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 The global secrecy energy efficiency is maximized in a multi-input and multi-output (MIMO) simultaneous 

wireless information and power transfer (SWIPT) networks, which is served by a central processing unit. By 

jointly configuring the power splitting factor, the precoding matrix, and the artificial auxiliary noise, and by 

considering the scheme that prevents the authorized devices’ private information from eavesdropping, the 

optimization problem is formulated under the constraints of the required least harvested energy and the upper limit 

on the transmission power of the central processor. Due to the non-convexity of the fractional objective function in 

the formulated problem, a Two-level iterative algorithm based on Dinkelbach is proposed to solve it following the 

equivalent substitution, which converts the objective function to the subtractive form, and the approximation to the 

constraint. The simulation results validate the effectiveness of the proposed algorithm in improving global secrecy 

energy efficiency. 
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1. Introduction 

With the gradual maturity of 5G technology, the Internet of 

Things (IoT) is expected to support wireless interconnection 

communication of billions of intelligent devices in the future. 

This will not only lead to a sharp increase in energy consumption 

[1,2,3], but also increase the risk of leakage of device privacy 

information [4]. Simultaneous wireless information and power 

transfer (SWIPT) meets the idea of green communications, and 

it’s ability to recycle and reuse radio frequency energy has made 

this technology widely valued [5]. Ensuring the safe transmission 

of information at the IoT devices physical layer under energy 

saving conditions is a research hot spot in the field of green 

communication[6,7]. 

Secrecy energy efficiency (SEE) has become one of the key 

indicators to measure network performance due to its strong 

intuition and good sensitivity, and SEE is usually defined as the 

ratio of network secrecy rate and network energy consumption 

[8]. Currently, research on SWIPT technology based secrecy 

energy efficiency mainly focuses on Single Input Single Output 

(SISO) and Multiple Input Single Output (MISO) networks. In 

[9], the secrecy energy efficiency maximization of single-input 

single-output SWIPT network is studied under the constraints of 

user secrecy service quality and energy harvesting (EH), and the 

power allocation and power splitting (PS) factor are jointly 

optimized by Lagrange dual method and Dinkelbach algorithm. A 

new energy harvest receiver architecture is proposed in [10], in 

which the traditional EH receivers are divided into separate 

subunits. The PS factors in the subunits are optimized by 

dichotomous and successive convex approximation (SCA), and 

then the global optimum values of all variables are obtained using 

the Dinkelbach algorithm. 

Since MIMO networks have different structural characteristics 

than the two aforementioned networks, and in MIMO networks, 

research efforts are focused on maximizing the secrecy rate of the 

networks [11,12]. In [11], the orthogonal projection method is 

used to optimize the precoding matrix of the EH receiver to 

completely suppress its interference with the information 

decoding (ID) receiver, and then the Taylor series expansion and 

the lagrangian dual method are used to optimizes the precoding 

matrix of ID receivers to maximize the network secrecy rate. The 

literature [12] uses semidefinite relaxation (SDR) and first-order 

Taylor series expansion to transform the original non-convex 

problem into a convex optimization problem, which by means of 

an iterative SCA algorithm and a singular value decomposition 

(SVD) method to obtain sub-optimal precoding matrix. 

None of the above works consider the secrecy energy 

efficiency in SWIPT MIMO systems. In [13] , the Dinkelbach 

algorithm and the Taylor series expansion are introduced for 

maximizing secrecy energy efficiency in a three-node MIMO 

network , but all nodes are non-passive, which contradicts the 

energy-efficient character of green communication. 

http://www.ijamce.com/
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Conventional secrecy energy efficiency is defined as the ratio 

between the achievable sum secrecy rate and the total required 

power. However, since the recovered energy of the IoT devices 

are from the energy supplying of the active device, therefore, the 

global secrecy energy efficiency (GSEE) indicator is proposed in 

this paper in MIMO SWIPT networks. 

[bps/ Hz]
GSEE[bits/ Hz/ J]

Total required

Worst se

 transmi

crecy rate

t power[W]
=

 

This indicator calculates the energy efficiency based on the 

power consumption value of the active device and can be used as 

an objective function to achieve the highest secrecy rate. It also 

minimizes the power consumption of the active device, so it can 

evaluate the network performance more accurately. Since the 

channel state information of unauthorized EH devices is 

unknown, the central processing unit (CPU) in this paper models 

the channel based on the uncertainty of the channel state 

information. Then, the paper takes into account the authorized 

device information eavesdropping mechanism, and jointly 

configures the PS factor, precoding matrix and artificial auxiliary 

noise to maximize the global secrecy energy efficiency. 

2. System Modeling 
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 Fig. 1. The model of MIMO SWIPT Networks 
This paper consider a downlink SWIPT IoT network, as shown 

in Fig.1. The system includes a CPU and (K+1) 
energy-constrained intelligent devices. Table 1 shows the 
comparison information of intelligent device in different time 
slots state. The CPU transmits information to only one device in a 
time slot, which is called an authorized device. The other K 
devices only harvest the energy of the radio frequency (RF) 
signal in the time slot, and these SWIPT energy devices are 
simply referred to as EH devices. In particular, in different time 
slots, authorized device and EH device can be converted to each 

other, as shown in Table 1. When the K EH devices are 
harvesting energy, they can choose to reject the charging and try 
to decode the received signal, thereby becoming a potential 
eavesdropper. The CPU and authorized device are equipped with  

T
N  and 

R
N  antennas respectively, while each EH device is 

equipped with 
E

N  antennas. The authorized device R  needs 

to feed back the channel state information to the CPU during the 
transmission. Therefore, it is assumed that the CSI of the 

authorized device R  is perfect, and H T RN N
  is used to 

represent the channel coefficient matrix of the authorized device. 

The CSI of K EH devices are uncertain, and the channel 

coefficient matrix of the k-th EH device can be modeled as [14]： 

{ | ,|| || }G G G G Gk k k k k k F k= = +   Ω      (1) 

{1, 2,3,..., }k K =     

where, Gk  represents the estimated value of the channel 

coefficient matrix, Gk  is channel estimation error, 
k  

represents the radius of the channel uncertainty region, 

G T EN N

k

 . 

In each time slot, the transmitted signal of the CPU includes 
the information sent to the authorized device and artificial noise, 
so the transmitted signal is expressed as Equation (2), 

  x Ws z= + ,                  (2) 

where, W T TN N  is precoding matrix, 1
s TN   is vector 

signals of unit norms, (0, )z Z  represents artificial noise 

generated by the CPU. Therefore, the total transmit power of the 

transmitter is, 

Total ( , ) ( )W Z WW Z
H

CP Tr P= + + ,    (3) 

where, 1   is the efficiency coefficient of the power amplifier, 

which depends on the information transmission process, 
CP  is the 

circuit power consumed by modules such as mixers, filters, and 
digital-to-analog converters. 

The signals received by authorized device R  and the k-th EH 
device are (4) and (5), respectively, 

Η Ws Η z+n
H H

R Ry = + ,            (4) 

G Ws G z+n
H H

k k k ky = + ,               (5) 

where, 
2(0, )n

RR R N I  and 
2(0, )n

Ek k N I  are 

Gaussian white noise introduced by the authorized user and the k-th 
eavesdropping user antenna, respectively. 

After the signal transmitted from the CPU is received by the 
authorized device, the authorized device divides the signal into two 

power streams 
,R Iy  and 

,R Ey  through a power splitter, where 

,R Iy  is used for information decoding and the other part 
,R Ey  is 

used for energy harvesting. The 
,R Iy  and 

,R Ey  are respectively 

expressed as, 

, ( )Η Ws Η z+n nH H

R I R Iy = + + ,          (6) 

, 1 ( )Η Ws Η z nH H

R E Ry = − + + ,           (7) 

where, (0,1)   is PS factor, 
2(0, )n

RI I N I  is the noise 

introduced by decoding. The worst secrecy rate that the system 

achieve can be expressed as (8) [8,15], 

( , , ) ( , , ) max ( , )
+

W Z W Z W ZR k
k

Rs C C 
 

 = −
 

,     (8) 

where, [ ] max{0, }x x+ = . 

1( , , ) logW Z Η WW Η
R

H H

R N RC  −= +I Λ ,            

  (9) 
2 2( )Η ZΗ

R R

H

R R N I N  = + +Λ I I 0 ,                

   
1( , ) logW Z G WW G

E

H H

k N k k kC −= +I Λ ,               

(10) 

  2
G ZG

E

H

k k k k N= +Λ I 0 ,                         

RΛ  and 
kΛ  represent the interference noise covariance matrixs 

of authorized device R  and k-th EH device, respectively. 
Equation (8) essentially reflects the gap between the decoding 
capabilities of authorized devices and EH devices. 

The radio frequency energy received by the authorized device 

R  and the k-th EH device are (11) and (12), 
2(1 ) ( ( ) )Η WW Z Η

R

H H

R R NE Tr  = − + + I      (11) 

 2

, ( ( ) )G WW Z G
E

H H

EH k k k k NE Tr = + + I ,       (12) 

where, (0,1]  is the energy conversion efficiency of the energy 

receiver. The reason for using the linear energy harvesting 
mechanism here is that EH receivers of IoT devices often work at 

low input power, and the nonlinear energy harvesting mechanism 
shows a piecewise linear characteristic when the input power is 
relatively low, which can be approximated as a linear model [16]. At 
the same time, the linear energy harvesting mechanism has good 
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Table 1 Equipment state comparison table 

 device 1 device 2 device 3···device K device K+1 

slot time t t t t 

state authorization EH EH EH 

slot time (1+l)t (1+l)t (1+l)t (1+l)t 

state EH authorization EH EH 
 

 traceability. Therefore, we use the linear energy harvesting 

mechanism to facilitate subsequent analysis. 

The goal of this paper is to optimize the global secrecy energy 
efficiency, which is defined as the ratio of the worst secrecy rate 
to the total power of the transmitter, 

Total

( , , )
GSEE( , , )

( , )

W Z
W Z

W Z

Rs

P


 = .           (13) 

Therefore, the global secrecy energy efficiency maximization 
problem can be described as P1, 

, ,
max ( , , )

W Z
W ZGSEE


P1:               (14a) 

. . ( , , ) ,W ZR Rs t E e                  (14b) 

, ( , ) ,W ZEH k kE e                  (14c) 

   
Total max( , ) ,W ZP P                 (14d) 

,0 1.Z  0                   (14e) 

where, constraints (14a) and (14b) represent the energy 

harvesting constraints of authorized device R  and EH device k, 

respectively. 
Re  and 

ke  are the lower limits of energy 

harvesting. (14d) represents the CPU’s transmission power 

constraint, 
maxP  is the maximum transmission power threshold. 

And (14e) represents the semidefinite character of the artificial 
noise covariance matrix and the value range of the power 
splitting factor  . 

3. Resource allocation optimization strategy 

3.1 Problem transformation and characteristic analysis 

P1 is a typical fractional programming problem. In this paper, 

the Dinkelbach algorithm is used to transform the objective 

function. The Dinkelbach method can find the global optimal 

solution to the polynomial fractional programming problem. 

Suppose the maximum value of GSEE is †q , 

( )

†

Total
, ,
max ( , , ) ( , )
W Z

W Z W Zq Rs P





= ,           (15) 

where, {( , , ) (4 -14 )(4 -14 )(4 -14 )(4 -14 )}= W Z b c d e  is    

the feasible field of P1.
 

Theorem 1: The optimal solution † † †{ , , }W Z  can 

maximize the GSEE if and only if †q  is the only zero solution 

of the auxiliary function ( )F q ,  

( )
Total

, ,
( ) max ( , , ) ( , )

W Z
W Z W ZF q Rs qP





− ,       (16) 

where, ( , , ) 0W ZRs    and 
Total( , ) 0W ZP  . 

Proof: Please refer to [16] for the proof.               
Theorem 1 gives the basic idea of solving the fractional 

programming problem, and the designed iterative optimization 
algorithm can make the original problem converge to the optimal 
value. The specific operations are as follows: 

(1) Inner loop: Given 0q  , solve the optimization problem 

shown in (16), then return the optimal solution 

( )( ) ( ) ( ), ,W Z
n n n , where n is the number of iterations; 

(2) Outer loop: Iterate q  through the Dinkelbach algorithm 

until the optimal value †q  is obtained, and then return the optimal 

solution ( )† † †, ,W Z . 

Due to the product terms of the variable  and WW
H  exist in 

the constraint (14b) and ( , , )W ZRs  , (16) is still a non-convex 

function. In order to realize the equivalent transformation of the 

problem P1, let Q WW
H= , (1 ) t = , then construct a new 

optimization problem P2. 

1 2

1 2
, , , ,
max ( ( ) )

 
  − − + +

Q Z
Q Z C

t
q Tr PP2 :          (17a) 

1. . , Rs t                                  (17b) 

2, ,   Gk k k kΩ ,                       (17c) 

2(1 1 ) ( ( ) ) , − + + Η Q Z Η
R

H

R N Rt Tr eI        (17d) 

2( ( ) ) , , , + +   G Q Z G G
E

H

k k k N k k kTr e kI Ω  (17e) 

max( ) , + + Q Z CTr P P                       (17f) 

, , 1,Q Z t0 0                            (17g) 

where, 
1  and 

2 are slack variables, 

2 2

2 2

log ( )

log ,

Η Z Q Η

Η ZΗ

R R

R R

H

R R N I N

H

R N I N

t

t

  

 

= + + +

− + +

I I

I I
        (18) 

2

2

log ( )

log , ,

G Z Q G

G ZG G

E

E

H

k k k k N

H

k k k N k k k

 



= + +

− +  

I

I Ω
.          (19) 

The problem P2 is equivalent to the optimization problem 

defined by (16) if and only if the optimal solution of the P2 makes 

the two sides of inequalities (17b) and (17c) obtain equal. Otherwise, 

without violating the constraint, the objective function can be 

maximized by increasing 
1  or decreasing 

2 . 

Due to 1t , thus (17d) can be converted to (20), 

2( ( ) ) 0.
( 1)

− + + 
−

Η Q Z Η
R

HR
R N

te
Tr

t
I         (20) 

Finding the Hessian matrix of equation (20), we can get 
2

(20) 0 , so (21) prove that the constraint (17d) is a convex set. 

2

(20)

3

0

0

2
0 0

(t 1)

 
 
 

 =  
 
 
 − 

0 0

0 0 0 .              (21) 

The objective function of P2 is a linear function, and (17d)~( 17g) 

are all convex constraints. In the constraints (17b) and (17c),  R
 

and  k
 are the difference between the two concave functions, so 

the problem P2 is still a non-convex problem. In order to resolve the 
non-convex constraints (17b) and (17c) in P2, the first-order Taylor 

series expansion method is used to linearly approximate  R
 and      

 k
 at a given point * * *( , , )Q Z t . 
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For the first-order Taylor series expansion of multivariate matrix 

function ( , )X Yf  at a given point * *( , )X Y , it can be expressed 

as (22), 

( ) 
( ) 

*

*

* *

*

*

( , ) ( , )

( , ) ( ) ( )

( , ) ( ) ( ) .

X X

Y Y

X Y X Y

X Y X X X

X Y Y Y Y

T

T

f f

Tr f

Tr f

=

=

=

+    −

+    −

       (22) 

where, ( ) X  and ( ) Y  represent the subterms of the function 

( , )X Yf  containing the variables X  and Y , respectively. 

Assuming 2 2

1( , ) log  = + +Z Η ZΗ
R R R

H

N R N I Nf t tI I I ,

2

2( , ) log ( ) = + +Z Q G Z Q G
E

H

k k k Nf I , take the Taylor series of 

1( , )Z
RNf tI  and 

2( , )Z Qf  according to the matrix differentiation 

Theorem ( ) ( )1log − = X X XTr . Bring the series expansion 

result into (18) and (19), we can get the approximated  R
 and  k

 

shown in (23) and (24), 
2 2 *

* 1 * * 1 * 2

log ( ) log

1 1
( ( ) ) ( ( ) ),

ln 2 ln 2

= Η Z Q Η A

A Η Z Z Η A

R R

R

H

R R N I N

H

I N

t

Tr Tr t t

  

− −

+ + + −

− − − −

I I

I
 (23) 

* * 1 * *

2

1
log ( ( ) )

ln 2

log ,

= B B G Z Z +Q Q G

G ZG
E

H

k k k

H

k k k N

Tr



−+ − −

− + I

       (24) 

where, * * 2 * 2 = + +A Η Z Η
R R

H

R N I NtI I ,

* * * 2( ) = + +B G Z Q G
E

H

k k k NI . 

At this time, the constraints (17b) and (17c) can be approximately 
transformed into (25) and (26), 

1 R
,                     (25) 

2 k
.                       (26) 

After the above steps, the problem P2 can be transformed into 
P3, 

1 2

1 2
, , , ,
max ( ( ) )

 
  − − + +

Q Z
Q Z C

t
q Tr PP3 :      (27a) 

. . (17d) (17g),(25),(26)s t − .     (27b) 

However, due to the characteristics of the first-order Taylor series, 

which leads to  R R
,  k k

. The equal sign can only be 

established when * * *( , , ) ( , , )=Z Q Z Qt t . Therefore, an iterative 

algorithm is proposed in this paper to make the solution obtained at 

a given point * * *( , , )Z Q t  infinitely close to the optimal solution 

† † †( , , )Z Q t  of P2. 

3.2 The transformation of uncertainty channel model 
All the constraints in (27b) of problem P3 are convex 

constraints and the objective function is a linear function. Therefore, 
the problem P3 is a convex problem. However, both (26) and (17e) 

contain the uncertainty term introduced by Gk
. By using the linear 

matrix inequality (LMI) and introducing a relaxation variable 

 , k k ( 0, 0)  k k
, the equation is equivalently transformed 

to eliminate uncertainty in the channel coefficient matrix [18]. 

2 k
 can be equivalently converted to 

2log log + G ZG
E

H

k k k N kI                 (28) 

* * 1 * *1
log ( ( ) )

ln2
−+ − − B B G Z Z +Q Q GH

k k kTr   (29) 

2log 0  − − k k
.                             (30) 

But due to the left and right sides of the inequality (28) are 

concave functions, the inequality is a non-convex set. Therefore, we 
transform it into a processable form by introducing Theorem 2. 

Theorem 2: when the matrix A is a n -by- n  semipositive 

matrix, i.e., A 0 , then the inequality (31) always holds if and 

only if rank( ) 1A . 

1 ( ) +TrI + A A ,                    (31) 

Proof: Denote A and B to be the n -by- n  semi-positive matrix, 

i.e., A 0 , B 0 .When matrix A and B satisfy the equation 

=AB BA , the following relationship holds [19], 

1 1

( ) ( )   
= =

 +   +   +  
n n

i i i i

i i

B A ,    (32) 

where, 
1 2 3, ,   n

 and 
1 2 3, , ,    n

 are eigenvalues of 

matrix B  and A , respectively. The arrow points indicate the 
order of eigenvalues. 

Denote B to be a n -order unit matrix, i.e., =B I . Then, 

inequalities (32) can be equivalently transformed into equation (33), 

1 1

11

11

(1 ) (1 )

(1 ) 1

1 1 ( ).

n n

i i

i i

n r r

i i i k

i i ki

r r

i i

ii

Tr

 

   

 

= =

= =

==

+   +  + 

 + = + = + +

+  + = +

 

 



I A

I A

A

        (33) 

where r  is the rank of matrix A . 

When rank( ) 1= =r A , 1 ( )+ = +TrI A A  in (33) holds. 

When
 

rank( ) 0= =r A , =A 0  and 1 ( )+ = +TrI A A always 

hold. Thus, Theorem 2 is proved.                          
According to the conclusion in Theorem 2, the inequality (28) 

can be transformed into the equation (34). 
2(1 ) 2( )   − −G ZG ENH

k k k k kTr .         (34) 

From vector quantized uncertainty channel coefficient matrix 

= + G G Gk k k ( )k , we get
 

( )=g Gk kvec , ( )=g Gk kvec , 

( ) = g Gk kvec . From || ||  Gk F k
, it is easily to know that 

2
 gk k . Then the inequality (34) can be transformed into the 

group of inequalities (35), according to equation relation 

( ) ( )( ) ( )= A BCD A D B C
H H TTr vec vec . 

To further solve (35), the relevant theoretical basis is given by 
Theorem 3. 

Theorem 3: (S- procedure) Define function: 

( ) 2Re{ }= + +x x A x b x
H H

j j j jh c ,                (36) 

where, A j
 is an n-order symmetric complex matrix,

 

A
n n

j . 

b j  is a complex vector, 
 

1b
n

j , and jc  is a real number, i.e.
 

jc . If x̂  satisfies 1 1 1
ˆ ˆ ˆ2Re{ } 0+ + x A x b x

H H c , a sufficient 

condition for relationship 
1 2( ) 0 ( ) 0  x xh h  to be established 

is the existence of 0   makes 
1 1 2 2

1 1 2 2


   

−   
   

A b A b

b bH Hc c
0  

valid. 

Proof: Please refer to [20] for the proof.                
According to Theorem 3, the group of inequalities (35) can be 

equivalently converted into linear matrix inequalities (37), 

1

( ) ( )

( )

 +  
 

 

I I Z I Z g

g I Z F

H

k k

H

k k

0 ,               (37) 

where, 2(1 ) 2 2

1 ( )     −=  − + −F g I Z g ENH

k k k k k k k k , 0 k
is the 

auxiliary variable. Similarly, according to 

( ) ( )( ) ( )= A BCD A D B C
H H TTr vec vec and Theorem 3, 

javascript:;
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inequality (29) can be converted to inequality (38),  

2

2(1 ) 2

0,

( ) 2Re{ ( ) } ( ) 0.



  −

  − 

−  −   −   + − 

g g

g I Z g g I Z g g I Z g E

H

k k k

NH H H

k k k k k k k k k

         (35) 

 

2

 − −
 
− 

I Ψ Ψ g

g Ψ F

H

k k k k

H

k k k

0 ,            (38) 

Where, * 1 * *( ) ( )−=  − −Ψ B Z Z +Q Q
T

k
, 

2 *

2 ln ln2  = − − + −F B g Ψ g
H

k k k k k k k
, 0 k

 is the auxiliary 

variable. 
Using the same treatment method as (29), (17e) can be 

equivalently converted into (39), 

( ( )) ( ( ))

( ( ))

I I Q Z I Q Z g

g I Q Z

H

k k

H

k

 +  +  +
 

 +  
0 ,   (39) 

where, 2 2 ( ( ))= g I Q Z g
Hk

k k E k k k

e
N  


 − − + +  + , 0 k

 is 

the auxiliary variable. 

After the above processing, at a given point * * *( , , )Q Z t , the 

problem P3 is equivalently converted to the problem P4, 

1 2

1 2
, , , , , , , , ,

max ( ( ) )
      

  − − + +
Q Z

Q Z
k k k k k

C
t

q Tr PP4 :       (40a) 

. .(17d)(17f)( )(25)(30)(37)(38)17g (39)s t ,             (40b) 

0, 0, 0, 0, 0        k k k k k
.                 (40c) 

Problem P4 is the joint convex optimization problem about 

variable  1 2, , , , , , , , ,      Q Z k k k k kt , which can be solved by 

interior point method or Newton method. When the optimal solution 
† † †{ , , }Q Z t  of the P4 problem is obtained, one can use 

eigen-decomposition of †
Q  to get the corresponding †

W . Find 

the reciprocal of †t  to get the optimal value d of † . 

Algorithm 1: Two-level iterative algorithm based on Dinkelbach 

1.  Initialize 0=iq , 0=i ,
1 ； 

2.  Initialize *(0)
Q ,

*(0)
Z , *(0)t ,

2 ； 

3.  Repeat 
4.     Repeat 
5.       Calculate problem P4 using interior point method at 

*( ) *( ) *( ){ , , }Q Z
n n nt , and assign the result to 

*( 1) *( 1) *( 1){ , , }+ + +
Q Z

n n nt ; 

6.        : 1= +n n ； 

7.     Until ( )

1( , )  n

if q   

8.     If ( ) ( 1)

2( , ) ( , ) − −  n n

i if q f q  

9.         Convergence = true; 

10.        Return † ( ) ( )

Total( , ) ( )= +  n n

i iq q f q P  and 

† ( ) =  n
 

11.    Else ( ) ( )

1 Total( , ) ( )+ = +  n n

i i iq q f q P  

9.           Convergence = false; 
10.    End 

11.   : 1= +i i ; 

12.  Until Convergence = true 

( ( )( , ) n

if q is the objective function value of the n-th iteration of 

P4,  is P4 feasible set) 

4. Convergence and algorithm complexity analysis 

Under the given conditions 
iq , P4 is a convex problem, and the 

(n+1)-th iteration value in the inner loop is guaranteed to be the 

optimal value of the n-th iteration. Therefore, ( )( , ) n

if q is proved 

to be monotonically undiminished in the two-layer iterative 
optimization algorithm. At the same time, the constraint conditions 
stipulate the lower limit of energy harvesting and the upper limit of 

transmitted power, so ( )( , ) n

if q  is guaranteed to converge to a 

certain value. Dinkelbach algorithm is applied to outer loop, which 
has its own convergence characteristics. Thus it can show that the 
algorithm proposed in this paper is convergent. 

The computational complexity of algorithm 1 depends on the 
matrix dimension and the number of constraints of P4, which is an 
SDP problem. The time complexity of the iterative process is 

( log(1 ))n [21], where  denotes the solution accuracy and 

n  denotes the dimension of matrix variables. In each iteration, the 

complexity of SDP problem solved by interior point method is 
3 2 2 3( )+ +mn m n m , where m is the number of constraints. 

Therefore, for each SDP optimization problem with fixed precision, 
the computational complexity of iterative solution using the interior 
point method is expressed as 

3.5 2 2.5 3 0.5(( ) log(1 ))+ + mn m n m n . Combined with P4, the 

computational complexity of algorithm 1 is: 
3.5 2 2.5 3 0.5

1 2((13( ) 13 ( ) 13 ( ) ) log(1 ))T R E T R E T R EN N KN N N KN N N KN+ + + + + + + +  

where,
1
, 

2
 respectively represent the number of iterations of 

internal and external cycles. 

5. Simulation results 

In this section, we will prove the convergence and efficiency of 
the algorithm by numerical experiments. In the experiment, the 

number of antennas of CPU 5=TN , authorized devices 2=RN , 

potential eavesdropping devices 2=EN and eavesdropping 

devices are set 2=K . The circuit energy consumption of the 

downlink SWIPT MIMO network 1W=CP , the lower limit of 

energy harvesting 
1 2 23dbm= = =ke e e , the efficiency coefficient 

of the power amplifier   and the energy conversion efficiency of 

the energy receiver   are all set as 1[22]. Channel coefficient 

matrix H  from CPU to authorized device and potential 

eavesdropping device Gk  are Gaussian random variables subject 

to 
2(0,10 )−

[23]. In order to demonstrate the effectiveness of 

the proposed algorithm, four baseline algorithms are proposed. The 
four algorithms are the deterministic channel state information 

algorithm, the artificial noise free auxiliary algorithm, the fixed PS 

factor 0.2=  algorithm and the fixed PS factor 0.5=  

algorithm. If there is no special instruction, the simulation results of 
each baseline algorithm are the average of 500 independent 
experiments used. 

Fig. 2 shows the convergence of the proposed algorithm. In this 
experiment, the maximum transmission power of CPU is set as 

max 2.5W=P , the lower limit of energy harvesting of authorized 

equipment is set as 22dBm=Re , and the radius of channel 

uncertainty region is set as 
1 2 0.05 = = . The Fig. 2 proves that 

the two-level iterative optimization algorithm can converge after up 
to 2 iterations in the randomly generated four channels. 

Fig. 3 shows the impact of the maximum transmission power of 
the CPU on the global secrecy energy efficiency for different 

reference algorithms. In the experiment, the lower limit of energy 

harvesting of authorized device is 22dBm=Re , and the radius of 

channel uncertainty region is 
1 2 0.05 = = . Fig. 3 shows that 
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with the increase of the maximum transmission power, the  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

Fig. 2. The convergence of the proposed algorithm when four different channels 

are applied 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 3. The effects of the maximum transmission power on GSEE in 

different baseline algorithms 

 

performance of GSEE under the deterministic channel state 
information mechanism is always the best. If the CPU can fully 
grasp the CSI between the eavesdropping devices, which can 
restrain the information eavesdropping to the maximum extent, so 
as to effectively improve the energy efficiency of global secrecy. 

But in the actual network scenario, it is difficult for the CPU to 
predict the CSI between the CPU and the eavesdropping device. In 
this paper, GSEE is maximized under the condition of uncertain CSI, 
which can ensure that the global energy efficiency of secrecy is 
close to the perfect channel state. In addition, Fig. 3 shows that the 
maximum global secrecy energy efficiency obtained by the 
algorithm is always higher than that of the artificial noise free 
auxiliary algorithm. Moreover, Fig. 3 shows that the GSEE obtained 
by the fixed PS algorithm is minimal. Compared with other 

mechanisms, the value of GSEE is the smallest. Because the fixed 
PS factor method only optimizes the precoding matrix, the artificial 
auxiliary noise covariance matrix would lack the flexibility of 
dynamic resource allocation. 

Fig. 4 analyzes the impact of the maximum transmission power 
of CPU on the global secrecy energy efficiency when the radius of 
channel uncertainty region are 0.05, 0.07 and 0.09. As can be seen 
from Fig. 4, with the increase of maximum transmission power, 

GSEE shows an increasing trend, which is consistent with the curve 
trend in Fig. 3. It is worth noting that when the transmission power 
is higher than 3W, the global secrecy energy efficiency tends to be 
stable under the three uncertainty region radius. When the 

transmission power is lower than 2.8W, the values of GSEE  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 4. The effects of the maximum transmission power on GSEE by varying the 

radius of uncertain region of different channels 

 
obtained by the three uncertainty region radius are close to each 
other. When the transmission power is higher than 2.8W, the global 
secrecy energy efficiency decreases with the increase of the channel 
uncertainty region radius. This is because with the increase of the 
radius of the uncertainty region, the CPU will consume more energy 

to suppress the eavesdropping. Therefore, under the same 
transmission power, the larger the radius of the channel uncertainty 
region is, the smaller the global secrecy energy efficiency. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Fig. 5. The effects of the lower limit of harvested energy at the authorized 

equipment on GSEE in different baseline algorithms 

 
Fig. 5 shows the effect of the lower limit of energy harvesting on 

the global secrecy energy efficiency of the three baseline algorithms. 
In this experiment, the maximum transmission power of CPU is set 

to 
maxP =2.7W, and the channel uncertainty region radius is set to 

1 2 0.05 = = . As shown in Figure 4-5, with the increase of the 

lower limit of energy collection for authorized equipment, the 
deterministic channel state information algorithm has the highest 
global secrecy energy efficiency, and the GSEE of the artificial 
noise free auxiliary algorithm is the lowest. The algorithm proposed 

in this paper is between the two algorithms. The increase of the 
lower limit of authorized device energy harvest makes the recovered 
RF power mainly used for the EH function. Because the total power 
is unchanged, the power used to avoid information leakage is 
correspondingly reduced, so the GSEE is reduced. 
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6. Conclusion 

In this paper, the information security transmission mechanism is 
introduced into the objective function to make it more intuitively   
reflect the network security performance and resource utilization. 
Because of the non-convexity of the original optimization problem, 
the fractional programming problem is first transformed into 
subtraction equivalent form, and then some non-convex constraints 
are transformed by the first order Taylor technique expansion 
method. According to the transformed problem structure, a 

two-level iterative optimization algorithm is designed. Then, for the 
constraint conditions containing the radius of the uncertainty region 
of the eavesdropping channel, this paper uses the linear matrix 
inequality theory and the S-procedure for its equivalent 
transformation. The simulation experiment finally proves the 
effectiveness and reliability of the proposed algorithm, which can 
achieve the best global secrecy energy efficiency compared with 
other baseline algorithms. 
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