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 In this paper, we investigate the almost surely exponential stability of nonlinear hybrid stochastic systems with a 

mixed switching signal. The switching signal is composed of fixed dwell time and random sojourn time, which is 

used to control the jump process of subsystems. By means of Lyapunov method and ITÔ formula, the sufficient 

conditions for almost surely exponential stability and unstable systems are established respectively, and the 

determination formulas are given. Meanwhile, we obtain the stationary distribution of the switching signal 

according to the property of Markovian chain. Numerical examples and simulations are given to verify our results. 

 

 

 

Published by Y.X.Union. All rights reserved. 

Keywords： 

Fixed dwell time 

Exponential stability 

Hybrid stochastic system 

ITÔ formula 

 

 

 

1. Introduction 

Along with the complexity of control problems, stochastic 

modelling has been widely adopted in scientific and industrial 

applications[1-6]. Hybrid stochastic system is one of the most 

important stochastic models which have been employed to describe 

control problems. In general terms, this kind of systems consists of 

several subsystems and a switching signal. Differential equations or 

stochastic differential equations are usually employed to dominate 

the dynamic characteristics of each subsystem. Switching signal 

dominates the subsystems switching behaviors between each other. 

However, some basic problems, such as stability and controllability, 

are still hot issues and still challenging. The research progress of 

hybrid stochastic systems can be referred to [7-12]. In the process of 

the system actual operation, the system is often affected by various 

unpredictable factors, such as the change of system structure, the 

interference of external environment, the damage of system 

components, etc. Hybrid stochastic system can provide a nature 

mathematical framework for modelling the above problems. 

Therefore, ow its wide range of usages and applications, this field 

has attracted quite a lot of  attention, such as in Financial and 

economic areas[13-16], Biomedical Engineering[17-20], automatic 

control[21-24], communication network[25-27], etc., as well as 

references in the literature.  

In general, the switching signals can be divided into deterministic 

and random switching signals. For deterministic switching signals, 

subsystems switch in a specific way, and the running time of each 

subsystem is fixed and has no randomness. For random switching 

signals, the switching between subsystems is uncertain, and the 

running time of each subsystem is stochastic. Among the random 

signals, Markovinan switching signal is a class of typical random 

signal, which is characterized by a Markov chain with finite or 

infinite states. Thus systems with Markovinan switching are widely 

studied in recent decades. For such system, quite a lot of problems 

have been studied. For example, in [28], Yuan Chenggui, and X. 

Mao studied the nonlinear stochastic delay differential equations 

with Markovian switching. They got some sufficient criteria for the 

system to be almost surely asymptotically stable, obtained a 

sufficient condition for linear system on controllability and robust 

stability, and gave a control law by solving a linear matrix 

inequality. Kao Yonggui et al studied Markovian jump neutral-type 

systems with partly unknown transition probabilities in [29]. Based 

on Lyapunov-Krasovskii functional method, they obtained a 

sufficient condition for exponential stability for the system. In [30], 

Patrinos et al studied constrained stochastic optimal control 

problems for a kind of discrete-time markovian switching systems, 

obtained terminal conditions for such problem, and proposed an 

off-line control law finally. In [31], Wang et al studied the sliding 

mode control problem for continuous-time Markovian switching 

systems. They proposed a sliding surface which is dependent on the 
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Markovian chain, and obtained a sufficient condition on the stability 

of such system by means of linear matrix inequality. 

In practical terms, due to computation, network transmission and 

mechanical inertia etc, time-delay is a very common phenomenon in 

the actual running of systems. In [32], Xiong, Lam, Shun and Mao 

first proposed another random switching signal which consists of 

fixed dwell time and random sojourn time. The fixed part is used to 

describe the switching time-delay caused by the inertia of 

subsystems, which is analogue to the dwell time in the deterministic 

switching system. The random part is used to describe the 

uncertainty as mentioned in former, which is analogue to the 

sojourn time in Markov switching system. Compared with the 

Markovian switching signals, this switching signal is a more general 

view of switching. Thus it is of significance and necessary to study 

systems with such switching signal. Xiong etc studied the stability 

of autonomous linear hybrid systems. They proposed the necessary 

and sufficient conditions for the stability of the system and analyzed 

the influence of fixed dwell time on system stability. 

In the real world, more systems are nonlinear. However, Xiong et 

al did not study nonlinear stochastic systems. so it is necessary to 

study the nonlinear stochastic systems with such switching signal. 

Motivated by such a reason, we studied the nonlinear stochastic 

hybrid system with the switching signal in [32]. The main 

contributions of the study are as follows: (1) Making use of ITȏ 

formula and Lyapunov method, sufficient conditions for 

exponential stability and instability are obtained for nonlinear 

hybrid stochastic system with the switching signal; (2) we deduced 

the stationary probability distribution of the switching signal; (3) 

For linear hybrid stochastic system, we gave sufficient conditions 

for stability. 

The paper is arranged as follows. In section 2, we present some 

notations and definitions, and formulate a hybrid stochastic system. 

In section 3, we deduced the main results. In section 4, numerical 

examples and simulations are carried out to illustrate our results. 

And conclusions are given in section 5. 

2. Preliminaries 

In this paper, we use the following notations. Let nR  denote 

n-dimensional real vector space and x  denotes the Euclidean 

norm for nRx . Let mnR   denote n×m-dimensional real 

matrix space and ( )AAtracA Te=  denotes the trace norm 

for a matrix mnRA  . The superscript “T” represents the 

transposition of a vector or matrix. We denote TAAA += . 

( )Amin  and ( )Amax  denote the smallest and largest 

eigenvalue for symmetric matrix A , respectively.   

Let ( )P,,  denotes a complete probability space. 

 
0tt  is an increasing and right continuous filtration of 

( )P,,  and 0  contains all p-null sets. 

( ) ( ) ( ) ( )( )twtwtwtw m,,, 21 =  is an m-dimensional 

Brownian motion which is t -adapted and defined on the 

probability space ( )P,, . Let ( ) Str   be a switching 

signal dominating current mode, and   LS ,,2,1 =  

containing a finite number of states. Suppose that the mode 

switching time sequence  ,,, 210 ttt  is strictly increasing 

without accumulation points while =→ kk tlim  and 0t . As 

described in [32], ( )tr  can be described as follows. Assume the 

system is in mode i  at time kt  (i.e., ( ) itr k = ). The parameter 

0id  is a fixed constant, which is similar to the fixed dwell time 

in a deterministic switching system. For  )ik dtt + , the 

switching of subsystems does not occur with probability 1, that is 

( ) ( ) 




=


===+

ijif

ijif
itrjttr

,1

,0
Pr ,    (1) 

Where 0t  is a small time increment, and it satisfies 

( ) 0lim
0

=+→
tto

t
. For ik dtt + , switching is 

allowed and complies with transition probabilities, that is 

( ) ( ) 
( )

( )



=++

+
=

==+

ijiftot

ijiftot

itrjttr

ii

ij

,1

,

Pr







 ,         (2) 

Where 0ij  is the transition rate from mode i  to j  if

ij  , meanwhile  =
−=

L

ijj ijii ,1
 . For convenience of 

description, let ( )ikkik dtt +−= +1: , and ik is similar to the 

random sojourn time in Markovian switching systems. Obviously, 

ik  is a random variable, and it obeys the exponential distribution 

of parameter ii− . Without confusion, let  =
=

k

l ilkt 0

~
 , and 

we define ( ) ( )ktrt =： ,  )1

~
,

~
+ kk ttt , then ( )t  is a 

Markovian chain. Meanwhile it satisfies ( ) St   and 

( ) ( ) 
( )

( )



=++

+
=

==+

ijiftot

ijiftot

itjtt

ii

ij

,1

,

Pr











.        (3)  

 

Fig. 1 sample path of ( )tr  

For illustration, figure 1 gives an example of ( )tr  with two 

modes. According to the property of Markov chain, we obtain that 
there are at most finite number of switching in any finite subinterval 

of  )+=+ ,0R  for every sample path of ( )t  with 

probability 1. And so is ( )tr . Assuming that ( )t  is irreducible, 

we can get its stationary probability distribution 

( )L ,,, 21 =  by solving the equation 0= , which 

is subject to 1
1
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( )
LLij 

=  . In addition, we assume that ( )tr  is independent 

of the Brownian motion ( )tw . 

Consider the hybrid stochastic system of the form 

( ) ( ) ( )( ) ( ) ( )( ) ( )tdwtrttxgdttrttxftdx ,,,, += , 

0t       (4) 

where ( ) nRtx   is the system state with initial value 

( ) nRxx = 00  , and the mappings  

nn RSRRf → +: , 
mnn RSRRg + →:  are all 

Borel-measurable functions satisfying Lipschitz condition and at 
most linear growth condition which guarantee that E.q. (4) has a 

unique solution. Let ( )0; xtx  denote the solution of the equation, 

for simplicity, we write ( ) ( )txxtx =0;  without confusion. 

Meanwhile we assume that ( )( ) 0,,0 =trtf  and 

( )( ) 0,,0 =trtg  for 0t . Thus E.q. (4) has a trivial solution 

( ) 00; tx . 

Here, we are interested in the almost surely exponential stability 

of E.q. (4). To this end, it is necessary to give the following 
definition.  

Definition 1[33]：Let ( ) ( )txxtx =0;  be the solution of E.q. (4), 

for any 
nRx 0

, 

(і) E.q. (4) is said to be almost surely exponential stable if  

( )( ) 0log
1

suplim 
→

tx
tt

 a.s. 

(іі) E.q. (4) is said to be almost surely exponential unstable if 

( )( )
1

liminf log 0
t

x t
t→

  a.s. 

3. Results 

In this paper, we investigate the almost surely exponential 
stability of E.q. (4) . The following lemmas are needed. 

Since stochastic process ( )t  is a continuous-time markovian 

chain, it is well-known that the random sojourn time in each mode 
before switching obeys exponential distribution. According to the 
memoryless of Markov chain and the theorem of large numbers, it 

is easily to get lemma 1. The proof is left to readers. 

Lemma 1: Let i  denote the expectation of stochastic process 

( )t  when ( ) it = , Si . For any 0 , there must be 

( ) 1
1

limPr
1

=








− =→


n

j iij
n n

, where 

( ) 1−
−= iii  . 

Lemma 2: Assume that the mappings  
nn RSRRf → +:  and 

mnn RSRRg + →:   

are Lipschitz, and ( )( ) 0,,0 =trtf  and ( )( ) 0,,0 =trtg  

for all 0tt  . Denote the solution of E.q. (4) by ( )0; xtx . Then 

there must be ( )  10;Pr 00 = ttonxtx  for all 

00 x  in nR . That is, almost any solution of E.q. (4) with 

non-zero initial states will not reach the origin.  

To investigate the almost surely exponential stability of E.q. (4), 

we impose the following assumption to mappings f  and g as 

imposed in [33]. 

Assumption 1: For every mode Si , and all 

( ) + RRtx n, , there exist constants i , i  and i  such 

that  

( ) 2
,, xitxfx i

T  , 

( ) xitxg i,, , 

( ) 2
,, xitxgx i

T  .            (5) 

Theorem 1: Let ( )0; xtx  be the solution of E.q. (4). Under 

Assumption 1, the solution ( )0; xtx  satisfies 

( )( )

( ) =

→

−+
L

i iiii

t

xtx
t

1

22

0

5.0

;log
1

suplim



    a.s.    (6) 

for all 
nRx 0

, where  

( ) ( ) =
++=

L

i iiiiiii dd
1

11  .  

In particularly, If  

( ) 05.0
1

2 −+ =

L

i iiii  ,            (7) 

then E.q. (4) is almost surely exponential stable. 

Proof : It is evident that assertion (6) is true when 00 =x  

because in this case ( ) 0; 0 xtx . For simplicity, we denote 

( ) ( )txxtx 0;  in this section without confusion. According to 

Lemma 1, ( )tx  will never reach origin with probability one for 

00 x . Making use of ITÔ formula, we can get that 

( ) 
( )

( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

( )

( ) ( ) ( )( )

( )

( ) ( ) ( )tdwtvdtth

dt
tx

trttxgtx

tx

trttxg

tdwtrttxgdttrttxf
tx

tx

txd

T

T

+=















−+

+=

4

2

2

2

2

2

,,4,,2

2

1

,,,,
2



  

(8) 

Where  

( )
( )

( )
( ) ( )( )

( ) ( )( )

( )

2

2 2

, ,2
, ,

T g x t t r tx t
h t f x t t r t

x t x t
= +

 

( ) ( ) ( )( )

( )

2

4

2 , ,Tx t g x t t r t

x t
− , ( )

( )

( )
( ) ( )( )trttxg

tx

tx
tv

T

,,
2

2
= . 

Further more, we obtain that 

( )( ) ( )( ) ( ) ( )tMdsshxtx
t

++= 0
22

0loglog ,       (9) 
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Where ( ) ( ) ( )=
t

sdwsvtM
0

 is a continuous martingale and it 

vanishes at 0=t . By Assumption 1, the quadratic variation of 

( )tM  satisfies  

( ) ( ) ( ) 2

10

2
max4, i

Li

t

tdssvtMtM 


=  .         (10) 

According to the strong law of large numbers for local martingale, it 
follows that 

( )
0lim =

→ t

tM

t
 a.s.               (11) 

In addition, applying Assumption 1 again, we obtain that 

( ) ( ) ( ) ( )( ) −+
t

srsrsr

t

dsdssh
0

22

0
22  .    (12) 

According to the properties of Markovian chain, it is easy to get that 

for any subinterval of +R , there are at most a finite number of 

switchings for almost every sampling path of  ( )tr . Thus for any 

+Rt , there must exist an integer  Nn  such that 

 )1, + nn ttt . Let ( ) =
=

n

k ktr k
t

0 ,  and 

( ) =
=

n

k ktr k
dt

0 ,

~
, then there must be ttt

~
+= . Since ( )t  

is Markovian chain with a stationary probability distribution 

( )L ,,, 21 = , we get  =
=

L

i itt
1
 .  By virtue of the 

law of large numbers and lemma 1, for a sufficiently large t , we 

can easily get that 

( )  1
~

Pr
1

=− =


L

i iii dtt ,       (13) 

for any 0 . that is ( ) =
=

L

i iii dtt
1

~
  with probability 

1 as →t .  

By the ergodic property of the switching signal ( )tr , we can 

obtain its stationary probability distribution 

( )L ,,, 21 = , 

where ( ) ( ) =
++=

L

i iiiiiii dd
1

11  .  

Furthermore, we get that  

( ) ( ) ( )( )

( )



=

→

−+=

−+

L

i iiii

t

srsrsr
t

ds
t

1

22

0

22

22

22
1

lim




 a.s.      (14) 

From (9)、(12) and (14) , we can get that  

( )( )

( ) =

→

−+
L

i iiii

t

xtx
t

1

22

0

5.0

;log
1

suplim



  a.s. 

Therefore, the assertion (6) is true. Evidently，if 

( ) 05.0
1

22 −+ =

L

i iiii  , 

then E.q. (4) is almost surely exponential stable. The proof is 
accomplished.   

Remark 1: In [32], the switching signal ( )tr  was first proposed 

by Xiong etc as a special random switching signal with a fixed 
dwell time. It provides a better mathematical framework to model 
the actual system switching behavior. Although the signal was cited 
in other papers, they did not give stationary probability distribution 

of ( )tr . In this paper, we deduced that it has a stationary 

probability distribution on ( )L ,,, 21 = , where 

( ) ( ) =
++=

L

i iiiiiii dd
1

11  .  

Evidently,   is equal to   when all id ( Si ) is equal to 0. 

Corollary 1: Under Assumption 1, the E.q. (4) is almost surely 

exponential stable if 05.0 22 −+ iii   for all Si . In 

such case, the stability of E.q. (4) is unrelated to the switching 
signal. 

In the following, we discuss the instability of E.q. (4) , and 

impose the assumption to mappings f  and g  below as 

imposed in [33]. 

Assumption 2: For every mode Si , and all 

( ) + RRtx n, , there exist constants i , i  and i  such 

that  

( ) 2
,, xitxfx i

T  , 

( ) xitxf i,, , 

( ) 2
,, xitxgx i

T  .              (15) 

Theorem 2: Let ( )0; xtx  be the solution of E.q. (4). Under 

Assumption 2, the solution ( )0; xtx  satisfies 

( )( )

( ) =

→

−+
L

i iiii

t
xtx

t

1

22

0

5.0

;log
1

inflim



  a.s.     (16) 

for all 
0

nx R . In particularly, If  

( ) 05.0
1

22 −+ =

L

i iiii  ,                  (17) 

then E.q. (4) is almost surely exponential unstable. 

Proof : When 00 =x , assertion (16) is true apparently.  

Therefore we assume that the initial value 00 x . For simplicity, 

we denote ( ) ( )txxtx =0;  again in this section. Similar to the 

process of theorem 1, we still have 

( )( ) ( )( ) ( ) ( )tMdsshxtx
t

++= 0
22

0loglog ,     (18) 

Where ( )th  and ( )tM  are the same as in Theorem 1. By 

Assumption 2, the estimation of the quadratic variation of ( )tM  

is following that 

( ) ( ) ( ) 2

10

2
max4, i

Li

t

tdssvtMtM 


=  .                                       

Employing the strong law of large numbers for local martingale, we 
can get 

( )
0lim =

→ t

tM

t
 a.s.                    (19) 

Furthermore, according to Assumption 2 , we obtain that 

( ) ( ) ( ) ( )( ) −+
t

srsrsr

t

dsdssh
0

22

0
22  . 

Since ( )tr  has a stationary probability distribution on  ,we can 

obtain that  
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( ) ( ) ( )( )

( )



=

→

−+=

−+

L

i iiii

t

srsrsr
t

ds
t

1

22

0

22

22

22
1

lim




.       (20) 

From (18), (19) and (20) , we get that  

( )

( )2 2

1

1
liminf log ( )

0.5

t

L

i i i ii

x t
t

   

→

=
 + −

  a.s. 

Thus, the assertion (16) is correct. Evidently, if 

( )2 2

1
0.5 0

L

i i i ii
   

=
+ −  , 

then E.q. (4) is almost surely exponential unstable. The proof is 

accomplished.   

Corollary 2: Under Assumption 2, the E.q. (4) is almost surely 

exponential unstable if 05.0 22 −+ iii   for all Si . 

In such case, the stability of E.q. (4) is unrelated to the switching 
signal. 

In the following, we extend the conclusion of Theorem 1 to the 
linear hybrid stochastic systems. 

Consider the linear hybrid system of the form 

( ) ( ) ( ) ( ) ( ) ( )tdwtxCdttxAtdx trtr += .        (21) 

For simplicity in derivation, we assume that ( )tw  is a 

1-dimensional Brownian motion here. The switching signal ( )tr  

is the same as in Theorem 1. If we denote  

( ) 2max

= ii A , ii C= , ( ) 2min

= ii C  

for all Si . Then Assumption 1 is satisfied. Thus we obtain the 

following corollary. 

Corollary 3: The linear hybrid stochastic system of E.Q. (21) is 
almost surely exponential stable if  

( ) 05.0
1

22 −+ =

L

i iiii  . 

In particular, if we add a control input ( )tu  to E.Q. (21), then 

we get the systems in the following form 

( ) ( ) ( ) 
( ) ( )  ( )tdwtuDtxC

dttuBtxAtdx

trtr

trtr

)()(

)()(

++

+=
.     (22) 

Generally speaking, state feedback is a classical control method. 

If we take a state feedback control law  ( ) ( ) ( )txKtu tr= , then 

the Assumption 1 is satisfied with 

( ) 2max

= ii A , ii C= , ( ) 2min

= ii C   

for all Si , where 
iiii KBAA += , 

iiii KDCC += . 

Thus we obtain the following corollary. 

Corollary 4: If there are matrixes iK
, Si , such that 

( ) 05.0
1

22 −+ =

L

i iiii 
 holds, then the linear hybrid 

stochastic system of E.Q. (22) is almost surely exponential stable. 

4. Simulation analysis 

Here, we give three examples to illustrate our results obtained in 
section 3. 

Example 1. Consider a 1-dinmetinal nonlinear hybrid stochastic 
system with two modes in the form of E.Q.(4), the parameters are 
given as following 

( ) ( )xxtxf 2cos21,, += , ( ) xxtxf 2sin2,, = ,  

( ) xtxg =1,, , ( ) xtxg 32,, = , ( )  2,1=Str , 

1.01 =d , 2.02 =d , 








−

−
=

4.04.0

2.12.1
.  

Then the stationary distribution of switching signal ( )tr  is 

( )7358.0,2642.0= . we take constants 31 = , 12 = , 

11 = , 32 = , 11 = , 32 = , then Assumption 1 is 

satisfied. We obtain that  

( ) 0033.15.0
1

22 −=−+ =

L

i iiii  . 

Thus the system is almost surely exponential stable. 

 

Fig. 2 Sample path of ( )r t  

 

Fig. 3 Solution behavior of 
1x  and 

2x  

Example 2. Let us consider a 2-dimensional hybrid system with 
two modes as given in (21). The data is as below: 










−−

−
=

1.18.0

1.01
1A , 









−

−
=

25.01.0

15.01
2A ,  










−−
=

6.02.0

3.00
1C , 









−−

−
=

11.0004.0

1.014.0
2C , 










−

−
=

22

11
,  2,1=S , 1.01 =d , 2.01 =d ,  

( )Tx 5.0,10 −= . Then we get 6964.01 −= ,  

2492.02 −= , 0334.11 = , 5020.02 = , 

8328.01 −= , 0586.02 = . Furthermore, we obtain 

( ) 00038.15.0
2

1

22 −=−+ =i iiii  . According to 

Corollary 3, the system is almost surely exponential stable. 
Simulation is executed for this system. Fig. 2 shows the sample path 
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of ( )tr  with two modes, and Fig. 3 shows the system state 

trajectory. 

 

 

Fig. 4 Switching signal of ( )r t  

 

 

Fig. 5 the system state trajectory of 
1x  and 

2x  

Example 3. Consider a 2-dimention hybrid system with two modes 
in the form of E.Q. (22) with 

 










−
=

25.1

5.11
1A , 









−

−
=

8.01.1

95.02.1
2A , 










−

−
=

2.18.0

3.01
1B , 









−
=

12

5.03.0
2B , 










−−
=

8.06.0

25.05.0
1C , 









−

−
=

6.08.0

2.05.0
2C , 










−
=

4.03.0

5.00
1D , 








=

7.06.0

15.0
2D , 








 −−
=

15.0

3.01
1K , 









−−

−
=

6.05.0

6.07.0
2K , 










−

−
=

22

88
,  2,1=S , 25.01 =d , 15.02 =d , 

( )Tx 5.0,10 −= . 

Then we get 4453.01 = , 7876.22 −= , 1003.11 = , 

8483.12 = , 4017.01 −= , 92452 −= .  

Furthermore we obtain  

( ) 02283.15.0
2

1

22 −=−+ =i iiii  . 

According to Corollary 4, the system is almost surely exponential 
stable. Simulation is carried outed for this system. Fig. 4 shows the 

sample path of ( )tr  with two modes, and Fig. 5 shows the system 

state trajectory of 
1x  and 

2x  respectively. 

Conclusion 

In this paper, the stability property of hybrid stochastic systems is 

investigated with a random switching signal in which the dwell time 

consists of a fixed time and a random sojourn time. We derived the 

sufficient conditions for almost surely exponential stable and 

unstable of such systems. And then a few numerical simulations are 

given to illustrate the results of the theorems. 
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