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1. Introduction 

Sliding mode control is a robust nonlinear control method, which 

guarantees the dynamic performance of the system by designing the 

sliding mode dynamics of the system. Because of its insensitivity to 

parameter uncertainty and external disturbance, good robustness, 

simple physical implementation and fast response, it has been 

widely used in various nonlinear system control (e.g., Yang et al., 

2012; Utkin, V., 1977). Such as spacecraft (e.g., Cheema et al., 

2017), PMSM speed controller (e.g., Pukdeboon et al., 2009), 

magnetic bearing system (e.g., Tapan et al., 2018), robot (e.g., Luo, 

X., et al, 2018), Quadrotor UAV (e.g., Chen, Q., et al, 2018) and so 

on. 

Sliding mode control with unidirectional auxiliary surfaces is a 

polyhedron positive invariant set of system state constructed with 

unidirectional auxiliary surfaces, so as to ensure that the system 

state and control input can meet the constraints in the whole process 

(e.g., Fu et al., 2011). This method can avoid chattering on the 

switching surface under certain conditions, but it will slow down the 

convergence speed to a certain extent. In recent years, UAS-SMC 

has made some progress. Exponential approaching law and double 

power approaching law is used to speed up convergence (Hu et al., 

2013; Zhang et al., 2018); Introduced the state constraints into the 

unidirectional auxiliary surfaces, so that the system state can meet 

the constraints in the whole operation process (e.g., Fu J et al., 

2011). Design of controller based on sliding mode control with 

unidirectional auxiliary surfaces and nonlinear disturbance observer, 

to reduce chattering and improve convergence speed significantly 

(e.g., Ren et al., 2013). Sliding mode control with unidirectional 

auxiliary surfaces is mainly used in aircraft control (e.g., He et al., 

2015), synchronous motor control (e.g., Liu et al., 2018.), 

hypersonic vehicle (e.g., Yang, Z., et al., 2018). Although 

UAS-SMC has been applied, its understanding is not enough. 

Because it has two switching surfaces and four unidirectional 

auxiliary surfaces, its phase trajectory may be more complex, and 

the purpose of the two switching surfaces is unknown. This paper 

mainly studies the phase trajectory of sliding mode control with 

unidirectional auxiliary surfaces method. 

In this paper, a sliding mode controller with unidirectional 

auxiliary surfaces based on constant approaching law is designed 

for the second-order nonlinear system. At the same time, the 

concept and explanation expression of the segmentation surface in 

the phase plane are described. Then, by the method of partition 

analysis, the distribution of phase trajectories under different initial 

points and k-values of approaching law is analyzed. And the motion 

trend of phase trajectory when passing through two sliding surfaces 

is also analyzed. Finally, simulations are given to show correctness 

of analysis results. 

2. Numerical approach 

2.1  Description of System 
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Consider a class of non-linear system as follow: 

 
( ) ( )

1 2

2

x x

x f g u

=


= +  x x
 (1) 

Where  1 2,
T

x xx indicates the state of the system. ( )f x and

( )g x are nonlinear function of state x , and ( ) 0g x .While u is 

the control inputs. 

2.2  Design Steps of UAS-SMC System 

The whole process is divided into three steps: 

Step 1 

The switching surfaces for the state x in system (1) are given by 

 
1 2 1 1

2 2 2 1

=0

=0

S x x

S x x





= +


= +
  (2) 

Where 2 1 0   ,and it is used to avoid the overlap of switching 

surfaces ( )1 0S =x and ( )2 0S =x . Based on the switching surface

1 2,S S ,the .0 ,...,3i iNo subspaces can be defined in figure 1. The four 

subspace are defined by ( ). 3Eq : 
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Step 2 

Select four appropriate points 1 2 3 4, , ,P P P P  on switching surfaces

1 2S S, ,where point 1 2,P P are located in the fourth quadrant and 

points 3 4,P P are located in the second quadrant , as shown in Figure 

1. there exists ( ). 4Eq  
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( ) ( )
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 (4) 

The line 1 4PP , 1 2PP , 3 4P P , 2 3P P defined in Figure 2 are UAS 

0 1 2 3, , ,h h h h . The formulas for these UAS are given as follows: 

 1 2 2 1     0,1,2,3i i ih x x w i = + + =  (5) 

Where  
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1 2,i i  are the coefficients of ih , and w is a constant greater than 

zero. i denotes the number of subspaces. The coefficients 11 21,  in

( ). 5Eq should satisfy 11 0  , 21 0  , which is a sufficient 

condition for the existence of chattering-free control input (i.e., Fu, 

et al, 2013). 

Step 3. 

The UAS-SMC control input u  for the nonlinear system (1) is 

designed by solving the equation： 

 
( ) ( )( )

1 2 2 1

1 2 2   = =

i i i

i i

h x x

f g u x N

 

 

= +

+  +x x
 (6) 

Where N is the approaching law ,and it is designed as follow: 

 ( )    =0,1,2,3  0iN k w h i k= −   (7) 

It follows that the UAS-SMC control input for system (1) is 

expressed as: 

 ( )( ) ( ) ( )( )
1 1

1 2 2i iu g f x N 
− −= − + − +x x  (8) 

 

Fig.1. SMC with UASs 

 

3. Trajectory analysis of UAS-SMC system 

For system (1), substituting ( ). 5Eq , ( ). 7Eq and ( ). 8Eq into

( ). 1Eq , leads to 
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Define ( )1

2 2 1 2 2 1 =i i ix kx x kx m −= − − + , where 0,1,2,3i = is the 

number of subspaces. 

From ( ). 9Eq the main influencing factors of the system is initial 

point and the value of k . For the convenience of phase trajectory 

analysis, based on the coordinate axis, the .0 , .3i iNo No subspaces 

can be defined in figure 2. 

Where  
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Fig.2. UASs after repartition 

 

In order to study the influence of different initial point on the 

trajectory conveniently, the line between the origin and the initial 

point is used as guide line, which can be defined as Partition 

surface: 

 ( ) ( )2 10 0 =0x ax+  (12) 

Where ( ) ( )( )2 10 , 0x x is the initial point of the trajectory. 

If the trajectory is close to the switching surface, the expression 

of definition 2x  is 2 _ . jNo ix . Where ,i j is the number of subspaces. 

Theorem 1. If the k value of approaching law satisfies the 

condition k a= ,the trajectory will reach the origin along the 

partition surface. 

Prove. If k a= , there are ( ) ( )2 10 0 =0x kx+ and ( ). 13Eq . 

 
( )

1 2

1

2 2 1 2 2 1= i i

x x
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Simplified ( ). 13Eq , the ( ). 14Eq can be obtained: 

 ( )1 1

1 1 2 1 1 2 1+ + =0i i i ix k x k x   − −+   (14) 

Solved ( ). 14Eq ,There are two general solutions of 1x and 2x : 

If 1

1 2i ik  − , the ( ). 15Eq can be obtained: 
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Substituted 0t = into ( ). 15Eq , the ( ). 16Eq can be obtained: 
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Solved ( ). 16Eq and ( ) ( )2 10 0 =0x kx+ , can get ( )1 1 0C x= =

( )2 0x k− ,
2 0C = , and the solution of 

1x and
2x is shown in

( ). 17Eq  
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If 1

1 2= i ik  − , the ( ). 18Eq can be obtained: 
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Substituted 0t = into ( ). 18Eq , the ( ). 19Eq can be obtained: 
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Solved ( ). 18Eq and ( ). 19Eq , the solution of 1x and 2x  are the 

same as those of ( ). 17Eq . 

From ( ). 17Eq , the trajectory run law of 2x and 1x always satisfies

2 1 2 1= =0x kx x ax+ + . Therefore, the trajectory reaches the origin 

follow the partition surface 2 1=0x ax+ . Because of 0k  , this 

theorem is only possible in the second and fourth quadrants. 

  Next, the influence of initial point and k value of four subspace 

on phase trajectory is analyzed.  

 

3.1 trajectory analysis of .0iNo subspace 

When the initial point is in .0iNo subspace, from the definition of 

UAS, can get 01 020, 0   , 1

2 01 02 1   −  and there are three 

parts in the subspace: 

(1).When the initial point is in .0iaNo subspace, can get 

2 1 a   . There are three situations: 

Combined with known conditions, and substituting ( ). 10Eq into

( ). 9Eq , leads to 
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0

0

x x

x x N −

= 
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= − + 
 (20) 

Due to 1 20, 0x x  , initial point moves along the negative 

direction of 1x  axis and the positive direction of 2x  axis. With 

the increase of k value, there are three situations: 

① .The value of k is in interval ( )0,a , can get 2 1 0x kx+  . 

Partial derivative of 0m to k , the ( ). 21Eq can be obtained: 

 ( )10
2 01 02 1

m
x x

k
 −


= − +


 (21) 

Combined with known conditions, can get 1

2 01 02 1 0x x −+  ,and

0 0m k   , 0m is an increasing function. The maximum value is: 

 ( )( )1

0 2 1 2 2 1 2lim lim i i
k a k a

m kx x kx ax −
→ →

= − − + = −  (22) 

Where 0 k a  ,can get 2 2 1x ax ax − = − .The increasing speed 

of 2x is less than a times of the decreasing speed of 
1x . At this 

time, the trajectory is always below partition surface 2 1=0x ax+ . 
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When
1x is zero,

2x is still less than zero, at this time, the point will 

cross the negative axis of 
2x to the .0ibNo subspace. 

As the trajectory moves to .0ibNo subspace, combined with 

known conditions, can get
1 20, 0x x  , the trajectory moves along 

the negative direction of 
1x  axis and the positive direction of

2x

axis. When
2x is zero,

1x is still less than zero. Therefore, the point 

will cross the negative axis of 
1x  to the .0icNo subspace. 

  As the trajectory moves to .0icNo subspace, because of 

1 2 0x x=  ,
1x will increase and move along the positive direction of

1x axis. When 2x is close to zero, the ( ). 23Eq can be obtained: 

 ( )( )
2 2

1 1

0 2 01 02 2 1 01 02 1
0 0

lim lim
x x

m kx x kx kx   − −

→ →
= − − + = −  (23) 

Where 01 02 10, 0, 0, 0k x     , can get 2 0x  . 2x will increase 

and move along the positive direction of 2x  axis. There are two 

situations: 

  If the value of k  is in interval ( 10, , with the increase of 1x , 

there must be a point ( )2 1x x,  that satisfies 2 1=0x kx+ . At this time, 

there are 2 2 1= =x kx kx− − and 2 1k =0x x+ . Similar to theorem 1, the 

trajectory reaches the origin along line 2 1k =0x x+ . 

  If the value of k  is in interval ( )1,a , with the increase of 1x , 

the trajectory must reach the switching surface 1S . When the 

trajectory reaches the switching surface 1S , there are .1iNo subspace 

and .0icNo subspace above and below the switching surface. Define 

2- .0 =m
icNo ax ,

2- .1 =m
iNo bx .Then the ( ). 24Eq can be obtained: 

 

1 2
2 01 02 2

1

1 2
2 11 12 2

1

m =

m =

a

b

kx
kx x

kx
kx x

 


 


−

−

  
− − −  

  


 
− − − 

 

 (24) 

Partial derivative of am and bm to k , the ( ). 25Eq can be obtained: 
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 (25) 

Combined with known conditions, can get 0am k   , am is 

an increasing function. The minimum value is: 
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k k
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−
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 (26) 

Where k a , it is easy to get 2- .0 1 2icNox x − , 2- .0 1- .0 1ic icNo Nox x  − . 

When the trajectory moves to .1iNo subspace, can get 11 0  . If

12 0  , it is easy to get 0bm k   ; If 12 0  , it is easy to get

0bm k   . bm is an decreasing function. The maximum value is： 
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 (27) 

Where k a , it is easy to get 2- .1 1 2iNox x − , 2- .1 1- .1 1i iNo Nox x  − . 

Above and below the switching surface 1S ,there are 

2- .1 1- .1 1i iNo Nox x  − and 2- .0 1- .0 1ic icNo Nox x  − .Therefore, when the 

trajectory reaches the switching surface 1S , it will follow the 

switching surface
1S to the origin. 

②.When k a= , it conforms to theorem 1. The trajectory reaches 

the origin along the partition surface
2 1=0x ax+ . 

③.The value of k is in interval ( )a,+ , can get
2 1 0x kx+  . 

Combined with known conditions, it is easy to get 
2 1x ax − . The 

increasing speed of 
2x is more than a times of the decreasing speed 

of 
1x . At this time, the trajectory is always above the partition 

surface 2 1=0x ax+ , and must reach the switching surface 2S . 

As the trajectory reaches the switching surface 2S , there are 

.2iNo subspace and .0iaNo subspace above and below the switching 

surface. When the trajectory moves to the switching surface 2S , the

( ). 28Eq can be obtained: 

 
( )

( )

1

2- .0 2 01 02 2 1

1

2- .2 2 21 22 2 1

=

=

ia

i

No

No

x kx x kx

x kx x kx

−

−

 − −  +


− −  +

 (28) 

Combined
1 1
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11 12 21 22

− −  =  , 2 1 0x kx+  and

( ). 28Eq , can get 2- .0 2- .2ia iNo Nox x . Therefore, the trajectory will 

become more gentle, and it will surely pass through the switching 

surface 2S to the switching surface 1S . 

When the trajectory reaches the switching surface 1S , there are 

.3icNo subspace and .2iNo subspace above and below the switching 

surface. Define
2- .3 =m

icNo cx ,
2- .2 =m

iNo dx . Then the ( ). 29Eq can be 

obtained: 
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1
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Partial derivative of cm and dm to k , the ( ). 30Eq can be obtained: 
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1
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m
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Combined with known conditions, it is easy to get 0cm k   , 

cm is an decreasing function. The maximum value is: 
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 (31) 

Where 1k a   , can get 2- .3 1 2icNox x − , 2- .3 1- .3 1ic icNo Nox x  − . 

When trajectory moves to .2iNo subspace, can get 21 0  . If

22 0  , it is easy to get 0dm k   ; If 22 0  , it is easy to get

0dm k   . dm is an increasing function. The minimum value is 

 
1 1
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1
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 
  
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−
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  
 (32) 

Where 1k a   , can get 2- .1 1 2iNox x − , 2- .1 1- .1 1i iNo Nox x  − . 

Above and below the switching surface 1S ,there are 

2- .3 1- .3 1ic icNo Nox x  − and 2- .1 1- .1 1i iNo Nox x  − . Therefore, when the 

trajectory reaches the switching surface 1S , it reaches the origin 

along the switching surface 1S . 
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In summary of the previous analysis, the phase trajectory of the 

initial point in
1.0No subspace is shown in figure 3. 

 

 
Fig.3. Phase trajectory of initial point in .0iaNo subspace 

 

(2). When the initial point is in .0ibNo subspace, can get

0a  .Combined with known conditions, can get 1 20, 0x x  , the 

trajectory moves along the negative direction of 1x  axis and the 

positive direction of 2x axis. When 2x is zero, 1x is still less than zero. 

Therefore, the point will cross the negative axis of 1x  to the .0icNo

subspace. From the previous proof, there are two kinds of 

trajectories. as shown in the figure 4. 

 

Fig.4. Phase trajectory of initial point in .0ibNo subspace 

 

(3).When the initial point is in .0icNo subspace, can get 

2 1 a   . There are also three situations: 

①.The value of k is in interval ( )0,a , combined with known 

conditions, can get 1 2= 0x x  , 2 2 1x ax ax − = − . The decreasing 

speed of 2x is less than a times of the increasing speed of 
1x . At 

this time, 1x is increasing function and the trajectory is always 

below partition surface
2 1=0x ax+ . With the increase of

1x , there 

must be a point ( )2 1x x, that satisfies
2 1=0x kx+ . At this point, there 

are ( )1

2 2 01 02 2 1 2 1= = =x kx x kx kx kx −− − + − − and
2 1=0x kx+ . 

Similar to theorem 1, the trajectory reaches the origin along line

2 1=0x kx+ . 

②.When k a= , it conforms to theorem 1 and the trajectory will 

reaches the origin along the partition surface 2 1=0x ax+ . 

③.The value of k is in interval ( )a,+ , combined with known 

conditions, can get 1x is increasing function and the trajectory is 

always above partition surface 2 1=0x ax+ . With the increase of 1x , 

the trajectory will reach the switching surface 1S . From the previous 

proof, it can be concluded that the phase trajectory will reach the 

origin along the switching surface 1S .  

In summary of the previous analysis, the phase trajectory of the 

initial point in .0icNo subspace is shown in figure 5. 

 
Fig.5. Phase trajectory of initial point in .0icNo subspace 

 

3.2 Trajectory analysis of .1iNo subspace 

When the initial point is in .1iNo subspace, can get 11 0  , there 

are three situations: 

①.The value of k is in interval ( )0,a , there are 2 1 0x kx+  ,

12 0  or 12 0  ,
1

11 12 1 a  −   . 

Partial derivative of 1m to k , the ( ). 33Eq can be obtained： 

 ( )11
2 11 12 1

m
x x

k
 −


= − +


 (33) 

It is easy to get that
1 0m k   , 1m is an decreasing function. 

The  

maximum value is: 

 ( )( )1

1 2 11 12 2 1 2lim lim
k a k a

m kx x kx ax −
→ →

= − − − = −  (34) 

Where k a ,can get 2 2 1=x ax ax − − . The decreasing speed of 

2x is less than a times of the increasing speed of 
1x .At this time, 

the trajectory is always above the partition surface 2 1=0x ax+ , and 

must reach the switching surface 2S . 

As the trajectory reaches the switching surface 2S , there are 

.3iaNo subspace and .1iNo subspace above and below the switching 

surface and the ( ). 35Eq can be obtained 
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( )

( )

1

2- .3 2 31 32 2 1

1

2- .1 2 11 12 2 1

=

=

ia

i

No

No

x kx x kx

x kx x kx

−

−

 − −  +


− −  +

 (35) 

Combined 1 1

31 32 21 22

− −    , 1 1

21 22 11 12=− −    , 2 1 0x kx+  and 

( ). 35Eq , it is easy to get 2- .3 2- .1ia iNo Nox x .Therefore, the trajectory 

must pass through the switching surface 2S and become more 

gentler. After that, the trajectory is carried out according to the 

operation law of .3iNo subspace. 

②.When k a= , it conforms to theorem 1. The trajectory reaches 

the origin along the partition surface 2 1=0x ax+ . 

③ .The value of k is in interval ( ),a + .it is easy to get

2 2 1=x ax ax − − . The decreasing speed of 2x is more than a times 

of the increasing speed of 
1x .At this time, the trajectory is always 

below the partition surface 2 1=0x ax+ , and must reach the 

switching surface 1S . From the previous proof, the trajectory 

reaches the origin along the switching surface 1S . 

In summary of the previous analysis, the phase trajectory of the 

initial point in .1iNo subspace is shown in figure 6. 

 
Fig.6. Phase trajectory of initial point in .1iNo subspace 

3.3 Trajectory analysis of .2iNo subspace 

The initial point is in .2iNo subspace, the trajectory is symmetric 

with respect to the origin with respect to the phase trajectory of the 

initial point at .1iNo subspace. With the increase of k value, there 

are three situations: 

①.The value of k is in the interval ( )0,a , the trajectory must 

reach the switching surface 2S , and pass through the switching 

surface 2S to the .0iNo subspace. After that, the trajectory is carried 

out according to the operation law of .0iNo subspace. 

②.When k a= , it conforms to theorem 1. The trajectory reaches 

the origin along the partition surface 2 1=0x ax+ . 

③.The value of k is in the interval ( )a,+ , the trajectory must 

reach the switching surface 1S and then reach the origin along the 

switching surface 1S . 

In summary of the previous analysis, the phase trajectory of the 

initial point in .2iNo subspace is shown in figure 7. 

 
Fig.7. Phase trajectory of initial point in .2iNo subspace 

3.4 Trajectory analysis of .3iNo subspace 

The initial point is in .3iNo subspace, the trajectory is symmetric 

with respect to the origin with respect to the phase trajectory of the 

initial point in .0iNo subspace. 

(1)When the initial point is in .3iaNo subspace, it is easy to get 

initial point moves along the positive direction of 1x axis and the 

negative direction of 2x axis. With the increase of k value, there are 

three situations: 

①.The value of k is in interval ( )0,a , the trajectory is always 

above partition surface 2 1=0x ax+ , when 1x is zero, 2x is still 

greater than zero. At this time, the point will cross the positive axis 

of 2x to the .3ibNo subspace. 

As the trajectory moves to .3ibNo subspace. It is easy to get the 

trajectory moves along the positive direction of 1x axis and the 

negative direction of 2x axis. When 2x is zero, 1x is still greater 

than zero. At this time, the point will cross the positive axis of 1x to 

the .3icNo subspace. 

  As the trajectory moves to .3icNo subspace, there are two 

situations: 

  When the value of k is in interval ( 10, , with the decrease of 1x , 

there must be a point ( )2 1x x, that satisfies 2 1=0x kx+ . The trajectory 

will reach the origin along line 2 1=0x kx+ . 

When the value of k is in interval ( )1,a , with the increase of 

1x , the trajectory must reach the switching surface 1S and then reach 

the origin along the switching surface 1S . 

②.When k a= , it conforms to theorem 1. The trajectory reaches 

the origin along the partition surface 2 1=0x ax+ . 

③ .The value of k is in interval ( )a,+ , the trajectory is 

always above the partition surface 2 1=0x ax+ , and must reach the 

switching surface 2S . After that, the trajectory will surely pass 

through the switching surface 2S to the switching surface 1S . From 

the previous proof, the trajectory reaches the origin along the 

switching surface 1S . 

In summary of the previous analysis, the phase trajectory of the 

initial point in .3iaNo subspace is shown in figure 8. 
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Fig.8. Phase trajectory of initial point in .3iaNo subspace 

 

(2).When the initial point is in .3ibNo subspace, can get

0a  .Combined with known conditions, can get 1 20, 0x x  , the 

trajectory moves along the positive direction of 1x  axis and the 

negative direction of 2x axis. When 2x is zero, 1x is still more than 

zero. Therefore, the point will cross the positive axis of 1x  to the

.3icNo subspace. From the previous proof, there are two kinds of 

trajectories. as shown in the figure 9. 

 

Fig.9. Phase trajectory of initial point in .3ibNo subspace 

 

(3).When the initial point is in .3icNo subspace, can get 

2 1 a   . There are also three situations: 

①.The value of k is in interval ( )0,a , it is easy to get 1x  is 

decreasing function, and the trajectory is always above the partition 

surface 2 1=0x ax+ . With the decrease of 1x , there must be a point

( )2 1x x, that satisfies 2 1=0x kx+ . The trajectory reaches the origin 

along line 2 1=0x kx+ . 

②.When k a= , it conforms to theorem 1. The trajectory reaches 

the origin along the partition surface 2 1=0x ax+ . 

③. The value of k is in interval ( )a,+ , with the decrease of 

1x , the trajectory must reach the switching surface 1S and then reach 

the origin along the switching surface 1S . 

In summary of the previous analysis, the phase trajectory of the 

initial point in .3icNo subspace is shown in figure 10. 

 

Fig.10. Phase trajectory of initial point in .3icNo subspace 

4.Simulation 

  Considering the following nonlinear system: 

 
( ) ( )

1 2

2

x x

x f g u d

=


= +  + x x
 (36) 

Where  1 2, , , 0.1 cos(t)
T

x x u R d  = x , ( ) 1

2

1

cos
=

7.3 1.5cos

x
g

x−
x

and ( )
2

1 2 1 1

2

1

107.9sin 1.5 cos sin

7.3 1.5cos

x x x x
f

x

−
=

−
x . 

The switching surfaces are chosen as follows: 

 
1 2 1

2 2 1

=0

5 =0

S x x

S x x

= +


= +
 (37) 

Four appropriate point 1 2 3 4, , ,P P P P are chosen on the switching 

surfaces, they are ( )1 4, 4P − , ( )2 5.4545, 1.0909P − , ( )3 4,4P − ,

( )4 5.4545,1.0909P − . The UASs can be obtained: 

 

0 2 1

1 2 1

2 2 1

3 2 1

0.2917 0.5417 1

0.1667 0.0833 1

0.1667 0.0833 1

0.2917 0.5417 1

h x x

h x x

h x x

h x x

= + +


= − + +


= − +
 = − − +

  (38) 

Where  

1 2

1 2

1

1 2

1 2

0.2917      0, 0

0.1667    0, 0

0.1667      0, 0

0.2917    0, 0

S S

S S

S S

S S



 

−  

= 
 

−  
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1 2

1 2

2

1 2

1 2

0.5417     0, 0

0.0833     0, 0

0.0833   0, 0

0.5417   0, 0

S S

S S

S S

S S



 


 
= 

−  
−  

 

The initial point P and the value of k are shown in Table 1. 

 

Tab.1. Initial values and the value of k  

( ) ( )( )2 10 , 0x x  
10 k    

1 k a    k a=  k a  

(-8,1.2) 0.5 2 20/3 10 

(8,-1.2) 0.5 2 20/3 10 

( ) ( )( )2 10 , 0x x  0 k a   k a=  k a  

(4,-8) 0.1 0.5 4 

(8,-4) 1 2 5 

(-4,8) 0.1 0.5 4 

(-8,4) 1 2 5 

( ) ( )( )2 10 , 0x x  
10 k    

1k   

(-5,-5) 0.2 5 

(5,5) 0.2 5 

 

Approaching law is designed as ( )i iN k w h= − . The control input 

( ) ( ) ( )( )1 1

1 2 2i i iu g f x N − −= − + − +x x . 

The simulation of phase trajectory with initial point in .0iNo is 

shown in .11Fig to .13Fig . The simulation of phase trajectory with 

initial point in .1iNo is shown in .14Fig . The simulation of phase 

trajectory with initial point in .2iNo is shown in .15Fig .The 

simulation of phase trajectory with initial point in .3iNo is shown in 

.16Fig to .18Fig . 

From .11Fig to .18Fig ,it can be seen that simulation of initial 

point and k value is coincidence previous proof. When 
1k  or 

=k a , the phase trajectory will reaches the origin along line

2 1=0x kx+ or partition surface 2 1=0x ax+ ,and the trajectory will 

not chattering on switching surfaces. However，in this case, the 

convergence rate will become slower. While 
1k  , the trajectory 

will reaches and chattering on switching surfaces 1S . Therefore, 

the k-value of the approaching law can be taken as
1 or a , and

1

can be taken as a larger value to speed up the convergence. 

From theoretical analysis and simulation experiments, it can be 

found that the purpose of switching surface 1S is sliding surface, and 

the purpose of switching surface 2S is to accelerate the convergence 

rate of phase trajectory. 

 

 
Fig.11. initial point in .0iaNo subspace 

 

 
Fig.12. initial point in .0ibNo subspace 

 

 
Fig.13. initial point in .0icNo subspace 

 

 
Fig.14. initial point in  No.1i

subspace 
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Fig.15. initial point in  No.2i

subspace 

 

 
Fig.16. initial point in .3iaNo subspace 

 

 
Fig.17. initial point in .3ibNo subspace 

 

 
Fig.18. initial point in .3icNo subspace 

 

5.Conclusion 

  In this paper, the phase trajectory analysis of the closed-loop 

system with UAS-SMC is given for different initial points and 

k-values of approaching law. According to the theoretical proof and 

the simulation experiment, the operation of the phase trajectory is 

related to the initial points and k-value of the system, and the phase 

trajectory will be carried out according to certain rule. According to 

this law, under the condition that the initial point of the system is 

known, the phase trajectory of the system state can be predicted. In 

addition, it is found that the purpose of switching surface 1S is 

sliding surface, and the purpose of switching surface 2S is to 

accelerate the convergence rate of phase trajectory. At the same time, 

it is also obtained that the chattering phenomenon can be avoided by 

selecting the appropriate k-value of approaching law. In the next 

step, we can design other forms of switching surface to replace 

switching surface
2S , to improve the robustness and rapidity of 

sliding mode control with unidirectional auxiliary surfaces method. 
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