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 Abstract: Backpropagation neural network has been widely used in the fields of data mining and pattern 

recognition. The research shows that with the increase of training data, the accuracy of the model produced by a 

neural network can be improved. However, the iterative computation of large-scale data results in the low-speed 

process, which restricts its application in big data. In order to solve the problem of time-consuming of 

backpropagation neural network in training large scale data, this paper proposes a spark-based parallel 

backpropagation neural network algorithm called SBPNN. The experiment verifies the algorithm from the aspect 

of convergence, parallelism and high efficiency. It proves that the algorithm has good convergence and 

parallelism. Compared with the MBNN, the algorithm is faster and more suitable for training large scale data. 
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1. Introduction 

As the theory and technology have developed rapidly in 

computational intelligence in recent years, ANN (Artificial Neural 

Network) has been widely used in data mining and pattern 

recognition applications. ANN can approximate the non-linear 

function with arbitrary precision based on the relationship between 

neurons in each layer, and it has high fault-tolerance and 

self-adaptability. Its performance can be determined by structural 

features and neuron characteristics inside the neurons. ANN has 

solved the problem of data analysis in a variety of fields. In many 

algorithms of artificial neural network, backpropagation neural 

network (BPNN) can adjust the weights and thresholds of the 

network according to the error backpropagation, with good function 

approximation function and generalization abilities. The network 

structure is simple and easy to deploy to computers, so it has been 

widely used in classification, image processing, and function 

prediction, etc. [1], it is the most widely used artificial neural 

network at present. In 2019, S W Zhang and P Wang [2] proposed a 

method for precise tracking of aircrafts which using BP neural 

network takes the TDOA measurements as input and the data 

trained could quickly fix target locations. In 2019, J Yao [3] 

proposed a method that the deep learning method built on CNN can 

be applied to the arteriovenous image reconstruction of a 

multi-electrode electromagnetic flowmeter. In 2019, W X Du [4] 

proposed that fault information of multiple sensors is decomposed 

into the sum of multiple intrinsic modal functions by the method of 

empirical mode decomposition and the neural network fault 

diagnosis model is established through training. 

In the artificial neural network, the prediction results produced by 

training over large scale data are more accurate. Therefore, in 

application of BPNN, it is necessary to training over large scale data 

to ensure the accuracy of prediction results. However, the large 

amount of computation of network parameters in iterative training 

leads to low-speed training process, which restricts the use of neural 

networks in big data. 

In early times, researchers tended to use special hardware to 

reduce training time for neural networks, such as neuro-hardware 

and neurocomputer, but they offer little flexibility and scalability 

[5]. 

In recent years, many researchers apply neural networks to 

distributed platforms for parallel training. In 2006, Y. Bo and W. 

Xun[6] proposed that in the grid computing model, distributed 

neural networks with data parallelism have better computational 

performance. In 2007, C. Chu, S. Kim [7] proposed the 

parallelization of BPNN on multi-core processors. However, both 

papers focus on the parallelization of neural networks without 

verifying the validity of parallelism on large scale data. In 2010, Z. 

Liu and G. Miao [8] proposed a MapReduce-based 

Backpropagation Neural Network (MBNN) based on the 

MapReduce framework. However, the iterative training process in 

BPNN will cause frequent data transfer between Map and Reduce, 

and the MapReduce framework is only based on the HDFS (Hadoop 

distributed file management system) for data transfer, so frequent 

reading and writing spend a lot of time. In 2013, R Gu and Y Huang 
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[9] proposed a parallel computing technique for distributed training 

neural networks—CNeural. CNeural stores large-scale training data 

on HBase to achieve memory-based distributed computing. 

However, it provides little support in fault tolerance. If a fault 

occurs during iterative training, the whole training process would be 

restarted in 2011 Zaharia and M. Chowdhury [10] proposed spark 

which is a memory-based distributed platform, and they pointed out 

that spark is more suitable for iterative algorithms in machine 

learning with high fault tolerance. In 2016, Liu Y and Xu L 

proposed [11] the PBPNN (Parallelization of Backpropagation 

Neural Network), which is parallelization of BPNN in spark based 

on the spark platform. In classification problem, they implemented 

the parallel training of BPNN on the spark platform, but the training 

and prediction were carried out randomly. Therefore, a complete 

neural network model was not established after the training.  

In conclusion, BPNN in distributed platform for training over 

large scale data needs further study. Therefore, based on the 

previous research results, this paper proposes Spark-based Back 

Propagation Neural Network algorithm (SBPNN), which can solve 

the problem of time-consuming when training over large scale data. 

After the training, it can establish a complete neural network model 

for prediction. The algorithm was experimentally implemented on 

the spark platform using large scale data. First of all, we train the 

algorithm in Mini-batch update mode with different numbers of 

training samples l and analyze the convergence of the SBPNN. Then, 

we calculate the speedup ratio by using the different cluster sizes to 

verify the parallelism of the SBPNN. Finally, on the time efficiency, 

comparisons with MBNN (the parallel backpropagation neural 

network algorithm based on MapReduce framework under Hadoop 

platform) verify the high efficiency of the SBPNN. 

2. BACK PROPAGATION NEURAL NETWORK 

Backpropagation neural network is one of the most widely used 

machine learning algorithm [12], it was proposed by a group of 

scientists headed by Rumelhart and Mc Celland in 1986. The 

research shows that the three-layer BPNN can approximate any 

non-linear continuous function with arbitrary accuracy [13]. This 

paper illustrates the concrete training process by three-layer BPNN 

as an example. As shown in Figure 1, BPNN is a three-layer neural 

network model, including input layer, then hidden layer, and hidden 

layer connected with output layer. In BPNN, the number of neurons 

in input layer and output layer is determined by the input vector of 

training data and the number of elements in output vector. The 

neurons in the same layer are not connected, and the neurons in two 

adjacent layers are full connection. 

.

.

.

.

.

.

x1

x2

x3

xm

W1 1

W1 2
W1 3

Input layer

m units

Hidden layer

n units

Output layer

q units

W1 n
W2 1

V2 1 

W2 3W2 n

W3 1W3 2

W3 3W3 n

Wm 1
Wm 2

Wm 3
W m n

.

.

.

V1 1

V1 2

V1 3
V1 q

V2 2 
V2 3V2 q

V3 2

V3 3

V n2

V n 3
V n q

W2 2

V 3 q

V3 1

V n 1

y1

y2

y3

yq

Fig.1. The structure of BPNN 

BPNN adjusts the weights and thresholds by the gradient descent 

method. The whole training process includes forward and back 

propagation. Forward propagation refers to that input data from the 

input layer, the middle of the hidden to spread the data to the output 

layer. If there is error in actual output result and the expected output 

results, the back propagation is carried out. The error is input from 

the output layer, the error is propagated backward layer by layer 

through the hidden layer to the input layer, and the weight and 

threshold of the network are adjusted. The training work continues 

until the mean square error meets the specified threshold or network 

iteration number reaches the limited round. 

Suppose the total number of training samples is N, the number of 

neurons in the input layer is denoted by m, and xi(i=1 ，
2….m)represents the ith input vector; the number of neurons in the 

hidden layer is denoted by n, uj and hj(j=1，2….n)respectively 

represent the input data and output data of the jth neuron in the 

hidden layer; the number of neurons in the output layer is denoted 

by q, lk and ck(k=1，2….q)denote the input data and the output data 

of the kth neuron in the output layer, tk denotes the expected output 

of the kth neuron in the output layer, dk denotes the output error of 

the kth neuron in the output layer, oj denotes the error of the jth 

neuron in the hidden layer error; wij denotes the weight between the 

ith neuron in the input layer and jth neuron in the hidden layer, vjk 

denotes the weight between the jth neuron in the hidden layer and 

kth neuron in output layer, αj, and βk respectively denote the 

thresholds of the jth neuron in the hidden layer and the kth neuron in 

the output layer, and  is the learning rate factor. 

2.1 ONLINE UPDATE MODE 

The online update mode is to update network weights and 

thresholds after every training sample is calculated. As shown in 

Figure 2, N times of weights and thresholds are updated in one 

iteration process, and the specific implementation process is as 

follows. 

 

Fig. 2. Online update mode training process 

1. Input a training sample x=(x1,x2,……,xm)into the input 

layer and calculate the input uj and output hj of each neuron in 

the hidden layer according to formula (1) (2), where hj is 

calculated by the sigmoid activation function, it can limit the 

range of function values is [0,1]. 
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According to the output data of each neuron in the hidden 

layer, input lk and output ck of each neuron in output layer are 

calculated according to formula (3) (4). 
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2. Calculate the error of neurons in the output layer and the 

hidden layer according to the formula (5) (6) according to the 

output data of each neuron in the output layer.    
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3. According to the errors of neurons in the output layer 

and the hidden layer, the change value of weights and thresholds 

are calculated according to formula (7) (8). 

jk k kd cv =    kk d =      k=1，2….q    (7) 

ij j jo hw =    jj o =      j=1，2….n   (8) 

4.  Update the network according to formula (9) (10) 

based on the change value weights and thresholds. 

    
+jk jk jkvv v=   +k k k   =    k=1，2….q   (9) 

+ij ij ijw w w=   +j j j   =    j=1，2….n  (10) 

5. Select the next training sample, and repeat the 

calculation of 1 to 4 steps, until all the training samples are 

completed. When the network completes an iterative training, 

perform the next step. 

6. Calculate the mean square error of the whole training 

data set, and the training work continues until the mean square 

error meets the specified threshold or network iteration number 

reaches the limited round, then output neural network model 

Array[w]. Otherwise return to the first step to continue. 

2.2 MINI-BATCH UPDATE MODE 

Mini-batch update mode is to divide the whole N training 

samples evenly into several batches. Each batch has l training 

samples, and when l = N, it is the full batch updating mode. The 

training samples of each batch are calculated according to the steps 

1 ~ 3 of 2.1, and obtain the change value of weights and thresholds 

form l samples. Afterward, the weights and thresholds are updated 

according to formula (11) (12) to achieve the 4th step, and the next 

batch of training samples will be calculated. As shown in Figure 3, 

once iteration of the mini-batch update mode updates N / l times 

weights and thresholds [14]. 
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Fig.3. Mini-batch update mode training process 

The online update mode is that every iteration of network training 

needs to update the weight and threshold N times, which consumes 

a long time. Each update of weights and thresholds is calculated 

based on the previous training sample, and it will have a certain 

influence on the training results. The later calculation of training 

samples on the network will cover the results of the previous 

calculation. When the training data set is large, there is low 

accuracy; thereby, it is easy to fall into local optimal solution. The 

mini-batch update mode avoids the influence of the input order of 

training samples on the training results, and ultimately solves the 

optimal global solution and reduces the time spent on each iteration 

[15]. 

In the online update mode, every update is the result of the 

previous training sample calculation, and the calculation of the next 

training sample is also performed on the network after the last 

update. Therefore, the online update mode is not easy to implement 

the parallelization of training samples calculation. The mini-batch 

update mode is to update the network after a batch of training 

samples are calculated, and parallel computation of a batch can be 

implemented on multiple processors. Therefore, this paper adopts 

mini-batch update mode to realize SBPNN. 

3. SBPNN 

3.1. Spark 

Spark is a memory-based, distributed parallel computing platform 

that takes full advantage of the Hadoop platform and the 

MapReduce framework. Besides, intermediate results from Spark 

operations can be stored in memory without the need to read and 

write HDFS and improve parallel computing speed, so the spark is 

more suitable for data mining and machine learning, especially for 

iterative algorithm [16]. The Spark cluster starts with a master node 

and several worker nodes. The master node is mainly responsible 

for the management of the cluster resources. The worker node is for 

data calculation [17]. Spark workflow is shown in Figure 4, when 

the master node uses the spark-submit command to submit jobs, it 

first starts a driver process in the local client. The driver process 

will be set according to the parameters of the master node to apply 

for the corresponding cluster resources, such as the number of 

worker nodes, the size of executor's memory, and the number of 

CPU cores on each worker node. The master node communicates 

with the worker node, informing the worker node to start the 
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executor and registering with the Driver process; the driver process 

being connected to the worker node and the tasks to be executed are 

assigned to the various worker nodes in the cluster, the worker node 

reads the data from HDFS according to the task allocation and 

caches it into memory, and the driver process collects and 

summarizes the results processed by each worker node. 

 

Fig.4. Spark workflow diagram 

3.2. SBPNN algorithm flow 

The neural network is a typical iterative algorithm, and it adjusts 

the neural network model if calculation data stored in memory can 

greatly improve the algorithm iteration speed [18]. Therefore, the 

neural network algorithm is more suitable for parallel model 

building on the Spark platform. 

There are two parallelization approaches of the neural network, 

node parallelism, and training data parallelism. The node 

parallelism divides the neurons of neural networks into different 

worker nodes for processing [19]. Each worker node carries out data 

communication in the process of calculation to realize parallel 

training. Training Data parallelism divides the training samples into 

different worker nodes [20]. Each worker node has a complete 

neural network structure and calculates the training samples on the 

local machine so as to realize the parallel computing of the training 

samples. The SBPNN algorithm in this paper adopts the mini-batch 

update mode. Therefore, it is more appropriate to implement 

parallel training by training data parallelism. 

Before carrying out the training of SBPNN, we need to define the 

structural information of the network, including the number of 

neural networks, the number of neurons per layer, the initial weights 

and thresholds of the network, the learning rate factor, and the size 

of the value of l. First, the master node initializes the neural network 

structure information and broadcasts to the worker nodes in the 

cluster so that each worker's memory stores a complete neural 

network, and the initial state of the network is the same. In the 

SBPNN training, each worker node gets part of the training data set, 

and multiple workers calculate w(w represents the w、v、α、

β)of each training sample in parallel according to formula (1) to 

formula (8), and then update the weights and thresholds according 

to formula (11) (12) on the master node. The Master node and the 

Worker nodes respectively perform different tasks. Figure5 

illustrates the parallel implementation process of the SBPNN 

algorithm by taking two worker nodes as an example. Specific steps 

are as follows: 

a. Master node defines BP neural network structure 

information, and worker nodes read training data set 

from HDFS; 

b. The master node broadcasts the defined BP neural 

network structure information to each worker node so 

that a complete BP neural network can be instantiated on 

each worker node; 

c. Conduct neural network training in parallel on each 

worker node to calculate the change value of each 

training sample's weight and threshold w; 

d. Worker nodes return the weight and threshold change 

value w to the master node; 

e. The master node integrates w of each worker node, 

updates the weights and thresholds of the neural 

network, and judges whether all batches of training 

samples have been learned, and proceeds to the next 

step; otherwise, returns to step b; 

f. judging whether the mean square error of the whole 

training data meets the requirement or the number of 

iterations of the network reaches the upper limit, if yes, 

ending the training; otherwise, returning to step b to 

continue the training; 

g. The training is finished, and the trained neural network 

model Array[w] is output. 

3.3 Parallel Conversion of Data States in SBPNN 

Algorithm 

 

Fig.5. The parallel training algorithm of SBPNN 

The advantage of the Spark platform is based on memory 

computing, RDD (Resilient Distributed Data) is an abstraction of 

distributed memory in the Spark platform, mainly from the creation 

of distributed files on HDFS or from the other RDDs [21]. RDD is 

divided into multiple partitions. Each partition is located in different 

nodes in the cluster so that the data in the RDD can be parallel 

operations. In order to achieve SBPNN used by various RDD 

operators, operations are carried out in memory. Figure 6 shows two 

worker nodes as an example of the parallel conversion process in 

the parallel training phase of SBPNN. The details are as follows: 

First, the worker nodes read the training data from HDFS and 
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caches it in memory, and then uses the parallelize method provided 

by the Spark environment Spark Context to convert the training data 

into RDD marked as RDD1. Before calling RDD1.map, the output 

value of each neuron in the output layer is calculated, and the return 

value is recorded as RDD2. Then the RDD2.map operator is used to 

achieving back propagation, and the error of each neuron in the 

output layer and the hidden layer is calculated. The return value is 

RDD3, then RDD3.map operator calculated the w, the return value 

recorded as RDD4, and finally the RDD4.tree aggregate operator to 

each partition aggregates, and returns an updated neural network 

model Array[w]. The initialization neural network structure 

information involved in the implementation process is broadcast by 

the master node to each worker node by using the broadcast 

operator. The neural network model Array[w] is also rebroadcast 

after each update. 

training data set

RDD1

RDD2

RDD3

RDD4

neural network model Array[w]

RDD1.map(data => NNforward(data))

RDD2.map(data => NNback(data))
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Fig. 6. SBPNN data state parallel conversion diagram 

4. Analysis of results 

In order to verify the performance of the SBPNN algorithm, the 

experiment is mainly divided into three parts. First, the error 

accuracy is used as the training end condition in mini-batch update 

mode. The convergence of SBPNN was analyzed by the number of 

iterations and training duration at the end of training under different 

l; Then, take l = N, train with different training data, calculate the 

speedup ratio to analyze the parallelism of SBPNN; Finally, take l = 

N as the same, compare with MBNN(a parallelized BP neural 

network algorithm based on Hadoop platform)to verify the 

effectiveness of SBPNN. 

The experiment was implemented on Spark2.0.0 and Hadoop 

2.4.1 clusters. The cluster environment consisted of 6 nodes, 

including 1 master node and 5 worker nodes. Each node was 

configured identically and located in the same local area network. 

The operating system was CentOs6. 5, CPU is E5-2620 v4, the core 

frequency is 2.10GHZ, the node memory is 32GB. 

In this paper, the supersymmetry particle data set SUSY was 

selected as the experimental data from the UCI machine learning 

database of the University of California. The data has a total of 5 

million samples, accounting for 2.2G of storage space. Each of 

these data contains 18 feature items and 1 category identifier item, 

which is a typical data to solve the classification problem using 

neural network algorithm. This paper uses three layers of BP neural 

network. The number of neurons in input layer m = 18, the number 

of neurons in hidden layer n = 10, and the number of neurons in 

output layer q = 1. 

4.1. Analysis of SBPNN Convergence 

BP neural network is one of the iterative algorithms. The 

convergence of the iterative algorithm shows whether or not to 

converge and the convergence rate [22]. The good iterative 

algorithm has a faster convergence rate under stable convergence. In 

this experiment, the mean square error of the whole training data is 

less than or equal to 0.075 in the end condition of SBPNN, and the 

convergence rate of SBPNN is analyzed by the number of iterations 

and training duration of SBPNN under different l. The experimental 

results are shown in Figure 7 and Figure 8. 

In figure 7, the abscissa indicates the number of iterations, and 

the ordinate indicates the mean square error. The four lines in the 

figure represent the trend of mean square error under four different l. 

It can be seen from the figure that when different l for training is 

used, the mean square error shows a gradual downward trend, 

which shows that SBPNN has a stable convergence in the training 

large scale data. 

In figure 8, the abscissa indicates the mean square error, and the 

ordinate indicates the training time. The five lines in the figure 

represent the training time when achieving different mean square 

errors at five values of l. When the mean square error is 0.075, the 

training time of l = 80000 is the shortest, and the training time of l = 

5000000 is the longest. Thus, for large scale training data, 

mini-batch update mode to take the appropriate l can make a faster 

convergence rate. 

The smaller training means square error leads to a better training 

result. When l is too small, the training data will be divided into 

many batches. Each batch has fewer training samples, and it cannot 

reflect the characteristics of the whole data, although the number of 

iterations less. Each iteration takes a longer time, the total training 

time will be longer. When l is too large, each batch contains more 

training samples, the number of update times on each iteration will 

be reduced, it makes each iteration takes less time, the result of 

learning is more similar to the optimal global solution, but the mean 

square error produced by each iteration decreases slowly, thereby, 

more iterations are needed to get a better model. This makes the 

overall training time longer. Thus, under the large-scale training 

data, taking the appropriate l training for SBPNN can achieve the 

optimal training time, which makes SBPNN have better 

convergence speed. 

 

Fig. 7. Different l value of the number of iterative comparison chart 
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Fig.8. Different l value training time comparison chart 

4.2. SBPNN parallelism analysis 

The experiment verifies the parallelism of the algorithm by 

changing the size of the training data, counting the training duration 

under different nodes to calculate the speedup. The speedup is 

calculated, as shown in Equation (13). 

                  

1T
S p

Tp

=                      (13) 

In the above formula, T1 represents the training duration when 

using 1 worker node, Tp represents the training duration when using 

p worker nodes, and Sp represents the acceleration ratio, which 

indicates the efficiency increase after parallelization. Among them, 

when Sp = p, it is the linear acceleration ratio, and the parallelism of 

the algorithm is best [23]. 

The experimental results are shown in Figure 9, the abscissa is 

the number of worker nodes, and the ordinate is the acceleration 

ratio. The three lines in the figure are the speedup of 1 million 

training data and 5 million training data and the linear. It can be 

seen from the figure that the speedup of two different training data 

is approximately linear with the number of nodes, and the speedup 

ratio of 5 million data sets is closer to the linear speedup. This 

shows that SBPNN has good parallelism in dealing with large scale 

training data. 

4.3. SBPNN High-Efficiency Verification 

SBPNN is implemented on the spark platform, and it has a faster 

iteration rate theoretically. In this paper, comparing with the parallel 

BP neural network algorithm MBNN based on the Hadoop platform 

and counting the training duration of each iteration under the same 

training data set to analyze the efficiency of SBPNN. 

The experimental results are shown in Figure 10. The abscissa is 

the size of the experimental data, and the training data of 1 million, 

2 million, 3 million, 4 million, and 5 million are used respectively, 

and the ordinate is the training duration of once iteration training of 

the current training data. The two histograms in the figure show the 

operation of SBPNN and MBNN respectively. 

Seen from Figure 10, the SBPNN iterative training takes much 

less time than MBNN under different training data, and the training 

speed of SBPNN is faster than MBNN about 10 to 30 times. This 

shows that SBPNN has a higher iteration speed than MBNN. 

 

Fig. 9. Speed ratio diagram 

 
Fig.10. SBPNN Efficient Comparison Chart 

5. Conclusion 

In this paper, Spark parallel backpropagation neural network 

algorithm SPNNN is proposed, which solves the problem of 

time-consuming in training large scale data. Experimental results 

show that the proposed algorithm has good stability and 

convergence and it can effectively reduce the training duration by 

using the appropriate l. The proposed algorithm is proved in 

parallelism, and comparing with MBNN, SBPNN achieves faster 

iteration speed when dealing with large scale training data. 
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