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 This paper presents a feedforward active noise control scheme with a pre-identified adaptive finite impulse 

response (FIR) filter for point source cancellation in three-dimensional free field acoustical environment. In the 

author’s previous works, parameters of the FIR filter are initialized randomly and it causes heavy time-consuming 

and degrades the cancellation performance for both narrowband noise and broadband noise. To solve this problem, 

in this paper, the parameters of the FIR filter are identified based on theoretical information via the least mean 

square (LMS) algorithm and then the identified parameters are used as the initial values for the adaptive process. 

Simulation results demonstrate that the employment of pre-identified parameters contributes to reduce the 

simulation time and increase the cancellation performance for both narrowband and broadband noise. 
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1. Introduction 

The acoustic noise is a challenging problem in the field of 

industry and the industrial equipment is the main source of noise 

such as engines and compressors (Kajikawa et al., 2012). The effect 

of noise on humans is significant and depends on the pressure level 

and the situation in which people are exposed. For example, in 

heavy industry or similar situations, noise can cause hearing loss 

and in daily life, noise can interfere with people’s normal speech, 

make human annoyance and severely disturbing sleep quality. 

Therefore, to attenuate the negative effects of noise, noise control is 

becoming an important research field worldwide. Traditional 

acoustic noise cancellation mainly relies on absorb/isolation 

materials depends on the type of sound, e.g. air-borne sound or 

structure-borne sound, and this is called passive noise control 

(PNC). Based on results from previous experiments and published 

articles, the PNC technology performs better for high-frequency 

noise cancellation (Leitch and Tokhi, 1987) and for low-frequency 

noise, due to the increasing wavelength, the increasing requirement 

of the material makes the PNC technology costly and inconvenient 

(Kuo and Morgan, 1999; Nithin, and Ganapati, 2013; Jiang and Li, 

2018). To deal with low-frequency noise cancellation, the active 

noise control (ANC) technique is first proposed by Lueg in 1936 to 

attenuate the noise pressure level at low frequencies (Lueg, 1936). 

Following Lueg’s work, lots of works regarding from sophisticated 

algorithm design to implementation have been completed by 

different researchers and a summary of the history of the ANC 

development can be found in several review papers (Leitch and 

Tokhi, 1987; Kuo and Morgan, 1999; Kajikawa et al., 2012; Nithin 

and Ganapati, 2013). In spite of the rapid development of ANC 

systems, there are still several problems while designing and 

implementing an ANC system, e.g. physical constraints for the ANC 

system design and implementation, nonlinearities, and economical 

considerations (Kajikawa et al., 2012). 

For physical constraints, take point source in the free-field 

acoustical environment as an example. According to the inverse 

square law, the sound intensity and the sound pressure are inversely 

proportional to the transmitting distance (Martin, and Roure, 1997; 

Duke et al, 2009; Wrona et al., 2018; Peter, 2011). Besides, the 

transmitting distance and the property of the propagation medium 

determine the sound velocity. In order to describe the physical 

process of ANC, in 1987, Leitch and Tokhi completed a milestone 

work presenting the geometric description of the process of 

cancellation for a compact (point) source in three-dimensional 

linear propagation medium (Leitch and Tokhi, 1987). For noise 

control, there are three ways to attenuate the noise level, i.e. at the 

source, on a propagation path and at the receiver point. For noise 

sources, the physical separation between the primary noise source, 

and the secondary noise source determines the range of cancellation 

at the receiver point. During the process of noise propagation, 

traveling distance, the effect of sound absorption through the 
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medium and the sound insulation directly cause noise attenuation. 

Among these factors, travelling distance is an important component 

and based on the inverse square law, the sound intensity and the 

sound pressure is inversely proportional to the square of the 

distance and the distance respectively. Besides, the property of the 

propagation medium determines the value of sound velocity. As for 

the receiver point, its position determines the acoustic delay, from 

the primary source to the receiver point, which should be bigger 

than the electrical delay, from the detected transducer to the receiver 

point. Therefore, the geometrical arrangement of system 

components such as actuators and sensors have a significant effect 

on the degree of cancellation of the ANC system (Raja Ahmad, and 

Tokhi, 2008; 2009; 2010). For an accurate description of the process 

of cancellation, Leitch and Tokhi proposed geometrical factors 

based ANC structure, a transfer function of the controller for 

complete noise cancellation and the critical distance ratio for an 

infinite gain controller. They also provided a quantitative analysis of 

the degree of cancellation in relation to parameters of acoustic 

waves for a point source in three-dimensional linear propagation 

medium. However, they did not refer the effects of different 

distance ratios and parameter adjustment mechanism on the degree 

of cancellation, which can provide useful insight for a specified 

degree of cancellation in real life applications and procedures of 

obtaining the desired controller, which is complicated and strongly 

depends on characteristics of acoustic paths. In summary, Leitch 

and Tokhi’s work forms a solid foundation for the proposed 

feedforward ANC structure in this paper. 

Apart from the geometrical consideration of noise sources, time 

variation and nonlinearity are other two challenging issues in the 

design and implementation of the ANC system (Kuo et al., 2004; 

Kuo and Wu, 2005; Sahib, and Kamil, 2011). In practice, both noise 

sources and the surrounding environment are changing with time, 

and this can directly cause frequency, amplitude, phase and sound 

velocity of noise sources nonstationary. However, the accuracy of 

amplitude and phase of the anti-noise generated by a signal 

processing algorithm determines the extent of the degree of 

cancellation. Therefore, the concept of adaptive control is 

introduced into the ANC system. The ANC scheme is thus required 

to be adaptive. An adaptive filter, defined as the controller with 

adjustable parameters and related adaptive algorithms, is thus used 

for tracking and coping with such variations in real time. The 

structure of the adaptive filter can be in different forms and the most 

common form is (non-recursive) finite impulse response (FIR) filter 

due to its advantages of simplicity and low computational load. As 

for the adaptive algorithm, filtered-x least mean square (FxLMS) 

algorithm is commonly used and several variants are proposed to 

solve multidimensional problems, to improve the cancellation 

performance and speed up the convergence process. However, in the 

ANC system, the presence of nonlinearities severely degrades the 

degree of cancellation of the standard FxLMS algorithm. 

Nonlinearities arise from three main sources. The first source is 

transducers like loudspeaker(s), microphone(s) and actuator(s), 

usually employed in the secondary path. The second source is the 

reference noise and the third source is the propagation path, 

including the primary path, from the reference microphone to the 

error microphone, and the secondary path, from the loudspeaker to 

the error microphone. In order to improve cancellation performance 

in the presence of nonlinearities, several nonlinear models and 

different types of nonlinear adaptive algorithms have been proposed. 

Related summary about these can be found in several review papers 

(Tan, and Jiang, 1997; 2001; Alberto, and Giovanni, 2004). 

In the author’s previous work (Peng et al., 2019), a 

geometrical-configuration based feedforward ANC scheme with an 

adaptive FIR filter was proposed to solve the problem of physical 

constraints and nonlinearities. However, the FIR filter is initialized 

randomly without using the prior information and it causes the 

running time of simulation experiments too long and the 

cancellation performance is not good as expected. Therefore, in 

order to accelerate the simulation process and improve the 

cancellation performance, in this paper we use the least mean square 

(LMS) algorithm to identify the parameters of the FIR filter based 

on known information prior to the simulation experiments. The 

main contribution to knowledge in this paper is that using the 

pre-identified parameters based on theoretical information greatly 

contributes to save time and improve the cancellation performance. 

The rest of paper is organized as follows. Section 2 states the 

problem and presents the process of applying the LMS algorithm 

for identifying the parameters of the FIR filter. Section 3 presents 

several simulation results to verify the cancellation capability of the 

proposed adaptive ANC system. Section 4 concludes the paper. 

2. System identification 

2.1 Problem definition 

Consider a feedforward physical configuration-based ANC 

scheme with an FIR filter for point source cancellation in free-field 

acoustic environment (see Fig.1). 

 

Fig. 1. Structure of feedforward ANC system with an adaptive FIR filter 

The symbol 𝑠 , 𝑠1 , 𝑠2 , 𝑠3 , and 𝑠4  represents physical 

separation and physical distances between sources and actuators 

respectively. Mathematical expressions of physical distance based 

on sound pressure have been provided in the author’s previous 

publications (Peng et al., 2019). Here, the FIR filter acts as the role 

of adjusting amplitude and phase of the input signal, detected from 

the detection sensor. Normally, the microphone is selected as the 

detection sensor (Leitch and Tokhi, 1987). The output of the FIR 

filter is transmitted to the secondary loudspeaker and used for 

driving the loudspeaker to generate the secondary source, which 

will superimpose the primary source at the error sensor to achieve 

the aim of cancellation. The error sensor here is used for monitoring 
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the cancellation performance of the ANC system in terms of the 

amplitude of the error signal. 

In the author’s previous works, the initialization of parameters of 

the FIR filter is random without using known information, therefore, 

it degrades the cancellation performance and increases the 

simulation time. To solve this problem, in this paper, inspired by the 

inertial particle swarm optimization algorithm (Meng, 2018; Gao et 

al., 2019; Chen and Yang, 2019), we will use the LMS algorithm to 

identify the parameters of the FIR filter based on theoretical ideal 

conditions prior to the adaptive control process, aimed at saving 

simulation time and improving cancellation performance. 

2.2 System identification via least mean square (LMS) algorithm 

System identification is the fundamental field of modern control 

and the least square algorithm and the LMS algorithm are two 

widely used techniques. The LMS has the advantage of simplicity, 

low computational load and robustness when compared to the least 

square algorithm. The following section presents the process of 

applying the LMS algorithm on the identification of the FIR filter. 

Consider a time-invariant FIR system, it is given as: 

𝑦(𝑛) = ∑ 𝑤𝑇(𝑖)𝑥(𝑛 − 𝑖)𝑚−1
𝑖=0 + 𝑣(𝑛)             (1) 

Where 𝑥(𝑡) and 𝑦(𝑡) are input signal and output signal of the 

system, 𝑤(𝑡) represents the coefficient and 𝑣(𝑡) is a zero mean 

Gaussian white noise with a variance of 𝜎. 

To express conveniently, we define the input vector as: 

𝑝(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1),… , 𝑥(𝑛 − 𝑚+ 1)]𝑇𝜖𝑅𝑚    (2) 

Define the coefficient vector as: 

𝑐(𝑛) = [𝑤(0),𝑤(1),… ,𝑤(𝑚 − 1)]𝑇𝜖𝑅𝑚          (3) 

Where 𝑚 represents the order of the system. 

Applying equation (2-3) in equation (1), the output of the FIR 

system can be expressed in the form as follows: 

𝑦(𝑛) = 𝑐𝑇(𝑛)𝑝(𝑛) + 𝑣(𝑛)                     (4) 

According to the theory of active noise and control, the 

relationship between the input signal and the output signal is known. 

Therefore, in order to implement the LMS algorithm for 

identification, define a cost function in terms of square of error 

signal, it is given as: 

𝐽(𝑐) = 𝐸[(𝑦(𝑛) − 𝑐𝑇(𝑛)𝑝(𝑛))2]                 (5) 

The updating equation of the coefficient is: 

𝑐(𝑛 + 1) = 𝑐(𝑛) −
µ

2
𝑔𝑟𝑎𝑑[𝐽(𝑐(𝑛))]                 (6) 

Where µ denotes the step size and it is related to the convergence 

speed and cancellation performance. 

𝑔𝑟𝑎𝑑[𝐽(𝑐(𝑛))] is expressed as: 

𝑔𝑟𝑎𝑑[𝐽(𝑐(𝑛))] = −2𝑐𝑇(𝑛)[𝑦(𝑛) − 𝑐𝑇(𝑛)𝑝(𝑛)]        (7) 

Apply equation (7) in equation (6), it follows that: 

𝑐(𝑛 + 1) = 𝑐(𝑛) − µ𝑐𝑇(𝑛)[𝑦(𝑛) − 𝑐𝑇(𝑛)𝑝(𝑛)]         (8) 

3. Results and analysis 

3.1 Results 

All simulations are developed in a free-field acoustic 

environment and several different types of signals are used as the 

primary source to compare the cancellation performance under two 

different conditions. A 2000 Hz is used as the sampling frequency in 

all simulations. In this case, it is assumed that the microphone and 

the loudspeaker are the sources of nonlinearity and they are 

modelled by a second-order Butterworth high-pass filter with a 

cut-off frequency 80 Hz (Zhang and Gan, 2004). 

To reflect the degree of cancellation precisely, we adopt different 

criteria for narrowband and broadband noise. For narrowband noise, 

the difference between the magnitude in decibels (dB) is used as the 

comparison criteria and for broadband noise, the average amount of 

cancellation in decibels (dB) is adopted as the evaluation criteria. In 

the graphical results, the x label represents frequency in Hertz (Hz) 

and the y label denotes magnitude in decibels (dB). 

There are five case studies in this section and simulation results 

are presented as follows. 

Case 1: A sine wave of 200 Hz 

 

(a) 

 

(b) 
Fig. 2. Comparison results for the first case 
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Case 2: A combination wave (a sine wave of 200 Hz +a sine wave 

of 220 Hz) 

 

(a) 

 

(b) 

Fig. 3. Comparison results for the second case 

Case 3: Gaussian white noise (µ=0, σ=0.2) 

 

(a) 

 

(b) 

Fig. 4. Comparison results for the third case 

 

Case 4: Gaussian white noise (µ=0, σ=1) 

 

(a) 

 

(b) 



T. Peng et al. / IJAMCE 3 (2020) 42-48 

 
 

Fig. 5. Comparison results for the fourth case 

 

Case 5: Gaussian white noise (µ=0, σ=2) 

 

(a) 

 

(b) 

Fig. 6. Comparison results for the fifth case 

 

3.2 Analysis 

Simulation results from Fig. 2 to Fig. 6 demonstrates the 

cancellation capability of the adaptive ANC system with 

pre-identified parameters and reveal the difference in cancellation 

performance of two conditions. Table 1 summarizes the cancellation 

performance in decibel (dB) of five different cases. 

 

Tab. 1. Comparison of two conditions in terms of cancellation performance 

Case 
Random 

initialization 

Pre-identifie

d 

Single 

frequency 
356.8 dB 377.8 dB 

Two 

frequencies 
345.6 dB 387 dB 

Gaussian 

white noise 

(µ=0, 

σ=0.2) 

11.2 dB 11.5 dB 

Gaussian 

white noise 

(µ=0, σ=1) 

24 dB 26.2 dB 

Gaussian 

white noise 

(µ=0, σ=2) 

34.3 dB 38.4 dB 

 

For narrowband noise, simulation results from the first two cases 

reveal that the cancellation performance of pre-identified is better 

than the cancellation performance of random initialization. For 

single frequency, the increment of cancellation is 21 dB and for two 

frequencies, the value increases to approximately 42 dB. 

For broadband noise, simulation results from the later three cases 

demonstrate that cancellation performance is still better when the 

parameters of the FIR filter are identified prior to the adaptive 

control process. Meanwhile, the cancelation performance varies 

from the value of the variance for the Gaussian white noise and the 

value of difference is increasing with the increment of variance 

value. 

Table 2 presents the comparison results of simulation time for 

five different cases. 

 

Tab. 2.  

Case 
Random 

initialization 

Pre-identifie

d 

Single 

frequency 
757.6 (s) 651 (s) 

Two 

frequencies 
537.6 (s) 391.7 (s) 

Gaussian 

white noise 

(µ=0, 

σ=0.2) 

481.2 (s) 370 (s) 

Gaussian 

white noise 

(µ=0, σ=1) 

487.8 (s) 375.5 (s) 

Gaussian 

white noise 

(µ=0, σ=2) 

448.1 (s) 404.6 (s) 

 

From table 2, we can find that generally the reduction of the 

simulation time is significant. For narrowband noise, the reduction 

of simulation time in seconds can up to approximately 200 and for 

broadband noise, the reduction of simulation time in seconds varies 

from the value of variance. The amount of reduction in simulation 

time for the third and the fourth cases are approximately 120 

seconds and the value decreases to 50 seconds for the fifth case. 

4. Conclusion 

A study about using the pre-identified parameters at the 

beginning of the adaptive process for the adaptive feedforward ANC 

system of point source cancellation in free field acoustic 

environment has been completed. The LMS algorithm is used for 

identifying the ideal parameters of the FIR filter based on 

theoretical information. Several different types of signals are used 

as the primary source for comparing the cancellation performance 

of pre-identified and random initial parameters. Simulation results 

reveal that both simulation time and cancellation performance are 

better when using the pre-identified parameters prior to the adaptive 

process. For narrowband noise, the improvement of cancellation 

varies from the number of frequency content and the reduction of 

simulation time is about 120 seconds. For broadband noise, the 
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average amount of cancellation varies from the value of the 

variance of the Gaussian white noise and the larger variance, the 

better cancellation performance. For simulation time, the amount of 

reduction in seconds decreases with the increasing value of variance. 

In summary, using pre-identified parameters are better than random 

initialized and save time and improve performance cancellation. 
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