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 Rough set theory is based on the equivalence relationship using the defined upper and lower approximate 

relationships to describe uncertain and incomplete information and it are a systematic approach for the 

classification of objects. As a multi-valued extension of soft sets, N-soft set theory is an effective model for binary 

and non-binary evaluation in a variety of decision problems, and it is an effective method to solve the problems of 

ranking system. In this paper, a new hybrid model called rough N-soft sets is introduced. It is a suitable 

combination of rough sets and N-soft sets. Basic properties and relevant definitions of rough N-soft sets are 

presented. Furthermore, an algorithm for decision-making problems is proposed. Finally, the validity of this model 

is proved by the application of the recruitment.  
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1. Introduction 

The rough set theory, which was first proposed by Pawlak 

(Pawlak, 1982), and the soft set initiated by Russian scholar 

Molodtsov (Molodtsov, 1999), are two powerful mathematical tools 

to model various types of uncertainty. Soft set theory showed its 

potential applicability and significant uses in many different fields, 

such as medicine and probability theory (Molodtsov, 1999; 

Molodtsov, 2004). Until now, the research on soft sets is very active 

and progressing rapidly. Maji (Maji et al., 2003) defined and studied 

several calculation methods on soft sets. Chen (Chen et al., 2005) 

presented a new definition of soft set parametrization reduction, and 

compared it with attributes reduction in rough set theory. Kong 

(Kong et al., 2008) defined the parameter reduction of soft sets, by 

which they investigated the problem of suboptimal choice and 

added parameter set in soft set parametrization reduction. Ali (Ali et 

al., 2009) developed the idea of complement of soft set. For rough 

set theory, we discover that decision-making mechanism to solve 

practical problems is necessary. Yao (Yao, 2010) analyzed the 

three-way decision rule in the rough set model of decision theory. 

What’s more, Cagman N and Maji (Cagman and Enginoglu , 2010; 

Cagman and Enginoglu , 2010; Maji et al., 2002) applied soft sets to 

decision-making. Maji (Maji et al., 2002) discussed the use of soft 

sets in decision-making problems, which was a first applied soft set 

to solve the decision-making problems based on the choice values. 

Over the years, the theories of rough sets and soft sets have 

become closer and closer. Aktas H (Aktas and Cagman, 2007)   

related soft sets to fuzzy sets and rough sets. Further, Feng (Feng et 

al., 2011) introduced soft sets and soft rough sets. Inspired by 

Dubois and Prade’s ideas on rough fuzzy sets, Feng F (Feng et al., 

2010) considered the upper and lower approximations of soft sets in 

Pawlak approximation space, thus naturally generating the concept 

of rough soft sets. Ali M I (Ali, 2011) defined the approximate 

space of the rough soft set. Zhan, Jianming and Zhu, Kuanyun 

(Zhan and Zhu, 2015) constructed a new rough soft set decision 

method. Roy (Roy and Bera, 2015) established link between soft 

sets and rough sets in connection with an application in lattice. Liu 

Y (Liu et al., 2018) provided several proposals for decision making 

based on the hybrid soft sets of fuzzy soft sets and rough soft sets. 

Sun B (Sun and Ma, 2014) gave an approach to decision-making 

problems based on soft fuzzy rough set models. 

For the most part, researchers in soft set theory models use binary 

evaluations (0 or 1), or use real numbers between 0 and 1. But in 

fact, we often find non-binary evaluations in many areas. For 

example, in the social judgment system, Alcantud (Alcantud and 

Laruelle, 2014) specified a ternary voting system. In addition, 

Herawan (Herawan and Deris, 2009) pointed out n binary-valued 

information systems in soft sets, where each parameter has its own 

ranking, compared to the ranking order described by Chen (Chen et 

al., 2013). Instead of ranking as an assessment, Ali (Ali et al., 2015) 

set the parameter elements in the soft set of the organized scoring 

system. To solve this problem, Fatima (Fatimah et al., 2018) 

designed an extended soft set model, N-soft set, which allows finer 
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granularity in parameterization. Some algebra definitions and 

properties are given and it is proved by example that N-soft set is a 

convincing model of binary and non-binary evaluation in many 

decision problems. However, the concept of N-soft sets is 

insufficient to provide the information about the occurrence of 

ratings or grades, and it is also unable to describe the occurrence of 

uncertainty and vagueness specially. For this purpose, Akram 

(Akram et al., 2019; Akram et al., 2018; Akram et al., 2018) 

introduced the novel models with applications called Fuzzy N-soft 

sets and hesitant N-soft sets as the generalization of N-soft sets. 

Alcantud (Alcantud et al., 2019) reveal a close connection between 

N-soft sets and rough structures of various types. There is also a 

combination of N-soft sets and other concepts (e.g., Riaz et al., 

2019; Hüseyin et al., 2020; Zhang et al., 2020). 

Similarly, by the hybridization of two well-known concepts 

called rough sets and N-soft sets, we introduce a new hybrid model 

called rough N-soft sets, record as (R,N)-soft set. This model 

provides more accuracy and flexibility as compared to previously 

existing approaches, because it contains more information and it is 

more reasonable and comprehensive. Proposed model provides 

complete information about occurrence of ratings, uncertainty. It is 

also valuable because we extend the method of N-soft sets. In this 

review, we try to describe rough N-soft sets in decision-making in 

more details. The rest of this paper is organized as follows. In 

section 2, we first recall the basic concepts and properties of rough 

sets, N-soft sets and decision information system. In section 3, we 

give related definitions and properties of rough N-soft sets. In 

section 4, we show decision-making based on rough N-soft sets and 

put forward a revised algorithm. In section 5, we present 

conclusion. 

2. Preliminaries 

In the section, we recall some basic notions, such as rough set, 

N-soft set and decision information system, that are useful for 

discussion in the next section. 

2.1 Rough sets 

Definition 1 (Pawlak, 1982) Let R  be an equivalence relation on 

the universe ,  ( , )U K U R= be a Pawlak approximation space. A 

subset X U  is called definable if ( ) ( )RR
Apr X Apr X= ; in 

the opposite case, i.e., if ( ) ( ) ,RR
Apr X Apr X  X−   is said 

to be a rough set, where the two operations are defined as: 

( )   : ,
RR

Apr X x U x X=            (1) 

( )   :R R
Apr X x U x X=           (2) 

assigning to every subset X U , two sets ( )RApr X  and 

( )
R

Apr X  are called the lower and upper approximations of X  

with respect to ( , )U R . In addition, 

  ( )R R
Pos X Apr X= ， 

  ( )R RNeg X U Apr X= − ， 

  ( ) ( )R R R
Bnd X Apr X Apr X= −  

are called the positive, negative, and boundary regions of X , 

respectively. 

2.2 N-soft sets 

Definition 2 (Fatimah et al., 2018) Let U be a universe set of 

objects and E  be attributes, A E . Let {0,1,...,G 1}N N= −  

be a set of ordered grades where {2,3,...}N  . We say that 

( ), ,F A N  is an N-soft set on U  if G
: 2 NU

F A


→ . With the 

property that for each a A  and there exists a unique

( ) G, Nau r U   such that ( ) ( ), ,au r F a ,   Ga Nu U r  . 
Given attribute a , every object u  in U  receives exactly 

one evaluation from the assessments space GN , namely the unique 

ar  for which ( ) ( ), au r F a . We also write ( )( ) aF a u r=  as a 

shorthand for ( ) ( ), au r F a . Henceforth, we assume that both 

,  1,2,...,iU u i p= = and ,  1, 2,...,jA a j q= =  are finite unless 

otherwise stated. Clearly, in that case the N-soft set can be presented 

by a tabular form as well where ijr  means ( ) ( ),i ij ju r F a  or 

( )( )j i ijF a u r= . As shown in Tab. 1. 

Tab. 1. Tabular form of N-soft set 

( ), ,F A N  1a  2a  ...  qa  

1u  11r  12r  ...  1qr  

2u  21r  22r  ...  2qr  

...  ...  ...  ...  ...  

pu  1pr  2pr  ...  pqr  

 

Definition 3 (Fatimah et al., 2018) Let U  be a fixed universe of 

objects. The restricted intersection of ( )1, ,F A N  and 

( )2, ,G B N  is denoted by ( ) ( )1 2, , , ,F A N G B N . It is 

defined as ( )( ), ,min 1, 2H A B N N− −  where for all 

a A B  and ( ) ( ) ( )1 2,  , min ,a a a au U u r H a r r r    if 

( ) ( )1, au r F a  and ( ) ( )2, au r G a . The restricted union of 

( )1, , ,F A N  and ( )2, ,G B N  is denoted by 

( ) ( )1 2, , , , .F A N G B N  It is defined as 

( )( ), ,max 1, 2K A B N N− −  where for all a A B  and 

.u U ( ) ( ) ( )1 2, max , ,a a a au r K a r r r  if ( ) ( )1, au r F a  

and ( ) ( )2, au r G a . The extended intersection of ( )1, ,F A N and

( )2, ,G B N  is denoted by ( ) ( )1 2, , , ,F A N G B N . It is 

( )( )1 2, ,max ,J A B N N  which is defined by 

( )

( )

( )

( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

          \

           \

,  such that min ,   

,   ,

a a a a

a a

F a if a A B

J a G a if a B A

u r r r r

u r F a and u r G a



 


= 


=


 

 

The extended intersection of ( )1, ,F A N and ( )2, ,G B N  is 

denoted by ( ) ( )1 2, , , , .F A N G B N  It is
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( )( )1 2, ,max ,L A B N N , and it is defined by 

( )

( )

( )

( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

 \

  \

,    max ,

,   ,

a a a a

a a

F a if a A B

L a G a if a B A

u r such that r r r

u r F a and u r G a



 


= 


=


 

 

Definition 4 (Pawlak et al., 2007) A decision information system 

can be defined as ( ), , ,a aI U At C D V a At f a At= =   . 

where U  be a nonempty set of objects, At  be a nonempty set of 

attributes, C  be a set of condition attributes, D  be a decision 

attribute, aV  be a nonempty set of values for each attribute 

a At , and :a af U V→  be an information function for each 

attribute a At . 

3. Rough N-soft set 

Our next definition introduces a novel model that emerges from 

the hybridization of N-soft sets and rough sets. Naturally we 

consider the lower and upper approximations of a N-soft set in a 

Pawlak approximation space, which gives rise to the following 

notions in a natural way. 

Definition 5 Let ( , )K U R=  be a Pawlak approximations space, 

U  be a universe of objects under consideration, R  be the 

equivalence relation on domain ,U  and E  be attributes, 

A E , ( ), ,S F A N=  is an N-soft set on U . Based on K , the 

exact solutions of two approximation are defined, which are called 

the lower, upper rough N-soft approximations of S  with respect 

to K , can be expressed as 

( ) ( ), ,t
R

F A Apr S = ( ) ( ) ,t RF A Apr S =  

For every ,e A  

( ) ( ) ( ) ,tF e u U u t F e=                    (3) 

( ) ( )   ( ) :t tRR
F e Apr S u U u F e = =   .      (4) 

( ) ( )   ( ) :t tR R
F e Apr S u U u F e = =   .   (5) 

( )( )
      ,0   

0                    

ij ij

t j i

r if r t t N
F a u

otherwise


  
= 


.        (6) 

If ( ) ( ),  RR
Apr S Apr S S=  is called definable.  

If ( ) ( ),RR
Apr S Apr S then the order pair 

( ) ( )( ), RR
Apr S Apr S   is a rough N-soft set. It can be recorded 

as a (R,N)-soft set. 
 

Afterwards, we explain its intuitive interpretation and suggest 

that a tabular representation simplifies its practical use. 

Example 1 Suppose there is a company recruiting for the position of 

algorithm engineer and there are multiple candidates competing. 

The company wants to choose the most suitable candidate. Through 

a written test and the first round of interviews, each candidate has at 

least two kinds of competence that is what company value. Let 

 1 2 3 4 5, , , ,U u u u u u= be the universe of alternatives, there are 

five kinds of ability inspections for this application (referred to as 

1 2 3 4 5, , , ,u u u u u ). Considering various factors such as academic 

qualifications and internship experience, we try to find one or more 

candidates for employment. There are four candidates, denoted by 

1 2 3 4, ,A = { }.,a a a a  In terms of the essence of these five 

capabilities, we regard as ( )1 2 3 4 5, , ,( ) ,  ,  u Ru u uR Ru  be an 

equivalence relation on U , A 6-soft set can be obtained from Tab. 

2. The graded evaluation by check marks can easily identified with 

numbers as G ={0,1,2,3,4,5},N  where 

• 0 serves as “ ”, represents “poor”, 

• 1 serves as “ ”, represents “normal”, 

• 2 serves as “ ”, represents “good”, 

• 3 serves as “ ”, represents “very good”, 

• 4 serves as “ ”, represents “exceptional”, 

• 5 serves as “ ”, represents “excellent”. 

Therefore, a 6-soft set ( , ,6)F A may be considered as follows, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3 4 5

( ) { , , , , }

( ) { , , , , }

,

( ) { , , , , }

( ) { , , , ,

3 ,3 ,0 ,4 ,0

,4 ,0 ,2 ,5 ,0

,0 ,3 ,0 ,3 ,2

,0 ,0 ,4 , , }0 1

F

F

F

a u u u u u

a u u u u u

a u u u u u

a u u u uF u

=

=

=

=

 

The information extracted from related data is described in Tab. 

2., and the table representation of its associated 6-soft set is given in 

Tab. 3.. 

Tab. 2. Information extracted from the real data 

( )/U A  1a  2a  3a  4a  

1u        

2u        

3u        

4u         

5u        

Tab. 3. Tabular representation of the corresponding 6-soft set 

( ), ,F A N  1a  2a  3a  4a  

1u  3 4 0 0 

2u  3 0 3 0 

3u  0 2 0 4 

4u  4 5 3 0 

5u  0 0 2 1 
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It is enough when the information is extracted from real data, but 

when the data is vague and uncertain, we need rough N-soft sets, 

which provide us information how these grades are given to 

alternatives. 

Tab. 4.Table for 6-soft set ( )2 ,2F A  

( )2 ( ,2)F A  
1a  2a  3a  4a  

1u  3 4 0 0 

2u  3 0 3 0 

3u  0 2 0 4 

4u  4 5 3 0 

5u  0 0 2 0 

Tab. 5. Table for (R,6)-soft set ( )2 ,2F A  

( )2 ( , 2)F A  1a  2a  3a  4a  

1u  3 0 0 0 

2u  3 0 0 0 

3u  0 0 0 0 

4u  0 0 0 0 

5u  0 0 0 0 

Tab. 6. Table for (R,6)-soft set ( )2 ,2F A  

( )2 ( ,2)F A  1a  2a  3a  4a  

1u  3 4 3 0 

2u  3 4 3 0 

3u  4 2 2 4 

4u  4 2 2 4 

5u  4 2 2 4 

 

Tab. 7. Table for 6-soft set ( )3 ,3F A  

( )3 ( ,3)F A  1a  2a  3a  4a  

1u  3 4 0 0 

2u  3 0 3 0 

3u  0 0 0 4 

4u  4 5 3 0 

5u  0 0 0 0 

Let 0 t 6   be a threshold, then  ={2,3,4}.t  If   ,ijr t    let 

( )( )= ,t ijj ia u rF  otherwise, ( )( )=0.jt ia uF   Therefore, when 2,t =  
based on Pawlak rough sets and (R,N)-soft sets, the 6-soft set can be given in Tab. 

4. and the lower, upper (R,6)-soft approximations can be given in Tab. 5., Tab. 6., 

respectively. When 3,t =  the 6-soft set can be given in Tab. 7. and the lower, 

upper (R,6)-soft approximations can be given in Tab. 8., Tab. 9., respectively.... 

when 4,t =  the 6-soft set can be given in Tab. 10. and the lower, upper 

(R,6)-soft approximations can be given in Tab. 11., Tab. 12., respectively. 

Tab. 8. Table for (R,6)-soft set ( )3 ,3F A  

( )3 ( ,3)F A  1a  2a  3a  4a  

1u  3 0 0 0 

2u  3 0 0 0 

3u  0 0 0 0 

4u  0 0 0 0 

5u  0 0 0 0 

Tab. 9. Table for (R,6)-soft set ( )3 ,3F A  

( )3 ( ,3)F A  1a  2a  3a  4a  

1u  3 4 3 0 

2u  3 4 3 0 

3u  4 5 3 4 

4u  4 5 3 4 

5u  4 5 3 4 

Tab. 10. Table for 6-soft set ( )4 ,4F A  

( )4 ( ,4)F A  1a  2a  3a  4a  

1u  0 4 0 0 

2u  0 0 0 0 

3u  0 0 0 4 

4u  4 5 0 0 

5u  0 0 0 0 

Tab. 11.Table for (R,6)-soft set ( )4 ,4F A  

( )4 ( , 4)F A  1a  2a  3a  4a  

1u  0 0 0 0 

2u  0 0 0 0 

3u  0 0 0 0 

4u  0 0 0 0 

5u  0 0 0 0 

Definition 6  Let 1( , , )F A N  and 2( , , )G B N  be two N-soft 

sets over .U  Then 2( , , )G B N  is called an N-soft subset of

1( , , )F A N , denoted by 1 2( , , ) ( , , )F A N G B N , if B A and

( )G b ( )F b  for all .b B  Two N-soft sets over U  are said 

to be equal, denoted by 1 2( , , ) ( , , )F A N G B N= , if 

1 2( , , ) ( , , )F A N G B N  and 2 1( , , ) ( , , )G B N F A N .Then 

two (R,N)-soft sets are said to be equal, if
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1 2( , , ) ( , , )t tF A N G B N   and 2 1( , , ) ( , , )t tG B N F A N  . 

Tab. 12. Table for (R,6)-soft set ( )4 ,4F A  

( )4 ( ,4)F A  1a  2a  3a  4a  

1u  0 4 0 0 

2u  0 4 0 0 

3u  4 5 0 4 

4u  4 5 0 4 

5u  4 5 0 4 

Definition 7 Let ( , )tF S  be a (R,N)-soft set on U , where

( , , )S F A N=  is an N-soft set. Then we say that ( , )c

tF S  is a 

weak complement if ( , , )c cS F A N=  is a weak complement of 

.S  By this we mean ( )c

t tF a F  =  for all a A . 

Example 2 Two weak complements of the (R,6)-soft set in 

Example 1, namely ( )2 , ,6
c

F A  and ( )2 , ,6
c

F A are defined 

in Tab. 13.  and Tab. 14.,  respectively. Obviously, the 

collection of weak complements of the (R,6)-soft set in 

Example 1 is much larger. Observe that ( )2 , ,6
c

F A and  

( )2 , ,6
c

F A  are efficient. In that same way, 

( ) ( ) ( )33 4, ,6 , , ,6 , , ,6
cc c

F A F A F A   and ( )4 , ,6
c

F A  also 

can be defined. 

Tab. 13. Table for weak complements (R,6)-soft set ( )2 , ,6
c

F A  

( )( )2 , ,6
c

F A  1a  2a  3a  4a  

1u  4 3 1 1 

2u  4 1 2 1 

3u  1 3 2 2 

4u  1 4 1 2 

5u  1 2 1 2 

Tab. 14. Table for weak complements (R,6)-soft set ( )2 , ,6
c

F A  

( )( )2 , ,6
c

F A  1a  2a  3a  4a  

1u  2 5 1 1 

2u  5 1 2 1 

3u  2 3 1 3 

4u  3 2 4 1 

5u  1 2 3 2 

We can get the following properties，which are easily obtained 

from the definitions. 

Let ( ),U R be a Pawlak approximation space, R is an 

equivalence relation, ( ) ( )1 2, , ,  , ,S F A N Y G B N= = , are N-soft 

sets over U . Then we have 

(1) ( ) ( )ttF S S F S    

(2) ( ) ( )c c
ttF S F S =  

(3) ( ) ( )( )c c

t tF S F S =  

(4) ( ) ( ) ( )t t tS Y S YF F F   =  

(5) ( ) ( ) ( )t t tF F FS Y S Y   =  

(6) ( ) ( ) ( )t t tS Y S YF F F   =  

(7) ( ) ( ) ( )t t tF F FS Y S Y   =  

(8) ( ) ( ) ( )t t tS Y S YF F F     

(9) ( ) ( ) ( )t t tF F FS Y S Y     

(10) ( ) ( ) ( )t t tS Y S YF F F     

(11) ( ) ( ) ( )t t tF F FS Y S Y     

(12) ( ) ( ) ( ) ( ), t tt tF F YS Y F YS SF        

Proof  3N  is the value after t  filtering. This is easily obtained 

from definition 1, definition 5. The proof process of the theorem (1), 

(2), (4)-(12) are given as follows. 

(1) For every ( )tx eF  , now by definition 5,   ( )
R

x F e , 

and  
R

x x , then ( )x F e , so we deduce that ( )tF S S  . 

For every ( )x F e , there exists  
R

x x  based on equivalence 

relation R ,   ( )tR
ex F    , then ( )tx F e , so we deduce 

that ( )tS F S . Hence, it follows that ( ) ( )ttF S S F S   . 

 (2) Let ( ) ( ),tt

ccS FF A =  then ( )   :t R

c
x xF e U =   

( )   ( )     ( ) : :c

R R
F e x U x F e x U x F e =   =  

( )( ) .
c

tF S= Hence, ( ) ( )c c
ttF S F S =  

(4) Let ( )( )1 2, ,min , .N NS Y H C = =  Then, 

C A B= and ( ) ( ) ( ) , .H x F x G x x C=    Using 
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definition (Maji et al.2002), ( ) ( )3, , ,t tHF C N = where 

( ) ( )( ) ( ) ( )( ),t t tH x F H x F F x G x  = =  for all .x C  

Now ( ) ( )( ) ( )( ) ( )( ),t t tF F x G x F F x F G x  =  and so 

we deduce that ( ) ( ) ( )( )t tH x F F x G x =  for all .x C  

Hence, ( ) ( ) ( )t t tS Y S YF F F   = . 

(5) Let ( )( )1 2, ,max , .N NS Y H C = =  Then, 

,C A B=  for all .e C  

( )

( )

( )

( ) ( )

,

,

,

F e                    if  e A B      

H e G e                    if  e B A       

F e G e         if  e B A       

 −


=  −
 

 

for all .e C  Now ( ) ( )( ) ( )( )t tF F e G e F F e =  

( )( )tF G e  and so we deduce that  

( )( )

( )( )
( )( )
( ) ( )( )

,

,

,

t

t t

t

F F e                   if  e A B              

F H e F G e                   if  e B A              

F F e G e        if  e B A              



 



  −


=  −




 

for all x C  Hence, ( ) ( ) ( )t t tF F FS Y S Y   = . 

(6) Prove the same as (4). 

(7) Prove the same as (5). 

(8) Let 1 2( , , ( , ))S Y H C max N N = = . Then C A B=   

and ( ) ( ) ( )H x F x G x= , x C  . Using definition (Maji et 

al.2002), 3( ) ( , , ),t tF H C N  =  where ( ) ( ( ))t tH x F H x =  

( ( ) ( )),tF F x G x=  for all x C . Now ( ( ) ( ))tF F x G x

( ( )) ( ( )),t tF F x F G x   and so we deduce that ( )tH x   

( ( )) ( ( ))t tF F x F G x   for all .x C  Hence, ( )tF S Y 

( ) ( )t tF S F Y  . 

 (9) Let 1 2( , , ( , ))S Y H C max N N = = . Then C A B= , 

for all e C . 

( )                  

( ) ( )                  

( ) ( ),      

F e if e A B

H e G e if e B A

F e G e if e B A

 −


=  −
 

 

Using definition (Maji et al.2002), 

3( ) ( , , )t tF H C N  = ,where, 

( ( ))                  

( ( )) ( ( ))                  

( ( ) ( )),      

t

t t

t

F F e if e A B

F H e F G e if e B A

F F e G e if e B A



 



 −


=  −
 

 

for all e C . Now ( ( ) ( )) ( ( ))t tF F e G e F F e 

( ( )),tF G e  and so we deduce that, 

( ) ( ) ( )t t tF S Y F S F Y    . 

(10) Prove the same as (8). 

(11) Prove the same as (9). 

(12) Assume that .S Y  Then we have A B  and

( ) ( ) ,F x G x  .x A   It can be obtained that ( )( )tF F x   

( )( )tF G x  and ( )( ) ( )( )t tF F x xF G  for all x C . So 

we deduce that, ( ) ( ) ,t tS Y SF F Y    ( )tF S 

( )tF Y .□   

4. Application of rough N-soft set in decision making 

In this section, we study the application of rough soft sets in 
decision making. We illustrate a kind of new decision making 
method for rough N-soft sets. In order to practical application, we 

give an algorithm about rough N-soft set.  

We will put forward the new method to find which is best 

parameter a of a given N-soft set ( ), ,tF A N . In other words, 

( )F a  is the most expected material, with respect to an 

equivalence relation on the universe .U  

Let  1 2, , , mA a a a E=   and ( ), ,tS F A N=  be an 

original description N-soft set over .U  Then we present the 

decision algorithm for rough N-soft sets as follows: 

Step1 Input the original description universe U , N-soft set 

( ), ,F A N and Pawlak approximation space ( ),U R . 

Step2 Compute the lower and upper rough N-soft approximation 

operators ( )R tApr F e   and ( )R tApr F e , respectively. 

Step3 Compute the value of ( )iF a , where 

( )
( ) ( )

( )
=

t ti i

i

i

F a F a
F a

F a

 −
. 

Step4 Find the minimum value ( )kF a  of ( )iF a  , where 

( ) ( )mink iF a F a= . 

Step5 The decision is ( )kF a . 

Now, use the example to illustrate the application of this method. 

Example 3 (Choice of company employees) Consider the rough 

6-soft set ( ), ,6tF A described in example 1. Then compute the 
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value of ( )
( ) ( )

( )
=

t ti i

i

i

F a F a
F a

F a

 −
. 

When 2,t = ( )  1 1 2 4, , ,F a u u u= ( )  2 1 3 4, , ,F a u u u=  

( )  3 2 4 5, ,F a u u u= , ( )  4 3F a u= . ( )1 1F a = ,

( )2 1.667,F a =  ( )3 1.667F a = , ( )4 3.F a =   Find the 

minimum value ( )kF a  of ( )iF a , where

( ) ( )1 1,kF a F a ==  the decision is ( )1F a . 

When 3,t = ( )  1 1 2 4, , ,  F a u u u= ( )  2 1 4 , ,F a u u=

( )  3 2 4, ,  F a u u= ( )  4 3 .F a u=  ( )1 1,  F a =

( )2 2.5,  F a =  ( )3 2.5,F a =   ( )4 3F a = . Where 

( ) ( )1 1kF a F a= = , the decision is ( )1F a . 

When 4t = , ( )  1 4F a u= , ( )  2 1 4,F a u u= , ( )  4 3F a u= .

( )1 3F a = , ( )2 2.5F a = , ( )3 0F a = , ( )4 3F a = . Where 

( ) ( )3 0kF a F a= = . In this case, there is no corresponding 

candidate, which does not meet the actual situation. 

So ( )1F a  is the expected decision, 1a  is the most suitable 

candidate. 

5. Conclusion 

In this article, we have a presented novel model called rough 

N-soft set, which is the hybridization of N-soft sets and rough sets, 

providing more flexibility in decision-making problems. In addition, 

we have investigated some basic properties of the new hybridization. 

And we also propose a rough N-soft set decision algorithm and 

illustrate the effectiveness of the algorithm. In further research, the 

generation model of rough N-soft set theory is an interesting issue 

to be addressed.  
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