
International Journal of Applied Mathematics in Control Engineering 3 (2020) 8-14

* Corresponding author.

E-mail addresses: zhangsuqie@163.com (S. Zhang)

 Contents lists available at YXpublications

 International Journal of Applied Mathematics in

Control Engineering

 Journal homepage: http://www.ijamce.com

Spark-based Backpropagation Neural Network Algorithm

Suqi Zhanga,*, Shiyao Sheb, Junhua Gub

aSchool of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China

bSchool of Artificial Intelligence ,Hebei University of Technology,Tianjin 300401,China

A R T I C L E I N F O

A B A S R A C T

Article history:

Received 23 January 2020

Accepted 1 March 2020

Available online 1 March 2020

 Abstract: Backpropagation neural network has been widely used in the fields of data mining and pattern

recognition. The research shows that with the increase of training data, the accuracy of the model produced by a

neural network can be improved. However, the iterative computation of large-scale data results in the low-speed

process, which restricts its application in big data. In order to solve the problem of time-consuming of

backpropagation neural network in training large scale data, this paper proposes a spark-based parallel

backpropagation neural network algorithm called SBPNN. The experiment verifies the algorithm from the aspect

of convergence, parallelism and high efficiency. It proves that the algorithm has good convergence and

parallelism. Compared with the MBNN, the algorithm is faster and more suitable for training large scale data.

Published by Y.X.Union. All rights reserved.

Keywords：

Large-scale data;

Backpropagation neural network;

Spark;

SBPNN;

1. Introduction

As the theory and technology have developed rapidly in

computational intelligence in recent years, ANN (Artificial Neural

Network) has been widely used in data mining and pattern

recognition applications. ANN can approximate the non-linear

function with arbitrary precision based on the relationship between

neurons in each layer, and it has high fault-tolerance and

self-adaptability. Its performance can be determined by structural

features and neuron characteristics inside the neurons. ANN has

solved the problem of data analysis in a variety of fields. In many

algorithms of artificial neural network, backpropagation neural

network (BPNN) can adjust the weights and thresholds of the

network according to the error backpropagation, with good function

approximation function and generalization abilities. The network

structure is simple and easy to deploy to computers, so it has been

widely used in classification, image processing, and function

prediction, etc. [1], it is the most widely used artificial neural

network at present. In 2019, S W Zhang and P Wang [2] proposed a

method for precise tracking of aircrafts which using BP neural

network takes the TDOA measurements as input and the data

trained could quickly fix target locations. In 2019, J Yao [3]

proposed a method that the deep learning method built on CNN can

be applied to the arteriovenous image reconstruction of a

multi-electrode electromagnetic flowmeter. In 2019, W X Du [4]

proposed that fault information of multiple sensors is decomposed

into the sum of multiple intrinsic modal functions by the method of

empirical mode decomposition and the neural network fault

diagnosis model is established through training.

In the artificial neural network, the prediction results produced by

training over large scale data are more accurate. Therefore, in

application of BPNN, it is necessary to training over large scale data

to ensure the accuracy of prediction results. However, the large

amount of computation of network parameters in iterative training

leads to low-speed training process, which restricts the use of neural

networks in big data.

In early times, researchers tended to use special hardware to

reduce training time for neural networks, such as neuro-hardware

and neurocomputer, but they offer little flexibility and scalability

[5].

In recent years, many researchers apply neural networks to

distributed platforms for parallel training. In 2006, Y. Bo and W.

Xun[6] proposed that in the grid computing model, distributed

neural networks with data parallelism have better computational

performance. In 2007, C. Chu, S. Kim [7] proposed the

parallelization of BPNN on multi-core processors. However, both

papers focus on the parallelization of neural networks without

verifying the validity of parallelism on large scale data. In 2010, Z.

Liu and G. Miao [8] proposed a MapReduce-based

Backpropagation Neural Network (MBNN) based on the

MapReduce framework. However, the iterative training process in

BPNN will cause frequent data transfer between Map and Reduce,

and the MapReduce framework is only based on the HDFS (Hadoop

distributed file management system) for data transfer, so frequent

reading and writing spend a lot of time. In 2013, R Gu and Y Huang

mailto:zhangsuqie@163.com
http://www.yxpublications.com/ijamce/index.html

S. Zhang et al. / IJAMCE 3 (2020) 8-14

[9] proposed a parallel computing technique for distributed training

neural networks—CNeural. CNeural stores large-scale training data

on HBase to achieve memory-based distributed computing.

However, it provides little support in fault tolerance. If a fault

occurs during iterative training, the whole training process would be

restarted in 2011 Zaharia and M. Chowdhury [10] proposed spark

which is a memory-based distributed platform, and they pointed out

that spark is more suitable for iterative algorithms in machine

learning with high fault tolerance. In 2016, Liu Y and Xu L

proposed [11] the PBPNN (Parallelization of Backpropagation

Neural Network), which is parallelization of BPNN in spark based

on the spark platform. In classification problem, they implemented

the parallel training of BPNN on the spark platform, but the training

and prediction were carried out randomly. Therefore, a complete

neural network model was not established after the training.

In conclusion, BPNN in distributed platform for training over

large scale data needs further study. Therefore, based on the

previous research results, this paper proposes Spark-based Back

Propagation Neural Network algorithm (SBPNN), which can solve

the problem of time-consuming when training over large scale data.

After the training, it can establish a complete neural network model

for prediction. The algorithm was experimentally implemented on

the spark platform using large scale data. First of all, we train the

algorithm in Mini-batch update mode with different numbers of

training samples l and analyze the convergence of the SBPNN. Then,

we calculate the speedup ratio by using the different cluster sizes to

verify the parallelism of the SBPNN. Finally, on the time efficiency,

comparisons with MBNN (the parallel backpropagation neural

network algorithm based on MapReduce framework under Hadoop

platform) verify the high efficiency of the SBPNN.

2. BACK PROPAGATION NEURAL NETWORK

Backpropagation neural network is one of the most widely used

machine learning algorithm [12], it was proposed by a group of

scientists headed by Rumelhart and Mc Celland in 1986. The

research shows that the three-layer BPNN can approximate any

non-linear continuous function with arbitrary accuracy [13]. This

paper illustrates the concrete training process by three-layer BPNN

as an example. As shown in Figure 1, BPNN is a three-layer neural

network model, including input layer, then hidden layer, and hidden

layer connected with output layer. In BPNN, the number of neurons

in input layer and output layer is determined by the input vector of

training data and the number of elements in output vector. The

neurons in the same layer are not connected, and the neurons in two

adjacent layers are full connection.

.

.

.

.

.

.

x1

x2

x3

xm

W1 1

W1 2
W1 3

Input layer

m units

Hidden layer

n units

Output layer

q units

W1 n
W2 1

V2 1

W2 3W2 n

W3 1W3 2

W3 3W3 n

Wm 1
Wm 2

Wm 3
W m n

.

.

.

V1 1

V1 2

V1 3
V1 q

V2 2
V2 3V2 q

V3 2

V3 3

V n2

V n 3
V n q

W2 2

V 3 q

V3 1

V n 1

y1

y2

y3

yq

Fig.1. The structure of BPNN

BPNN adjusts the weights and thresholds by the gradient descent

method. The whole training process includes forward and back

propagation. Forward propagation refers to that input data from the

input layer, the middle of the hidden to spread the data to the output

layer. If there is error in actual output result and the expected output

results, the back propagation is carried out. The error is input from

the output layer, the error is propagated backward layer by layer

through the hidden layer to the input layer, and the weight and

threshold of the network are adjusted. The training work continues

until the mean square error meets the specified threshold or network

iteration number reaches the limited round.

Suppose the total number of training samples is N, the number of

neurons in the input layer is denoted by m, and xi(i=1 ，
2….m)represents the ith input vector; the number of neurons in the

hidden layer is denoted by n, uj and hj(j=1，2….n)respectively

represent the input data and output data of the jth neuron in the

hidden layer; the number of neurons in the output layer is denoted

by q, lk and ck(k=1，2….q)denote the input data and the output data

of the kth neuron in the output layer, tk denotes the expected output

of the kth neuron in the output layer, dk denotes the output error of

the kth neuron in the output layer, oj denotes the error of the jth

neuron in the hidden layer error; wij denotes the weight between the

ith neuron in the input layer and jth neuron in the hidden layer, vjk

denotes the weight between the jth neuron in the hidden layer and

kth neuron in output layer, αj, and βk respectively denote the

thresholds of the jth neuron in the hidden layer and the kth neuron in

the output layer, and is the learning rate factor.

2.1 ONLINE UPDATE MODE

The online update mode is to update network weights and

thresholds after every training sample is calculated. As shown in

Figure 2, N times of weights and thresholds are updated in one

iteration process, and the specific implementation process is as

follows.

Fig. 2. Online update mode training process

1. Input a training sample x=(x1,x2,……,xm)into the input

layer and calculate the input uj and output hj of each neuron in

the hidden layer according to formula (1) (2), where hj is

calculated by the sigmoid activation function, it can limit the

range of function values is [0,1].

 1

m

i j i

i

jju w x
=

= + j=1，2….n (1)

1

1 jujh
e
−

=
+

 j=1，2….n (2)

According to the output data of each neuron in the hidden

layer, input lk and output ck of each neuron in output layer are

calculated according to formula (3) (4).

Sample1

Sample2

SampleN

.

.

.

.

.

.

.

.

.

Update

Update

Update

1

2

N

S. Zhang et al. / IJAMCE 3 (2020) 8-14

 1

n

jk j

i

kk
l v h

=

= + k=1，2….q (3)

1

1 klk
c

e
−

=
+

 k=1，2….q (4)

2. Calculate the error of neurons in the output layer and the

hidden layer according to the formula (5) (6) according to the

output data of each neuron in the output layer.

))(1(kkkkk ctccd −−= k=1，2….q (5)

1

(1)
q

j j k jk

k

h hjo d v
=

= − j=1，2….n (6)

3. According to the errors of neurons in the output layer

and the hidden layer, the change value of weights and thresholds

are calculated according to formula (7) (8).

jk k kd cv = kk d = k=1，2….q (7)

ij j jo hw = jj o = j=1，2….n (8)

4. Update the network according to formula (9) (10)

based on the change value weights and thresholds.

+jk jk jkvv v= +k k k = k=1，2….q (9)

+ij ij ijw w w= +j j j = j=1，2….n (10)

5. Select the next training sample, and repeat the

calculation of 1 to 4 steps, until all the training samples are

completed. When the network completes an iterative training,

perform the next step.

6. Calculate the mean square error of the whole training

data set, and the training work continues until the mean square

error meets the specified threshold or network iteration number

reaches the limited round, then output neural network model

Array[w]. Otherwise return to the first step to continue.

2.2 MINI-BATCH UPDATE MODE

Mini-batch update mode is to divide the whole N training

samples evenly into several batches. Each batch has l training

samples, and when l = N, it is the full batch updating mode. The

training samples of each batch are calculated according to the steps

1 ~ 3 of 2.1, and obtain the change value of weights and thresholds

form l samples. Afterward, the weights and thresholds are updated

according to formula (11) (12) to achieve the 4th step, and the next

batch of training samples will be calculated. As shown in Figure 3,

once iteration of the mini-batch update mode updates N / l times

weights and thresholds [14].

+
jk

jk jk

v
v v

l
=

+k k

k

l

 =

k=1，2….q (11)

+
ij

ij ij

w
w w

l
=

 +
j

j j
l

 =
 j=1，2….n (12)

Fig.3. Mini-batch update mode training process

The online update mode is that every iteration of network training

needs to update the weight and threshold N times, which consumes

a long time. Each update of weights and thresholds is calculated

based on the previous training sample, and it will have a certain

influence on the training results. The later calculation of training

samples on the network will cover the results of the previous

calculation. When the training data set is large, there is low

accuracy; thereby, it is easy to fall into local optimal solution. The

mini-batch update mode avoids the influence of the input order of

training samples on the training results, and ultimately solves the

optimal global solution and reduces the time spent on each iteration

[15].

In the online update mode, every update is the result of the

previous training sample calculation, and the calculation of the next

training sample is also performed on the network after the last

update. Therefore, the online update mode is not easy to implement

the parallelization of training samples calculation. The mini-batch

update mode is to update the network after a batch of training

samples are calculated, and parallel computation of a batch can be

implemented on multiple processors. Therefore, this paper adopts

mini-batch update mode to realize SBPNN.

3. SBPNN

3.1. Spark

Spark is a memory-based, distributed parallel computing platform

that takes full advantage of the Hadoop platform and the

MapReduce framework. Besides, intermediate results from Spark

operations can be stored in memory without the need to read and

write HDFS and improve parallel computing speed, so the spark is

more suitable for data mining and machine learning, especially for

iterative algorithm [16]. The Spark cluster starts with a master node

and several worker nodes. The master node is mainly responsible

for the management of the cluster resources. The worker node is for

data calculation [17]. Spark workflow is shown in Figure 4, when

the master node uses the spark-submit command to submit jobs, it

first starts a driver process in the local client. The driver process

will be set according to the parameters of the master node to apply

for the corresponding cluster resources, such as the number of

worker nodes, the size of executor's memory, and the number of

CPU cores on each worker node. The master node communicates

with the worker node, informing the worker node to start the

Sample1

Samplel

SampleN

.

Sample

N-l+1

.

.

.

.

.

.

.

.

.
.

.

.

.

Update

Update

1

N/l

S. Zhang et al. / IJAMCE 3 (2020) 8-14

executor and registering with the Driver process; the driver process

being connected to the worker node and the tasks to be executed are

assigned to the various worker nodes in the cluster, the worker node

reads the data from HDFS according to the task allocation and

caches it into memory, and the driver process collects and

summarizes the results processed by each worker node.

Fig.4. Spark workflow diagram

3.2. SBPNN algorithm flow

The neural network is a typical iterative algorithm, and it adjusts

the neural network model if calculation data stored in memory can

greatly improve the algorithm iteration speed [18]. Therefore, the

neural network algorithm is more suitable for parallel model

building on the Spark platform.

There are two parallelization approaches of the neural network,

node parallelism, and training data parallelism. The node

parallelism divides the neurons of neural networks into different

worker nodes for processing [19]. Each worker node carries out data

communication in the process of calculation to realize parallel

training. Training Data parallelism divides the training samples into

different worker nodes [20]. Each worker node has a complete

neural network structure and calculates the training samples on the

local machine so as to realize the parallel computing of the training

samples. The SBPNN algorithm in this paper adopts the mini-batch

update mode. Therefore, it is more appropriate to implement

parallel training by training data parallelism.

Before carrying out the training of SBPNN, we need to define the

structural information of the network, including the number of

neural networks, the number of neurons per layer, the initial weights

and thresholds of the network, the learning rate factor, and the size

of the value of l. First, the master node initializes the neural network

structure information and broadcasts to the worker nodes in the

cluster so that each worker's memory stores a complete neural

network, and the initial state of the network is the same. In the

SBPNN training, each worker node gets part of the training data set,

and multiple workers calculate w(w represents the w、v、α、

β)of each training sample in parallel according to formula (1) to

formula (8), and then update the weights and thresholds according

to formula (11) (12) on the master node. The Master node and the

Worker nodes respectively perform different tasks. Figure5

illustrates the parallel implementation process of the SBPNN

algorithm by taking two worker nodes as an example. Specific steps

are as follows:

a. Master node defines BP neural network structure

information, and worker nodes read training data set

from HDFS;

b. The master node broadcasts the defined BP neural

network structure information to each worker node so

that a complete BP neural network can be instantiated on

each worker node;

c. Conduct neural network training in parallel on each

worker node to calculate the change value of each

training sample's weight and threshold w;

d. Worker nodes return the weight and threshold change

value w to the master node;

e. The master node integrates w of each worker node,

updates the weights and thresholds of the neural

network, and judges whether all batches of training

samples have been learned, and proceeds to the next

step; otherwise, returns to step b;

f. judging whether the mean square error of the whole

training data meets the requirement or the number of

iterations of the network reaches the upper limit, if yes,

ending the training; otherwise, returning to step b to

continue the training;

g. The training is finished, and the trained neural network

model Array[w] is output.

3.3 Parallel Conversion of Data States in SBPNN

Algorithm

Fig.5. The parallel training algorithm of SBPNN

The advantage of the Spark platform is based on memory

computing, RDD (Resilient Distributed Data) is an abstraction of

distributed memory in the Spark platform, mainly from the creation

of distributed files on HDFS or from the other RDDs [21]. RDD is

divided into multiple partitions. Each partition is located in different

nodes in the cluster so that the data in the RDD can be parallel

operations. In order to achieve SBPNN used by various RDD

operators, operations are carried out in memory. Figure 6 shows two

worker nodes as an example of the parallel conversion process in

the parallel training phase of SBPNN. The details are as follows:

First, the worker nodes read the training data from HDFS and

(Driver)

Worker1 Worker2Cache Cache

Input Data 1 Input Data 2

tasks

results

Master

results

tasks

S. Zhang et al. / IJAMCE 3 (2020) 8-14

caches it in memory, and then uses the parallelize method provided

by the Spark environment Spark Context to convert the training data

into RDD marked as RDD1. Before calling RDD1.map, the output

value of each neuron in the output layer is calculated, and the return

value is recorded as RDD2. Then the RDD2.map operator is used to

achieving back propagation, and the error of each neuron in the

output layer and the hidden layer is calculated. The return value is

RDD3, then RDD3.map operator calculated the w, the return value

recorded as RDD4, and finally the RDD4.tree aggregate operator to

each partition aggregates, and returns an updated neural network

model Array[w]. The initialization neural network structure

information involved in the implementation process is broadcast by

the master node to each worker node by using the broadcast

operator. The neural network model Array[w] is also rebroadcast

after each update.

training data set

RDD1

RDD2

RDD3

RDD4

neural network model Array[w]

RDD1.map(data => NNforward(data))

RDD2.map(data => NNback(data))

RDD3.map(data => NNadjustweights(data))

RDD4.treeaggregate()

SparkContext.parallelize()

RDD1

RDD2

RDD3

RDD4

RDD1.map(data => NNforward(data))

RDD2.map(data => NNback(data))

RDD3.map(data => NNadjustweights(data))

RDD4.treeaggregate()

SparkContext.parallelize()

Worker1 Worker2

Fig. 6. SBPNN data state parallel conversion diagram

4. Analysis of results

In order to verify the performance of the SBPNN algorithm, the

experiment is mainly divided into three parts. First, the error

accuracy is used as the training end condition in mini-batch update

mode. The convergence of SBPNN was analyzed by the number of

iterations and training duration at the end of training under different

l; Then, take l = N, train with different training data, calculate the

speedup ratio to analyze the parallelism of SBPNN; Finally, take l =

N as the same, compare with MBNN(a parallelized BP neural

network algorithm based on Hadoop platform)to verify the

effectiveness of SBPNN.

The experiment was implemented on Spark2.0.0 and Hadoop

2.4.1 clusters. The cluster environment consisted of 6 nodes,

including 1 master node and 5 worker nodes. Each node was

configured identically and located in the same local area network.

The operating system was CentOs6. 5, CPU is E5-2620 v4, the core

frequency is 2.10GHZ, the node memory is 32GB.

In this paper, the supersymmetry particle data set SUSY was

selected as the experimental data from the UCI machine learning

database of the University of California. The data has a total of 5

million samples, accounting for 2.2G of storage space. Each of

these data contains 18 feature items and 1 category identifier item,

which is a typical data to solve the classification problem using

neural network algorithm. This paper uses three layers of BP neural

network. The number of neurons in input layer m = 18, the number

of neurons in hidden layer n = 10, and the number of neurons in

output layer q = 1.

4.1. Analysis of SBPNN Convergence

BP neural network is one of the iterative algorithms. The

convergence of the iterative algorithm shows whether or not to

converge and the convergence rate [22]. The good iterative

algorithm has a faster convergence rate under stable convergence. In

this experiment, the mean square error of the whole training data is

less than or equal to 0.075 in the end condition of SBPNN, and the

convergence rate of SBPNN is analyzed by the number of iterations

and training duration of SBPNN under different l. The experimental

results are shown in Figure 7 and Figure 8.

In figure 7, the abscissa indicates the number of iterations, and

the ordinate indicates the mean square error. The four lines in the

figure represent the trend of mean square error under four different l.

It can be seen from the figure that when different l for training is

used, the mean square error shows a gradual downward trend,

which shows that SBPNN has a stable convergence in the training

large scale data.

In figure 8, the abscissa indicates the mean square error, and the

ordinate indicates the training time. The five lines in the figure

represent the training time when achieving different mean square

errors at five values of l. When the mean square error is 0.075, the

training time of l = 80000 is the shortest, and the training time of l =

5000000 is the longest. Thus, for large scale training data,

mini-batch update mode to take the appropriate l can make a faster

convergence rate.

The smaller training means square error leads to a better training

result. When l is too small, the training data will be divided into

many batches. Each batch has fewer training samples, and it cannot

reflect the characteristics of the whole data, although the number of

iterations less. Each iteration takes a longer time, the total training

time will be longer. When l is too large, each batch contains more

training samples, the number of update times on each iteration will

be reduced, it makes each iteration takes less time, the result of

learning is more similar to the optimal global solution, but the mean

square error produced by each iteration decreases slowly, thereby,

more iterations are needed to get a better model. This makes the

overall training time longer. Thus, under the large-scale training

data, taking the appropriate l training for SBPNN can achieve the

optimal training time, which makes SBPNN have better

convergence speed.

Fig. 7. Different l value of the number of iterative comparison chart

S. Zhang et al. / IJAMCE 3 (2020) 8-14

Fig.8. Different l value training time comparison chart

4.2. SBPNN parallelism analysis

The experiment verifies the parallelism of the algorithm by

changing the size of the training data, counting the training duration

under different nodes to calculate the speedup. The speedup is

calculated, as shown in Equation (13).

1T
S p

Tp

= (13)

In the above formula, T1 represents the training duration when

using 1 worker node, Tp represents the training duration when using

p worker nodes, and Sp represents the acceleration ratio, which

indicates the efficiency increase after parallelization. Among them,

when Sp = p, it is the linear acceleration ratio, and the parallelism of

the algorithm is best [23].

The experimental results are shown in Figure 9, the abscissa is

the number of worker nodes, and the ordinate is the acceleration

ratio. The three lines in the figure are the speedup of 1 million

training data and 5 million training data and the linear. It can be

seen from the figure that the speedup of two different training data

is approximately linear with the number of nodes, and the speedup

ratio of 5 million data sets is closer to the linear speedup. This

shows that SBPNN has good parallelism in dealing with large scale

training data.

4.3. SBPNN High-Efficiency Verification

SBPNN is implemented on the spark platform, and it has a faster

iteration rate theoretically. In this paper, comparing with the parallel

BP neural network algorithm MBNN based on the Hadoop platform

and counting the training duration of each iteration under the same

training data set to analyze the efficiency of SBPNN.

The experimental results are shown in Figure 10. The abscissa is

the size of the experimental data, and the training data of 1 million,

2 million, 3 million, 4 million, and 5 million are used respectively,

and the ordinate is the training duration of once iteration training of

the current training data. The two histograms in the figure show the

operation of SBPNN and MBNN respectively.

Seen from Figure 10, the SBPNN iterative training takes much

less time than MBNN under different training data, and the training

speed of SBPNN is faster than MBNN about 10 to 30 times. This

shows that SBPNN has a higher iteration speed than MBNN.

Fig. 9. Speed ratio diagram

Fig.10. SBPNN Efficient Comparison Chart

5. Conclusion

In this paper, Spark parallel backpropagation neural network

algorithm SPNNN is proposed, which solves the problem of

time-consuming in training large scale data. Experimental results

show that the proposed algorithm has good stability and

convergence and it can effectively reduce the training duration by

using the appropriate l. The proposed algorithm is proved in

parallelism, and comparing with MBNN, SBPNN achieves faster

iteration speed when dealing with large scale training data.

ACKNOWLEDGMENT

The paper is funded by the National Natural Science Foundation

of China under Grant 61802282.

REFERENCES

[1] Cui-Chi R, Shu-Ying Y, Jun H. Handwritten character recognition based

on BP neural network[J]. Journal of Tianjin University of Technology,

2006, 11(3):65-79.

[2] Shaowei Zhang, Pu Wang, Jin Yin. Neural Networks Approach Multipoint

Orientation System Design[J]. International Journal of Applied

Mathematics in Control Engineering,2019,2 (2):151-157.

[3] Jian Yao, Xueli Wu. Reconstruction of Arteriovenous Images based on

CNN and Multi-electrode Electromagnetic Measurement[J]. International

Journal of Applied Mathematics in Control Engineering,2019,2(2):

202-209.

[4] Wenxia Du, Xun Bai, et al. Fault Diagnosis of Sensors based on Empirical

Mode Decomposition and Neural Network[J]. International Journal of

S. Zhang et al. / IJAMCE 3 (2020) 8-14

Applied Mathematics in Control Engineering,2019,2 (1):66-73.

[5] Turchenko V, Grandinetti L. Parallel batch pattern BP training algorithm of

recurrent neural network[C]. International Conference on Intelligent

Engineering Systems, IEEE Press, 2010.

[6] Y. Bo and W. Xun. Research on the performance of grid computing for

distributed neural networks[J]. International Journal of Computer Science

and Network Security,2006,6(4):179–187.

[7] Lin Y A. Map-Reduce for Machine Learning on Multicore[C]. Advances in

Neural Information Processing Systems, MIT Press, 2006.

[8] Liu Z, Li H, Miao G. MapReduce-based Backpropagation Neural Network

over large scale mobile data[C]. Sixth International Conference on Natural

Computation, IEEE, 2010.

[9] Gu R, Shen F, Huang Y. A parallel computing platform for training large

scale neural networks[C]. IEEE International Conference on Big Data,

IEEE, 2013.

[10] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing[C].

Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, USENIX Association, 2012.

[11] Liu Y, Xu L, Li M. The Parallelization of Back Propagation Neural

Network in MapReduce and Spark[J]. International Journal of Parallel

Programming, 2016, 45(4):181-195.

[12] Cui-Chi R, Shu-Ying Y, Jun H. Handwritten character recognition based

on BP neural network[J]. Journal of Tianjin University of Technology,

2006,25(3):135-150.

[13] Yang J, Huang L. An Improvement and Application of Genetic BP Neural

Network[C]. International Conference on Computational Intelligence and

Security (CIS), IEEE, 2015.

[14] Turchenko V, Grandinetti L. Efficiency Analysis of Parallel Batch Pattern

NN Training Algorithm on General-Purpose Supercomputer[J]. Distributed

Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and

Ambient Assisted Living,2009,11(2):226-232.

[15] Liu Wei, Liu Shang, Zhou Xuan. Sub batch learning method for BP neural

networks[J]. Transactions on Intelligent Systems,2016, 11(2):226-232.

[16] Liu T, Fang Z, Zhao C, et al. Parallelization of a series of extreme learning

machine algorithms based on spark[C]. International Conference on

Computer and Information Science (ICIS), IEEE Computer Society, 2016.

[17] Jiao Runhai, Zhang Qian, Chen Chao. Improved algorithm for mining

maximum frequent itemsets based on Spark[J]. Computer Engineering and

Design,2017,38(07):1839-1843.

[18] Hui W, Yong W, Wen-Long K E. An Intrusion Detection Method Based on

Spark and BP Neural Network[J]. Computer Knowledge and Technology,

2017,14(11):246-260.

[19] Ganeshamoorthy K, Ranasinghe D N. On the Performance of Parallel

Neural Network Implementations on Distributed Memory Architectures[J].

International Symposium on Cluster Computing and the

Grid,2008,27(2):90-97.

[20] Haomin H U, Deyun M A. A Neural Network Prediction Model Based on

Data Parallelism[J]. Computer Engineering, 2005,31(11):162-164.

[21] Jing W, Huo S, Miao Q, et al. A Model of Parallel Mosaicking for Massive

Remote Sensing Images Based on Spark[J]. IEEE Access, 2017,

15(99):1-10.

[22] Shi J, Sullivan B, Mazzola M, et al. A Relaxation-based Network

Decomposition Algorithm for Parallel Transient Stability Simulation with

Improved Convergence[J]. IEEE Transactions on Parallel & Distributed

Systems, 2018,22(4):56-70.

[23] Puljic K, Manger R. A distributed evolutionary algorithm with a

superlinear speedup for solving the vehicle routing problem[J]. Computing

& Informatics, 2012, 31(3):675-692.

Suqi Zhang received the Ph.D.degree from
the School of Electronic Information
Engineering, Tianjin University, Tianjin,
China, in 2014. She is currently working at
School of Information Engineering, Tianjin
University of Commerce, Tianjin, China. Her
research interests include intelligent
recommendation, complex network analysis
and data mining.

Shiyao She is currently studying at School
of Artificial Intelligence, Hebei University
of Technology. His research interests include
intelligent recommendation, complex
network analysis and data mining.

Junhua Gu born in 1966, Ph. D. Member of
China Computer Federation. He is currently
working at School of Artificial Intelligence,
Hebei University of Technology, Tianjin,
China. His main research interests include
Data Mining, Intelligent Information
Processing, Information Acquisition and
Integration, Intelligent Computing and
Optimization, Function and Information
Display, and SoftWare Engineering and
Project Management.

