 

where 
L

ic R  and 0i   are the center and width of the ith 

kernel unit, respectively (Liu et al.,2015). 

3 Controller design and stability analysis 

In this section, the DSC technique is utilized in recursive steps 
with the serial-parallel estimation model and the prediction error 
derived from the difference between system state.  

Step1: Define the first error variable 1s  is 

                     1 1= ds x y−                  （15） 

where dy  is reference signal, the derivative of 1s  is 

1 2 ds x y= −                    (16) 

Choosing the virtual control 2dx  as 

2 1 1d dx y k s= −                  (17) 

where 1k  is positive designed constant, we introduce the filtering 

virtual control 2cx  and let 2cx  pass through a first-order filter 

with time constant 2  as 

( ) ( )
2 2 2 2

2 20 0

c c d

c d

x x x

x x

 + =

=
               (18) 

Defining 2 2 2cs x x= − , the derivative of 1s  becomes 

1 2

2 2 2 2

1 1 2 2 2

=

   ( )

d

c d d d

c d

s x y

s x x x y

k s s x x

= −

+ + − −

= − + + −

      (19) 

To remove the effect of the known error 2 2c dx x−  , the 

compensating signal 1z  is designed as 

1 1 1 2 2 2

1

( )

(0) 0

c dz k z z x x

z

= − + + −

=
     (20) 
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where 2z  will be defined in the next step. 

The compensated tracking signal is given by 

           1 1 1v s z= −                      (21) 

Then, the derivative of 1v  is 

      1 1 1 1 1 2=v s z k v v= − − +             (22) 

where 2 2 2.v s z= −  

Step 2: Define the error variable 2 2 2cs x x= − , and the 

derivative of 2s  can be given by 

  

2 2 2

2 3 2 1 2

2

= ( , )

c

n f d c

s x x

b x f x x

g T T x

= −

−

− + −

             (23) 

where dT  is approximated by 

     ( )1 1 1
T

dT W X = +             (24) 

where the input vector 
5

1 1 2 3, , , ,
T

T T T T T
d dX x x x y y R = 

 
. 

The virtual control 3dx  is defined as 

1
3 2 1 1 1

2 1 2 2 1 2 2

ˆ ˆ( ( )

( , ) )

T
d n f

c

x b W X g T

f x x x s k s

 −= − − +

+ + − −
              (25) 

where 1Ŵ  is the estimation of 1W , 2 0k  is the design constant, 

1̂  is the estimation of 1 .         

Introduce the filtering virtual control 3cx  and let 3cx  pass 

through a first-order filter with time constant 3  as 

( ) ( )
3 3 3 3

3 30 0

c c d

c d

x x x

x x

 + =

=
       (26) 

Define 3 3 3cs x x= − , and the derivative of 2s  is 

2 2 3 2 1 2 2

2 3 3 3 3 2 1 2

2

2 3 3 3 1 1 1

1 1 2 2

( , )

    = ( ) ( , )

   ( ) ( )

ˆ

n f d c

c d d

n f d c

T
c d

s b x f x x g T T x

b s x x x f x x

g T T x

b s x x W X

s k s

 



= + − + −

+ − + +

− + −

= + − + +

− − −

      (27) 

where 1 1 1
ˆ=W W W− . To eliminate the effect of ( )3 3c dx x− ,  the 

compensating signal 2z  is constructed as 

2 2 3 3 3 1 2 2

2

( )

(0) 0

c dz b z x x z k z

z

= + − − −

=
    (28) 

where 3z  will be defined in the next step. 

The compensated tracking signal is given by 

2 2 2v s z= −                       (29) 

Then the derivative of 2v  is 

2 2 2

2 3 1 2 2

1 1 1 1

=

ˆ( )T

v s z

b v v k v

W X  

= −

− −

+ + −

                (30) 

and the prediction error is 

1 2 2ˆNNz x x= −                 (31) 

where the derivative of NN modeling information is defined with 
serial-parallel estimation model 

( ) ( )

2 2 3 2 1 2

1 1 1 1 1

2 2

ˆ = ( , )

ˆ ˆ( )

ˆ 0 0

n f

T
NN

x b x f x x g T

W X z

x x

  

+ −

+ + +

=

        (32) 

where 1 0   is the user-defined positive constant. 

The derivative of 1NNz  is 

1 2 2

1 1 1 1 1 1

ˆ

ˆ= ( )

NN

T
NN

z x x

W X z   

= −

+ − −
   (33) 

The update law of 1Ŵ  is designed to be 

1 1 2 1 1 1 1 1
ˆ ˆ= ( ( ) )z NNW v X z W   + −         (34) 

where 1  , 1z  and 1  are positive constants. 

The update law of 1̂  is 

1 2 1 1ˆ = ( )z NNv v z +               (35) 

where uv  is a positive designed constant. 

Step3: Define the error variable as 3 3 3cs x x= − , and we have  

( )3 3 3 3x f x b u= +                (36) 

where ( )3 3f x is approximated by 

( ) ( )3 3 2 2 2
Tf x W X = +             (37) 

where the input vector 
5

2 1 2 3[ , , , , ]T T T T T T
d dX x x x y y R=  . 

Design the controller as 

1
3 2 2 2 3 3 2 2 3

ˆ ˆ( ( ) )T
cu b W X k s b s x −= − − − − +  (38) 

Then, the derivative of 3s  becomes 

3 3 3

2 2 2 2 3 3 2 2ˆ= ( )

c

T

s x x

W X k s b s  

= −

+ − − −
   (39) 

The compensating signal 3z  is designed as 

3 3 3 2

3(0) 0

z k z z

z

= − −

=
           (40) 

and the compensated tracking signal 

3 3 3v s z= −                   (41) 

Then, the derivative of 3v  is 

3 3 3

2 2 2

2 3 3 2

= ( )

ˆ

T

v s z

W X

k v v

 



= −

+

− − −

             (42) 

and the prediction error is 

2 3 3ˆNNz x x= −                (43) 
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where the derivative of NN modeling information is defined with 
serial-parallel estimation model 

3 2 2 2 3 2 2

3 3

ˆˆ ˆ= ( )

ˆ (0) (0)

T
NNx W X b u z

x x

  + + +

=
       (44) 

where 2 0   is the user-defined positive constant. 

The derivative of 2NNz  is 

2 3 3

2 2 2 2 2 2

ˆ

ˆ= ( )

NN

T
NN

z x x

W X z   

= −

+ − −
 (45) 

The update law of 2Ŵ  is designed to be 

2 2 3 2 2 2 2 2
ˆ ˆ= ( ( ) )z NNW v X z W   + −        (46) 

where 2  , 2z  and 2  are the positive constants, and the 

update law of 2̂  is 

2 3 2 2ˆ = ( )z NNv v z +              (47) 

where v  is a positive constant. 

Theorem: Considering the motor voltages as the inputs of the 
robotic manipulator system, with the dead zone (3) and the 
nonlinear friction (12), virtual control laws (18), (26) and the 
control law (38), and the update laws (34), (35), (46), (47), the 
position tracking error can be made small enough by properly 
choosing the design parameters. 

Proof: Construct the following the Lyapunov function candidate 

2
1

1 2 3 2
1

2 2
2 21 1

2 2
1 1

T T
i i i

i

i zi iNN

i i

V V V V W W

v z



 

=

= =

= + + +

+ +



 

          (48) 

where 
2 / 2, 1,2,3i iV v i= = , and according to (21), (29) and (41), 

the derivative of (48) is given by 

2 2
1

1

1 1

2 2
1

1

1 1

ˆ( ( ) )

ˆ( )

T T
i i i i i i i zi iNN

i i

T T
i i i zi iNN zi i iNN iNN

i i

V k v v W v X W z

v v z z z

  

    

−
+

= =

−
+

= =

= − − − +

+ − + −

 

 

(49) 

With the following update laws 

( )( )

( )

1

1

ˆ ˆ

ˆ

i i i i zi iNN i i

i i zi iNN

W X v z W

v v z

   

 

+

+

 = + −
 

= − +

 (50) 

we can obtain the following equation 

( )

3 2 2
2 2

1 1 1

3 2 2
2 2 *

1 1 1

ˆT
i i i zi iNN i i i

i i i

T T
i i i zi iNN i i i i i i

i i i

V k v z W W

k v z W W W W

  

   

= = =

= = =

= − − +

= − − + − +

  

  

(51) 

Considering the following facts 

2
* 2

* *1

2 4

T T i
i i i i i i

W
W W W W W W− = − − +  (52) 

V can be rewritten as 

2 2 2

1 1 1

2 2
*

1 1

2

1

2 2

1 1

2 2
*

1 1

ˆ

    = ( )

   

=

   =

T T T
i i i i i i zi i iNN iNN

i i i

T T
i i i i i i i

i i

T
zi i iNN iNN

i

T T
i i i zi i iNN iNN

i i

T T
i i i i i i

i i

T
i i i

i

V k v v W W z z

k v v W W W

z z

k v v z z

W W W W

k v v

  



 

 

 

= = =

= =

=

= =

= =

=

= − + −

− + −

− 

− − +

        −

−

  

 



 

 

2 2

1 1

2
*2 2

*

1

2 2

min min

1 1

2
*2

min

1

1

2 4

   

2

T
zi i iNN iNN

i

i
i i i

i

T T
i i z i iNN iNN

i i

i
i

i

z z

W
W W

k v v z z

W
W P

 



 



=

=

= =

=

− −

 
         − −
 
 

 − − −

        − +

 



 


   (53) 

where  min = min ik k ,  min = min i  ,  min = minz zi  ,

2
*max

max ,
2

P W


=  * *
max max iW W= ，and  max = max i  . 

Then, the uniform ultimate boundedness of the position tracking 
error could be guaranteed. This completes the proof. 

4 Simulation results 

In this section, the following dynamic model of the two- link of 

the robotic manipulator is considered 

( )( )

( )

( ) ( , ) T ( , ) ( )

k

f L

t

m m b

M q q C q q q q q G q T D v t

v t n i

di
L R i k q u

dt


+ + + + =


=


 + + =


 (54) 

where the dead zone occurs in timing belt and the model, ( )M q  

is defined as 

( ) 11 12

21 22

M M
M q

M M

 
=  

 
             (55) 

where 



Q. Chen et al. / IJAMCE 2 (2019) 1-8 

 

( )

( )

( )

( )

2 2
11 1 2 1 2 2

2 1 2 2

2
12 2 2 2 1 2 2

2
21 2 2 2 1 2 2

2
22 2 2

2 cos

cos

cos

M m m r m r

m r r q

M m r m r r q

M m r m r r q

M m r

= + +

+

= +

= +

=

         (56) 

( , )C q q  and ( )G q  are defined as 

( )
( ) ( )

( )

( )

( ) ( )

( )

( )

2 1 2 2 2 2 1 2 1 2 2

2 1 2 1 2

1 2 2 1 1

2 2 1 2

2 2 1 2

sin sin
,

sin 0

cos

cos

cos

m r r q q m r r q q q
C q q

m r r q q

m r m r g q

G q m r g q q

m r g q q

− − + 
=  

 

 + 
 

= + + 
 + 

 (57)    

where im  and ir  are the mass and length of link i , respectively, 

65.5n =  is gear ratio of reduction gear, 0.63mL mH=  is the 

inductance of the motor, 0.83mR =   is the resistance of the 

motor, 0.018 / , 0.018 / / sect bk Nm A k V rad= = are the torque 

constant and the back emf constant. 

For fair comparison, the initial states and some control 

parameters are the same. The parameter values chosen for each link 

and actuator are represented in the following tables.       

Table 1. Parameters of the robotic manipulator 

ith  ( )im kg  ( )ir m  

1 12.1 0.3 

2 3.59 0.41 

Table 2. Parameters of friction 

ith  cif  sif  siv  0i  1i  2i  

1 0.061 0.063 0.00075 0.1 0.01 0.4 

2 0.061 0.063 0.00075 0.1 0.01 0.4 

Table 3. Parameters of dead zone 

ith  rim  1im  rib  1ib  

1 1 2 2 -3 

2 2 1 3 -2 

Case 1  

The reference trajectories are chosen as ( )1 0.1sin 2dq t= ,

( )2 0.1sin 2dq t= . The initial state of the system is set to be zero. 

The parameters of the control law are 1 15k =  , 2 25k =  , 

3 20k = . The parameters of the NN update law (56) are 1i = ,

0.2i = , 1zi = , and 0.1uv = . In the NN design, the RBF NN 

contains 25 nodes with centers ( )  1,...,ic i N=  evenly spaced in 

[-10,10] and widths ( )=20  1,...,i i N =  . The initial NN 

weights 1
ˆ (0)W  and 2

ˆ (0)W  are selected as zero. In the proposed 

scheme, the related parameters first-order filters are selected as

1 0.005 =  and 2 0.025 =  . The simulation results are shown 

in Figs.3- 5. 

 

Fig. 3. position tracking trajectories of two links  

 

Fig. 4. speed tracking trajectories of two links  

 

Fig. 5. the tracking error of two links 

The position and speed tracking trajectories of the two links are 

shown in Fig.3 and Fig.4, respectively. Fig. 5 depicts the tracking 

errors. From Figs.3-5, it is seen that the proposed scheme could 



Q. Chen et al. / IJAMCE 2 (2019) 1-8 

 

guarantee a satisfactory tracking performance with respect to small 

tracking error and low overshoot.  

5 Conclusion 

In this paper, the proposed control scheme focuses on the tracking 

control problem of the voltage-driven robotic manipulators with 

dead zone and friction. An adaptive neural controller is designed by 

using the dynamic surface technique, and the complex explosion 

problem is thus eliminated. The stability of the system is guaranteed 

based on the Lyapunov stability analysis and the simulations are 

provided to verify the effectiveness of the proposed scheme.  
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