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 Based on the adaptive dynamic programming (ADP) approach, a novel approximate optimal control is proposed in 

this papers for continuous-time chaotic systems with input saturation. This online adaptive algorithm is 

implemented as an actor/critic structure which involves a critic neural network and an actor neural network to 

obtain in real-time the approximations of the optimal control cost and optimal policy, respectively. Further, a 

robustifying term is developed to eliminate the effect caused by the neural network approximation errors, leading 

to asymptotical stability of the closed loop chaotic system. Lyapunov techniques are used to prove that the 

proposed optimal constrained controller guarantees the chaotic system states asymptotically stable. The feasibility 

of the proposed method is confirmed by simulating the control of a Lorenz system. 
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1. Introduction 

Chaotic systems as a nonlinear dynamic behavior have been 

widely applied in many practical systems and procedures such as in 

chemical reactions, biological systems, information processing, and 

so on[1−3]. As an interesting nonlinear phenomenon, chaotic 

behaviour has been intensively studied during recent years. Many 

different approaches have been developed to achieve chaos control 

successfully, such as adaptive control, optimal control, adaptive 

impulsive control, feedback linearization, and variable structure 

control[4−8]. Most studies are based on the assumption that the 

actuator is not saturated during the control process[9−12]. However, 

actuator will saturate due to its physical limitations in practice. 

Besides, the saturation of control input may cause the chaotic 

systems unpredictable results due to its high sensitivity to system 

parameters[13-16]. Hence, the derivation of controller with input 

saturation is a challenging problem.  

Considering this fact, the controller design for systems with 

saturation constraints has attracted extensive attention, and some 

interesting methods have been developed[17-20]. There is a difficulty 

in adaptive control design of constrained-input nonlinear systems, 

that is, the stability analysis of closed-loop systems is relatively 

difficult. At the same time, it is noted that optimal control is a very 

important aspect in the control field. The accurate constrained 

optimal control under the minimized performance index is not easy 

to be obtained, because of the tackle problem of directly obtaining 

the optimal solution of the Hamilton-Jacobi-Bellman (HJB) 

equation[17]. 

In recent years, ADP approach and the related research have 

received much attention as an effective intelligent control method 

from researchers [21−34]. The basic principle of ADP is to 

approximate the optimal performance index function and optimal 

control function by using function approximation structure or neural 

network by using reinforcement learning mechanism to meet the 

optimality principle of dynamic programming. An online adaptive 

algorithm has been employed to solve optimal tracking control 

problem for chaotic systems and the result was very effective[23]. 

But without input saturation taken into consideration, and the 

iterative cost functions converge to a finite neighborhood of the 

optimal value. 

The need for adaptive algorithm to learn optimal constrained 

control for chaotic systems, while still guaranteeing asymptotic 

stability motivates our research. In this paper, based on an online 

ADP algorithm, the approximate optimal control is designed for 

chaotic systems with input saturation for the first time. To deal with 

input saturation in chaotic systems, a suitable nonquadratic 

functional is used to encode the constraints into the optimization 

formulation. Then, a policy iteration (PI) algorithm based on an 

actor/critic NNs structure is developed to solve the associated HJB 
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equation online for chaotic Systems. That is, the optimal control 

policy and the optimal value function are approximated as the 

output of two NNs, namely an actor NN and a critic NN. The 

problem of solving the HJB equation is then converted to a problem 

of simultaneously adjusting the weights of two NNs.  

The paper is organized as follows. Section 2 provides the 

formulation of the optimal control problem for chaotic systems. 

Section 3 introduces the online ADP algorithm for the actor and 

critic networks. Results for convergence and stability are given in 

Section 4. Section 5 presents a simulation example that show the 

effectiveness of the online PI algorithm. Finally, section 6 provides 

the conclusions. 

2. Problem statement 

Consider the following nonlinear continuous-time chaotic 

systems given by  

�̇�(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡);  𝑥(0) = 𝑥0, 𝑡 ≥ 0    (1) 

where 𝑥 ∈ ℝ𝑛 is the state vector, the control input 𝑢 ∈ 𝑈, 𝑈 =

{𝑢 = (𝑢1, … , 𝑢𝑚)} ⊂ ℝ𝑚 , |𝑢𝑖| ≤ 𝜆, ∀𝑖 ∈ 1, … , 𝑚 ,where 𝜆 ∈ ℝ  is 

the saturating bound for the actuators. 𝑓(𝑥(𝑡)) ∈ ℝ𝑛 , and 𝑔 ∈

ℝ𝑛×𝑚are known locally Lipschitz continuous functions so that the 

solution ( )x t exists and is unique for any initial condition 𝑥0and 

piece wise continuous control 𝑢(𝑡) ∈ 𝑈.  

The optimal control problem discussed in this paper is to find an 

admissible policy 𝑢∗(𝑡) which satisfies the constraints mentioned 

above and minimizes the following infinite horizon performance 

index associated with the system (1) 

𝑉(𝑥(𝑡)) = ∫ 𝑟
∞

𝑡
(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏           (2) 

where 𝑟(𝑥, 𝑢) = 𝑄(𝑥) + 𝑈(𝑢), 𝑄(𝑥) is a positive definite 

monotonically increasing function and 𝑈(𝑢) is a non-negative 

function.  

In fact, many chaotic systems can be described by Eq. (1), such 

as the Chen system, Lorenz system, Rossler system, Lu system, 

several variants of Chua’s circuits, and Duffing oscillator[7,8,13] . 

 To guarantee that the control signals satisfy the input constraints, 

the following nonquadratic functional is proposed in [27,29]. The 

well-known hyperbolic tangent is used as 

𝑈(𝑢) = 2 ∫ (
𝑢

0
𝜆𝜓−1(𝜈/𝜆))𝑇𝑅𝑑𝜈 = 2 ∫ (

𝑢

0
𝜆𝑡𝑎𝑛ℎ−1(𝜈/𝜆))𝑇𝑅𝑑𝜈(3)  

Using (2)-(3), the performance index becomes 

𝑉(𝑥(𝑡)) = ∫ (
∞

𝑡
𝑄(𝑥(𝜏) + 2 ∫ (

𝑢

0
𝜆 𝑡𝑎𝑛ℎ−1( 𝜈/𝜆))𝑇𝑅𝑑𝜈)𝑑𝜏 (4) 

Differentiating 𝑉(𝑥(𝑡)) along the system trajectories, the 

following nonlinear Lyapunov equation(LE) is obtained 

𝑄(𝑥) + 𝑈(𝑢) + 𝛻𝑉𝑇(𝑥)(𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑥)) = 0, 𝑉(0) = 0 (5) 

where 𝛻𝑉(𝑥) = 𝜕𝑉/𝜕𝑥, which denotes the gradient of the value 

function 𝑉(𝑥). Eq. (5) is an infinitesimal version of (4) 

 Let 𝑉∗(𝑥)be the optimal cost function defined as 

𝑉∗(𝑥(𝑡)) = 𝑚𝑖𝑛
𝑢(𝑡)∈𝑈

∫ 𝑟(𝑥(𝜏)
∞

𝑡
, 𝑢(𝑥(𝜏))𝑑𝜏          (6) 

Then 𝑉∗(𝑥)satisfies the following HJB equation 

min
𝑢(𝑡)∈𝑈

[ 𝑄(𝑥) + 𝑈(𝑢) + 𝛻𝑉∗𝑇(𝑥)(𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑥))] = 0 (7) 

The optimal control input for the given problem is obtained by 

differentiating (7) with respect to 𝑢. The result is 

 𝑢∗(𝑥) = −𝜆 tanh ( 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝑉∗(𝑥)) 

            = −𝜆 tanh ( 𝐷∗)                        (8) 

Putting (8) in (3) results in 

𝑈(𝑢∗) = 𝜆𝛻𝑉∗𝑇(𝑥)𝑔(𝑥) tanh( 𝐷∗) + 𝜆2𝑅 ln ( 1 − 𝑡𝑎𝑛ℎ2(𝐷∗)) (9) 

Where 𝐷∗ = 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝑉∗(𝑥). 

Substituting 𝑢∗(𝑥)  and 𝑈(𝑢∗)  into (5), the HJB equation 

becomes 

𝑄(𝑥) + 𝑈(𝑢∗) + 𝛻𝑉∗𝑇(𝑥)(𝑓(𝑥) + 𝑔(𝑥)𝑢∗(𝑥)) 

= 𝑄(𝑥) + 𝛻𝑉∗𝑇(𝑥)𝑓(𝑥) + 𝜆2𝑅 ln ( 1 − 𝑡𝑎𝑛ℎ2(𝐷∗)) = 0,  

                         𝑉(0) = 0                   (10) 

The HJB equation (10) is a nonlinear partial differential 

equation which is extremely difficult to solve. This is the motivation 

of introducing an synchronous online Policy Iteration Algorithm (PI) 

for approximating the HJB solution.  

The following section provides approximate techniques to 

converge to the solution of the HJB equation (10). 

3. Online ADP algorithm for chaotic systems with input 

saturation 

The learning structure in this paper uses value function 

approximation (Werbos, 1992) with two neural networks(NNs), 

namely an actor NN and a critic NN. The critic NN is trained to 

become an approximation of the value function solution at the 

policy evaluation step, while the actor NN is trained to approximate 

an optimal policy at the policy improving step. Both actor and critic 

NNs are updated simultaneously in real time. We call this 

synchronous online PI. In the following two subsections, an online 

PI algorithm is now given to learn the optimal control solution for 

chaotic systems with constrained-input. 

3.1 Value function approximation using critic NN 

In the NN, if the number of hidden layer neurons is L, the weight 

matrix between the input layer and hidden layer is𝑊1, the weight 

matrix between the hidden layer and output layer is𝑊2, and the 

input vector of the neural network is 𝑋, then the output of a 

three-layer neural network is expressed as 

𝐹(𝑋, 𝑌1 , 𝑌2) = 𝑌2
𝑇𝜎′(𝑌1

𝑇𝑋)            (11) 

where 𝜎′(𝑌1
𝑇𝑋)is the activation function. For convenience of 

analysis, only the output weight 𝑌2 is updated during the training, 

while the hidden weight 𝑌1 is kept unchanged. Hence, in the 

following part, the neural network function can be simplified into 

𝐹(𝑋, 𝑌2) = 𝑌2
𝑇𝜎(𝑋)               (12) 

Assuming the value function solution to the HJB equation (10) is 

a smooth function, then according to the Weierstrass high-order 

approximation theorem, there exists a NN such that the solution 

𝑉∗(𝑥)  and its gradients 𝛻𝑉∗(𝑥)  with respect to x can be 

uniformly approximated as 

 𝑉∗(𝑥) = 𝑊1
𝑇𝜙1(𝑥) + 𝜀1(𝑥)          (13) 

𝛻𝑉∗(𝑥) = 𝛻𝜙1
𝑇𝑊1 + 𝛻𝜀1             (14) 

where 𝑊1 ∈ ℝ𝐿is the ideal constant weights, 𝜙1(𝑥): ℝ𝑛 → ℝ𝐿is 

the suitable basis activation function of critic network, and 𝜀1(𝑥) is 

the approximation error. Besides, the gradients of𝜙1 and 𝜀1(𝑥) 

is 𝛻𝜙1 = 𝜕𝜙1/𝜕𝑥, 𝛻𝜀1 = 𝜕𝜀1/𝜕𝑥, respectively.  

Using the NN value function approximation, considering a fixed 

control policy 𝑢(𝑡), the nonlinear LE (5) becomes 

𝐻(𝑥, 𝑢, 𝑊1) = 𝑄 + 𝑈(𝑢) + 𝑊1
𝑇𝛻𝜙1(𝑓 + 𝑔𝑢) = 𝑒𝐿   (15) 

where the residual error due to the function approximation error 

is 

𝑒𝐿 = −𝛻𝜀1
𝑇(𝑓 + 𝑔𝑢)                  (16) 

The following standard assumptions are considered for the critic 
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NN approximators in this paper. 

Assumption 1. The critic NN activation functions 𝜙1 , 

reconstruction error 𝜀1 , their gradients, and the Hamiltonian 

residual error 𝑒𝐿are bounded over the compact set. In the sense, 

there exit finite constants 𝜙1𝑀 , 𝜀1𝑀 , 𝜙1𝑑𝑀 , 𝜀1𝑑𝑀 , 𝑒𝐿𝑀 ∈ ℝ+ 

such that ‖𝜙1‖ ≤ 𝜙1𝑀 , ‖𝜀1‖ ≤ 𝜀1𝑀 , ‖𝛻𝜙1‖ ≤ 𝜙1𝑑𝑀 , ‖𝛻𝜀1‖ ≤

𝜀1𝑑𝑀 , ‖𝑒𝐿‖ ≤ 𝑒𝐿𝑀. 

Consider a fixed control policy u and assume that its 

corresponding value function is approximated by the critic NN (13). 

Since the ideal weights 𝑊1of the critic NN in (13) are unknown and 

must be approximated in real time. Hence, consider the critic weight 

estimates�̂�1 ∈ ℝ𝐿 , then the approximate value function and the 

approximate nonlinear LE can be written as 

  �̂�(𝑥) = �̂�1
𝑇𝜙1(𝑥), ∀𝑥              (17) 

𝐻(𝑥, 𝑢, �̂�1) = 𝑄 + 𝑈(𝑢) + �̂�1
𝑇𝛻𝜙1(𝑓 + 𝑔𝑢) = 𝑒𝐻 , ∀𝑥, 𝑢 (18) 

where residual error 𝑒𝐻 is produced by the NN approximation 

error. Under the Lipschitz assumption on the dynamics, this residual 

error is bounded on a compact set. Therefore, it is desired to select 

tuning law for the weight estimates �̂�1so that they converge to the 

ideal values 𝑊1 and the following squared residual error is 

minimized. 

𝐸1(�̂�1) =
1

2
𝑒𝐻

𝑇𝑒𝐻                (19) 

Lemma 1.[21] For any admissible policy ( )u t , the least-squares 

solution to (15) exists and is unique for each N . Denote this 

solution as 
1W and define 

𝑉1(𝑥) = 𝑊1
𝑇𝜙1(𝑥)                (20) 

Then, as N → ∞ :  

𝑎. 𝑠𝑢𝑝 ‖ 𝑒𝐿‖ ≤ 𝑒𝐿𝑀,  

𝑏. ‖𝑊1 − 𝑊‖ → 0,  

𝑐. 𝑠𝑢𝑝 ‖ 𝑉1 − 𝑉‖ → 0,  

𝑑. 𝑠𝑢𝑝 ‖ 𝛻𝑉1 − 𝛻𝑉‖ → 0.   

This result shows that 𝑉1(𝑥) converges uniformly in Sobolev 

norm to the exact solution 𝑉(𝑥) to (5) as 𝑁 → ∞, and the weights 

𝑊1converge to the first 𝑁 of the weights 𝑊, which exactly solve 

(5). 

 Considering lemma 1, define the critic weight estimation error 

�̃� = 𝑊1 − �̂�1                     (21) 

Then, according to (18) and (5), the following equation can be 

obtained 

𝑒𝐻  = −�̃�𝑇𝛻𝜙1(𝑓 + 𝑔𝑢) + 𝑒𝐿 

= −�̃�𝑇𝛻𝜙1(𝑓 + 𝑔𝑢) − 𝛻𝜀1
𝑇(𝑓 + 𝑔𝑢)  (22) 

Therefore, from (20)-(22), we can get �̂�1 → 𝑊1, and 𝑒𝐻 → 𝑒𝐿. The 

tuning for the critic NN is obtained by a gradient descent rule as 

follows: 

�̇̂�1 = −𝑎1
𝜎1

𝜎𝑇𝜎+1
(𝜎𝑇�̂�1 + 𝑄 + 𝑈)         (23) 

where 𝑎1 > 0  is the learning rate, 𝜎 = 𝛻𝜙1(𝑓 + 𝑔𝑢) , 𝜎1 =

𝜎/(𝜎𝑇𝜎 + 1) . From the definition of 𝜎1  we can get 𝜎1𝑚 <

‖𝜎1‖ ≤ 𝜎1𝑀 , 𝜎1𝑚and 𝜎1𝑀 are positive constants.  

Remark 1. From (23), we can see that once the system states 

have converged to zero, the �̂�1 is no longer updated. This can be 

viewed as a persistency of excitation (PE) requirement for the 

inputs to �̂�1wherein the system, states must be persistently existing 

long enough for the optimal cost function to be learned.  

Then, the critic NN weights error dynamics can be written as 

�̇̃�1 = −�̇̂�1 = −𝑎1𝜎1𝜎1
𝑇�̃�1 + 𝑎1

𝜎1

𝜎𝑇𝜎+1
𝑒𝐿       (24) 

Remark 2. The residual error 𝑒𝐿 is produced by the NN 

reconstruction error and is near to zero since the number of hidden 

layer neurons L is enough. 

3.2. Control policy approximation using actor NN 

In order to flexibly adjust the critic NN and actor NN to establish 

convergence to the optimal solution and guarantee Lyapunov-based 

stability, we set independent weights for critic NN and actor NN. 

Hence, the optimal control policy can be approximated by an actor 

NN as follows, 

𝑢∗(𝑥) = 𝑊2
𝑇𝜙2(𝑥) + 𝜀2(𝑥)             (25) 

where 𝑊2 ∈ ℝ𝑁1×𝑚 is the matrix of ideal unknown constant 

weights, 𝜙2: ℝ𝑛 → ℝ𝑁1 , is called the action NN activation vector, 

𝑁1 is the number of neurons in the hidden layer, and 𝜀2(𝑥) is the 

action NN approximation error. As before, with the following 

assumption satisfied, the NN activation functions must define a 

complete independent basis set so that 𝑢∗ can be uniformly 

approximated on a compact set. 

Assumption 2 The actor NN activation functions and actor 

reconstruction error are bounded over the compact set. In the sense, 

there exit finite constants 𝜙2𝑀, 𝜀2𝑀 ∈ ℝ+, such that ‖𝜙2‖ ≤ 𝜙2𝑀, 

‖𝜀2‖ ≤ 𝜀2𝑀. 

Since the ideal weights 𝑊2  are unknown, we use estimate 

weights �̂�2 ∈ ℝ𝑁1×𝑚 to approximate the optimal control in (25) 

by the following equation: 

�̂�(𝑥) = �̂�2
𝑇𝜙2(𝑥), ∀𝑥               (26) 

Then, the error between the policy estimate (26) and the 

approximate control based on critic NN’s estimate (17) is 

𝑒𝑢 = �̂�2
𝑇𝜙2 + 𝜆 tanh ( 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝜙1

𝑇�̂�1)     (27) 

In the following, our goal is to tune �̂�2 such that the error is 

minimized 

𝐸2(�̂�2) =
1

2
𝑒𝑢

𝑇𝑒𝑢                (28) 

The tuning law for the actor NN is also obtained by a gradient 

descent rule as follows: 

           �̇̂�2 = −𝑎2
𝜕𝐸2

𝜕�̂�2
 

              = −𝑎2𝜙2𝑒𝑢 

              = −𝑎2𝜙2(�̂�2
𝑇

𝜙2 

+𝜆 tanh ( 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝜙1
𝑇�̂�1))    (29) 

where 𝑎2 > 0is the learning rate. The actor NN weights error is 

defined as 

�̃�2 = 𝑊2 − �̂�2                     (30) 

the error dynamics can be written as 

�̇̃�2 = −�̇̂�2 = −𝑎2𝜙2𝜙2
𝑇�̃�2 − 𝑎2𝜙2𝜀2 − 𝜆𝑎2𝜙2 tanh ( 𝐷∗) 

+𝜆𝑎2𝜙2 tanh ( 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝜙1
𝑇�̂�1)    (31) 

Remark 3. Note that the fourth term of (31) is a function of 

�̂�1but since it appears inside the saturation function tanh(·), this 

term is always bounded and will be treated appropriately in the 

stability analysis that follows. 

4. Stability analysis 

In this subsection, based on the above analysis, theorems are 

presented to indicate the closed-loop system state and network 

weights estimation errors are uniformly ultimately bounded. First, 

the regularity assumption is needed for the stability results 

presented below. 

Assumption 3. The process input function 𝑔  is uniformly 
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bounded on a set Ω ⊂ ℝ𝑛, i.e. ‖𝑔(𝑥)‖ ≤ 𝑔𝑀, ∀𝑥 ⊂ ℝ𝑛, 𝑇 is a 

positive constant.  

Then, according to (26) and the system (1), we have 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)�̂�2
𝑇𝜙2(𝑥) 

= 𝑓(𝑥) + 𝑔(𝑥)(𝑢∗ − 𝜀2 − �̃�2
𝑇𝜙2(𝑥))   (32) 

Now we are ready to prove the following theorem. 

Theorem 1. Consider the system given by (1), let the control 

input be provided by (26). The weight updating laws of the critic 

NN and the action NN are given by (23) and (29), respectively. And 

let the initial action NN weights be chosen to generate an initial 

admissible control. Then the weight estimate errors �̃�1 and �̃�2 

are UUB with the bounds specifically given by (41)-(43). Moreover, 

the obtained control input u is close to the optimal control input 
u within a small bound 𝜀𝑢, i.e., ‖𝑢 − 𝑢∗‖ ≤ 𝜀𝑢 as 𝑡 → ∞ for a 

small positive constant 𝜀𝑢. 

Proof: Choose the following Lyapunov function candidate: 

  𝐿 = 𝐿1 + 𝐿2 + 𝐿3                 (33) 

Where, 𝐿1 =
1

2
𝑡𝑟{�̃�1

𝑇𝑎1
−1�̃�1}, 𝐿2 =

1

2
𝑡𝑟{�̃�2

𝑇𝑎2
−1�̃�2}, 𝐿3 = 𝑉∗. 

According to Assumptions 1 and 2 and using (10), (24), and (31), 

the time derivative of the Lyapunov function candidate (33) along 

the trajectories of the error system (32) is computed as 

�̇� = �̇�1 + �̇�2 + �̇�3                 (34) 

where 

�̇�1(𝑡) =
1

𝑎1
𝑡𝑟 {�̃�1

𝑇�̇̃�1}  

     =
1

𝑎1
𝑡𝑟 {�̃�1

𝑇 (−𝑎1𝜎1𝜎1
𝑇�̃�1 + 𝑎1

𝜎1

𝜎𝑇𝜎 + 1
𝑒𝐿)} 

≤ −(𝜎1𝑚
2 −

𝑎1

2
𝜎1𝑀

2 )‖�̃�1‖2 +
1

2𝑎1
𝑒𝐿𝑀

2                  (35) 

�̇�2(𝑡) =
1

𝑎2
𝑡𝑟 {�̃�2

𝑇�̇̃�2} 

     =
1

𝑎2
𝑡𝑟{�̃�2[−𝑎2𝜙2𝜙2

𝑇�̃�2 − 𝜆𝑎2𝜙2 tanh( 𝐷∗) 

       +𝜆𝑎2𝜙2 tanh ( 1/(2𝜆)𝑅−1𝑔𝑇(𝑥)𝛻𝜙1
𝑇�̂�1) − 𝑎2𝜙2𝜀2]} 

     ≤ −(𝜙2𝑀
2 − 1)‖�̃�2‖2 +

1

2
𝜆2𝜙2𝑀

2  

+
1

2
(𝜆𝜙2𝑀 + 𝜀2𝑀𝜙2𝑀)2                         (36) 

�̇�3(𝑡) = 𝛻𝑉∗𝑇(𝑓 + 𝑔�̂�) 

     = 𝛻𝑉∗𝑇𝑓 + 𝛻𝑉∗𝑇𝑔(𝑢∗ − 𝜀2 − �̃�2
𝑇𝜙2) 

     = −𝑄(𝑥) − 𝑈(𝑢∗) − 𝛻𝑉∗𝑇(𝑥)𝑔(𝜀2 + �̃�2
𝑇𝜙2) 

     ≤ −𝑄(𝑥) − 𝑈(𝑢∗) 

       +𝑔(𝑊1𝑀𝜙1𝑑𝑀 + 𝜀1𝑑𝑀)(𝜀2𝑀 + ‖�̃�2‖𝜙2𝑀) 

≤ −𝜆 min(𝑄)‖𝑥‖2 − 𝑈(𝑢∗) +
𝑔𝑀

2
(𝜙2𝑀 + 1)(𝑊1𝑀𝜙1𝑑𝑀 

      +𝜀1𝑑𝑀)2 +
𝑔𝑀

2
𝜀2𝑀

2 +
𝑔𝑀

2
𝜙2𝑀‖�̃�2‖2                (37) 

Then 

�̇�(𝑡) ≤ − (𝜎1𝑚
2 −

𝑎1

2
𝜎1𝑀

2 ) ‖�̃�1‖2 − (𝜙2𝑀
2 −

𝑔𝑀

2
𝜙2𝑀 − 1)‖ �̃�2‖2 

−𝜆 min(𝑄)‖𝑥‖2 − 𝑈(𝑢∗) + 𝐷𝑀                   (38) 

where 𝐷𝑀 =
1

2𝑎1
𝑒𝐿𝑀

2 +
1

2
𝜆2𝜙2𝑀

2 +
1

2
(𝜆𝜙2𝑀 + 𝜀2𝑀𝜙2𝑀)2 +

𝑔𝑀

2
(𝜙2𝑀 + 1)(𝑊1𝑀𝜙1𝑑𝑀 + 𝜀1𝑑𝑀)2 +

𝑔𝑀

2
𝜀2𝑀

2 . 

If 𝜎1𝑚, 𝜎1𝑀, and 𝜙2𝑀 are selected to satisfy 

𝑎1 <
2𝜎1𝑚

2

𝜎1𝑀
2                         (39) 

𝜙2𝑀 >
𝑔𝑀+√𝑔𝑀

2 +16

4
                  (40) 

and given the following inequalities 

‖𝑥‖ > √
𝐷𝑀

𝜆 𝑚𝑖𝑛(𝑄)
≜ 𝑙𝑥                (41) 

‖�̃�1‖ > √
𝐷𝑀

𝜎1𝑚
2 −

1

2
𝜎1𝑀

2
≜ 𝑙�̃�1

             (42) 

‖�̃�2‖ > √
𝐷𝑀

𝜙2𝑀
2 −

𝑔𝑀
2

𝜙2𝑀−1
≜ 𝑙�̃�2

         (43) 

all hold, then �̇� < 0.Therefore, using Lyapunov theory[31], it can 

be concluded that the system state 𝑥 and the NN weight estimation 

errors are UUB. 

Next we will prove‖�̂� − 𝑢∗‖ ≤ 𝜀𝑢  as 𝑡 → ∞ . Recalling the 

expression of 𝑢∗, we have 

�̂� − 𝑢∗ = �̃�2
𝑇𝜙2 + 𝜀2                (44) 

When 𝑡 → ∞, the upper bound of (44) is 

‖�̂� − 𝑢∗‖ ≤ 𝜀𝑢                  (45) 

Where 𝜀𝑢 = 𝑙�̃�2
𝜙2𝑀 + 𝜀2𝑀. This completes the proof. 

To remove the effect of the NN approximation errors 𝜀1 , 𝜀2 

(and their partial derivatives) and obtain a closed-loop system with 

an asymptotically stable equilibrium point, one needs to add a 

robustifying term to the control law (26) as 

𝑢𝑎𝑑 = �̂� + 𝜁 = �̂�2
𝑇𝜙2 + 𝜁, ∀𝑥            (46) 

where 

𝜁 = −𝐾𝑎𝑑‖𝑥‖2 1𝑚

ℎ+𝑥𝑇𝑥
, ∀𝑥              (47) 

with ℎ a positive constant, 𝐾𝑎𝑑 satisfies 

𝐾𝑎𝑑‖𝑥‖2 ≥
𝐷𝑀(ℎ+𝑥𝑇𝑥)

𝑔𝑀(𝑊1𝑀𝜙1𝑑𝑀+𝜀1𝑑𝑀)
, ∀𝑥         (48) 

The following theorem is the main result of the paper and proves 

asymptotic stability of the learning scheme of resulting closed-loop 

dynamics: 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)((𝑊2 − �̃�2)𝜙2(𝑥) + 𝜁)        (49) 

Theorem 2: Consider the system given by (1), let the control 

input be provided by (46). The weight updating laws of the critic 

NN and the action NN are given by (23) and (29), respectively. And 

let the initial action NN weights be chosen to generate an initial 

admissible control. Then the system state x and the weight 

estimate errors �̃�1 and �̃�2 will asymptotically converge to zero. 

Moreover, the obtained control input 𝑢 is close to the optimal 

control input 𝑢∗ within a small bound 𝛿𝑢, i.e., ‖𝑢 − 𝑢∗‖ ≤ 𝛿𝑢 as 

𝑡 → ∞ for a small positive constant 𝛿𝑢. 

Proof: Choose the same Lyapunov function candidate as in 

Theorem 1. Differentiating the Lyapunov function candidate in (33) 

along the trajectories of the system in (49), similar to the proof of 

Theorem 1, by using (47) and (48), we can obtain. 

            �̇�(𝑡) ≤ −(𝜎1𝑚
2 −

𝑎1

2
𝜎1𝑀

2 )‖�̃�1‖2 

           −(𝜙2𝑀
2 −

𝑔𝑀

2
𝜙2𝑀 − 1)‖�̃�2‖2 

                  −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2 − 𝑈(𝑢∗)           (50) 
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Choosing 𝑎1, and 𝜙2𝑀 as in Theorem 1, we have �̇�(𝑡) ≤ 0, 𝑡 ≥

0. Using Barbalat’s lemma [17], we have ‖𝑥‖ → 0 as 𝑡 → ∞. 

Similarly, we can prove that ‖�̃�1‖ → 0 and ‖�̃�2‖ → 0 as 𝑡 → ∞. 

Next we will prove ‖𝑢 − 𝑢∗‖ ≤ 𝛿𝑢 as 𝑡 → ∞. From (46), we have 

𝑢𝑎𝑑 − 𝑢∗ = �̃�2
𝑇𝜙2(𝑥) + 𝜀2 + 𝜁, ∀𝑥          (51) 

Since‖𝑥‖ → 0 as 𝑡 → ∞, the robustifying control input ‖𝜁‖ →

0 as 𝑡 → ∞, then the upper bound of (51) is 

‖𝑢𝑎𝑑 − 𝑢∗‖ ≤ 𝛿𝑢                   (52) 

Where 𝛿𝑢 = 𝜀2𝑀. This completes the proof. 

Remark 4. For the inequality (39) to hold, one needs to pick the 

appropriate activation function for the critic NN. Regarding (40), 

since 𝜙2𝑀 is simply an upper bound that appears in Assumptions 2, 

one can have it as large as needed. However, one must keep in mind 

that a large value for 𝜙2𝑀, requires an appropriate value for the 

function 𝐾𝑎𝑑  in the robustness term in (48). 

Remark 5. From (45) and (52), it can be seen that 𝛿𝑢 is smaller 

than 𝜀𝑢 ,which reveals the role of the robustifying term in making 

the obtained control input closer to the optimal control input. 

5. Simulation 

The well-known Lorenz system is given by 

             �̇�1 = 𝜎(−𝑥1 + 𝑥2) 

             �̇�2 = 𝛾𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑢 

           �̇�3 = 𝑥1𝑥2 − 𝑏𝑥3                        (53) 

where the parameters 𝜎 = 10, 𝛾 = 28, and 𝑏 = 8/3. The phase 

plane trajectory of the Lorenz system is shown in Fig. 1. 

 

Fig. 1. The phase plane trajectory of Lorenz system 

 

Fig. 2. The convergence of states. 

We now consider the optimal control of Lorenz system (53) with 

the input saturated ‖u‖ ≤ 10 and the cost defined by (2), (3), and 

(4) with Q and R in the utility function are identity matrices of 

appropriate dimensions, for which the optimal feedback law is not 

known in closed form. 

 

Fig. 3. The convergence of control policy. 

 

Fig. 4. The convergence of critic NN weights. 

 

Fig. 5. The convergence of actor NN weights. 

To find the optimal solution using the proposed method, the 

structures of action network and critic network are chosen 3-10-1 

and 3-5-1, respectively. As no verifiable method exists to ensure PE 

in nonlinear systems, a small exploratory signal consisting of 

sinusoids of varying frequencies, 

i.e. 100𝑒𝑥𝑝(−0.1𝑡)((𝑠𝑖𝑛(𝑡)2𝑐𝑜𝑠(𝑡) + 𝑠𝑖𝑛(2𝑡)2𝑐𝑜𝑠(0.1𝑡)) +

1.2𝑠𝑖𝑛(−1.2𝑡)2𝑐𝑜𝑠(0.5𝑡) + 𝑐𝑜𝑠(2.4𝑡)𝑠𝑖𝑛(2.4𝑡)3), is added to the 

control input before the first 25s to excite the system states and 
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ensure the PE holds. The initial weights of the two networks are 

selected from (−1.5, 0.5). Adaptive parameters of the critic and 

action networks are 𝑎1 = 𝑎2 = 0.5. The parameters of robustifying 

term are selected as 𝐾𝑎𝑑 = 165, ℎ = 70. The initial state of the 

chaotic system (54) is [-14.5; -14.5; 25.8]. The activation functions 

in the critic network and the action network are hyperbolic tangent 

functions. After 100 time steps, we obtain that �̂�𝑐 converges to 

[0.8803, 2.3644, − 3.2656, 1.1088, 0.3327], and �̂�𝑎 converges to 

[0.5160, − 0.0660, 0.0344, 0.3152, − 1.8937, − 0.3147, 0.0822, − 

1.0074, − 1.0300, − 0.2350]. 

Fig. 2 presents the state trajectory of the system (53), from which 

we can see that the closed-loop system state converges to zero as the 

time step increases. Fig. 3 shows the optimal control input, which is 

saturated when it reaches the maximum and minimum saturation 

limits. Fig. 4 and 5 show the convergence of the critic NN weights 

and actor NN weights. Thus, the proposed optimal control method 

for chaotic systems in this paper is very effective. 

6. Conclusions 

This paper has developed an asymptotically-stable optimal 

control scheme based on an online ADP algorithm for 

continuous-time chaotic systems with input saturation. The ADP 

algorithm is used to obtain the approximate optimal control input 

which minimizes the values of the specified performance index. The 

critic network and action network are used to approximate 

performance index function and control input, respectively. A 

robustifying term is designed to eliminate the effect caused by the 

neural network approximation errors, leading to asymptotical 

stability of the closed-loop chaotic system. The effectiveness of the 

proposed approach has been demonstrated by a simulation of a 

Lorenz system. 
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