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1. Introduction

Along with the complexity of control problems, stochastic
modelling has been widely adopted in scientific and industrial
applications!!-®), Hybrid stochastic system is one of the most
important stochastic models which have been employed to describe
control problems. In general terms, this kind of systems consists of
several subsystems and a switching signal. Differential equations or
stochastic differential equations are usually employed to dominate
the dynamic characteristics of each subsystem. Switching signal
dominates the subsystems switching behaviors between each other.
However, some basic problems, such as stability and controllability,
are still hot issues and still challenging. The research progress of
hybrid stochastic systems can be referred to [7-12]. In the process of
the system actual operation, the system is often affected by various
unpredictable factors, such as the change of system structure, the
interference of external environment, the damage of system
components, etc. Hybrid stochastic system can provide a nature
mathematical framework for modelling the above problems.
Therefore, ow its wide range of usages and applications, this field
has attracted quite a lot of attention, such as in Financial and
economic areas!'3'%,  Biomedical Engineering(!’-?%), automatic
control®'?4 communication network(®27], etc., as well as
references in the literature.
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In general, the switching signals can be divided into deterministic
and random switching signals. For deterministic switching signals,
subsystems switch in a specific way, and the running time of each
subsystem is fixed and has no randomness. For random switching
signals, the switching between subsystems is uncertain, and the
running time of each subsystem is stochastic. Among the random
signals, Markovinan switching signal is a class of typical random
signal, which is characterized by a Markov chain with finite or
infinite states. Thus systems with Markovinan switching are widely
studied in recent decades. For such system, quite a lot of problems
have been studied. For example, in [28], Yuan Chenggui, and X.
Mao studied the nonlinear stochastic delay differential equations
with Markovian switching. They got some sufficient criteria for the
system to be almost surely asymptotically stable, obtained a
sufficient condition for linear system on controllability and robust
stability, and gave a control law by solving a linear matrix
inequality. Kao Yonggui et al studied Markovian jump neutral-type
systems with partly unknown transition probabilities in [29]. Based
on Lyapunov-Krasovskii functional method, they obtained a
sufficient condition for exponential stability for the system. In [30],
Patrinos et al studied constrained stochastic optimal control
problems for a kind of discrete-time markovian switching systems,
obtained terminal conditions for such problem, and proposed an
off-line control law finally. In [31], Wang et al studied the sliding
mode control problem for continuous-time Markovian switching
systems. They proposed a sliding surface which is dependent on the
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Markovian chain, and obtained a sufficient condition on the stability
of such system by means of linear matrix inequality.

In practical terms, due to computation, network transmission and
mechanical inertia etc, time-delay is a very common phenomenon in
the actual running of systems. In [32], Xiong, Lam, Shun and Mao
first proposed another random switching signal which consists of
fixed dwell time and random sojourn time. The fixed part is used to
describe the switching time-delay caused by the inertia of
subsystems, which is analogue to the dwell time in the deterministic
switching system. The random part is used to describe the
uncertainty as mentioned in former, which is analogue to the
sojourn time in Markov switching system. Compared with the
Markovian switching signals, this switching signal is a more general
view of switching. Thus it is of significance and necessary to study
systems with such switching signal. Xiong etc studied the stability
of autonomous linear hybrid systems. They proposed the necessary
and sufficient conditions for the stability of the system and analyzed
the influence of fixed dwell time on system stability.

In the real world, more systems are nonlinear. However, Xiong et
al did not study nonlinear stochastic systems. so it is necessary to
study the nonlinear stochastic systems with such switching signal.
Motivated by such a reason, we studied the nonlinear stochastic
hybrid system with the switching signal in [32]. The main
contributions of the study are as follows: (1) Making use of IT6
formula and Lyapunov method, sufficient conditions for
exponential stability and instability are obtained for nonlinear
hybrid stochastic system with the switching signal; (2) we deduced
the stationary probability distribution of the switching signal; (3)
For linear hybrid stochastic system, we gave sufficient conditions
for stability.

The paper is arranged as follows. In section 2, we present some
notations and definitions, and formulate a hybrid stochastic system.
In section 3, we deduced the main results. In section 4, numerical
examples and simulations are carried out to illustrate our results.
And conclusions are given in section 5.

2. Preliminaries

In this paper, we use the following notations. Let R" denote
n-dimensional real vector space and |X| denotes the Euclidean

norm for x ¢ R". Let R™M denote nxm-dimensional real

matrix space and |A| = 1/tracei AT Ai denotes the trace norm

for a matrix A e R™™.
transposition of a vector or matrix. We denote A* = A+ A'.
A (A) and A, (A) denote the smallest and largest
eigenvalue for symmetric matrix A , respectively.

Let (Q,]:, P) denotes a complete probability space.

The superscript “T” represents the

{ft}tzo is an increasing and right continuous filtration of
(Q,]:,P) and F, contains all p-null  sets.
w(t) = (w (t) wy (1) - wi (1) s an
Brownian motion which is J -adapted and defined on the
probability space (Q,f,P). Let r(t)eS be a switching

signal dominating current mode, and S ={l,2,---, L}
containing a finite number of states. Suppose that the mode

m-dimensional

switching time sequence {to,tl,tz,--~} is strictly increasing
without accumulation points while lim, , t, =0 and t;. As
described in [32], r(t) can be described as follows. Assume the
system isinmode 1 attime t, (e, I’(’[k)=i).The parameter
di >0 isa fixed constant, which is similar to the fixed dwell time

in a deterministic switching system. For te [’[k + di) , the
switching of subsystems does not occur with probability 1, that is

. o [0, if ji
Prir(t+At)= Jirt)=1;= , @
trt-a0=jir() =1} {1, it j=i' O
Where At >0 is a small time increment, and it satisfies
lim . O(At)/AtZO. For t>t +d; , switching is
allowed and complies with transition probabilities, that is
Prir(t+At)= j|r(t)=i}
yyAt+o(At), if j=i, @
1+ y,At+0(At), if j=i

Where 7 >0 s the transition rate from mode i to ] if

L

J#1, meanwhile ¥; :_ijl,j# Vij -

description, let 77, =1, —(tk +d, ) and 77; is similar to the
random sojourn time in Markovian switching systems. Obviously,

For convenience of

1y is arandom variable, and it obeys the exponential distribution
=~ k
of parameter — »;; . Without confusion, let = ol and

we define T(t):=l’(tk), te[f-k,f-kﬂ), then z'(t) is a
Markovian chain. Meanwhile it satisfies T(t)eS and

Pric(t+at)= jle(t) =i}

[ryAt+o(at), if ji ©)
|1+ y,At+0(At), if j=i
2 M d2| Mok
[} i : 1 |
g : : !
p |G 0y Gy |
O tk tk+1 t

Fig. 1 sample path of r(t)

For illustration, figure 1 gives an example of r(t) with two

modes. According to the property of Markov chain, we obtain that
there are at most finite number of switching in any finite subinterval

of R+:[0,+oo) for every sample path of T(t) with

probability 1. And so is r(t).Assuming that T(t) is irreducible,
we can get its stationary  probability  distribution
V4 =(7r1,7r2,---,7zL) by solving the equation zI" =0, which

L .
is subject to Zi:l”izl’ 7; >0, VieS and
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I'= (]/ij )LxL. In addition, we assume that r(t) is independent

of the Brownian motion W(t).
Consider the hybrid stochastic system of the form

dx(t)= f(x(t)t, r(t))dt +g(x(t)t, r(t))dw(t),
t>0 (4)
where X(t) € R" is the system state with initial value
x(0)=x, eR" , and the
f:R"XR"xS —>R", g:R"xR"xS —>R™™ are all

Borel-measurable functions satisfying Lipschitz condition and at
most linear growth condition which guarantee that E.q. (4) has a

unique solution. Let X(t; Xo) denote the solution of the equation,

mappings

for simplicity, we write X(t; Xo) = X(t) without - confusion.
f(0,t,r(t))=0 and
g(O,t, I‘(’[)): 0 for t>0. Thus E.q. (4) has a trivial solution
x(t;0)=0.

Here, we are interested in the almost surely exponential stability

of E.q. (4). To this end, it is necessary to give the following
definition.

Definition 169); Let X(t; X, )=

Meanwhile we assume that

X(t) be the solution of E.q. (4),

forany X, € R",
(1) E.q. (4) is said to be almost surely exponential stable if

Iimsup%log(jx(t])<0 as.
t—ow

(i1) E.q. (4) is said to be almost surely exponential unstable if

Iirtranf%log(‘x(t)‘)>0

3. Results

In this paper, we investigate the almost surely exponential
stability of E.q. (4) . The following lemmas are needed.

Since stochastic process T(t) is a continuous-time markovian

chain, it is well-known that the random sojourn time in each mode
before switching obeys exponential distribution. According to the
memoryless of Markov chain and the theorem of large numbers, it
is easily to get lemma 1. The proof is left to readers.

Lemma 1: Let 77; denote the expectation of stochastic process

T(t) when z’(’[): i, ieS. Forany &£>0, there must be
PI‘{ lL@%Z?_l(’?u — 77,1 < 6‘} =1 : where

_ 1
= _(7ii)

Lemma 2: Assume that the mappings

f:R"xR"xS—>R" and ¢g:R"xR"xS—>R™
are Lipschitz, and f(O,t, r(t))= 0 and g(O,t, I’(t))z 0
for all T >1,. Denote the solution of E.q. (4) by X(t; Xo). Then
there must be PI‘{X(t; XO);t Oont >t0}=1 for all

Xo #0 in R". That is, almost any solution of E.q. (4) with
non-zero initial states will not reach the origin.

To investigate the almost surely exponential stability of E.q. (4),
we impose the following assumption to mappings f and Jas
imposed in [33].

Assumption 1: For every mode jeS , and all

(X,t)e R" x R™, there exist constants Q; :B| and o; such
that

X" f(x,t0) < oglx"
lg(x.ti)<B|X,
‘ng(x,t,iX20i|x|2. ©)
Theorem 1: Let X(t;X,) be the solution of E.q. (4). Under

Assumption 1, the solution X(t; Xo) satisfies

Iimsup%|09(|x(tixo)|)
t—>o

a.s. (6)
<" 7o, +0582 -07)
forall X, € R", where
T, =T, 1+d/77I /Z 1+d/77,)

In particularly, If

L~ 2
S 7le,+058 -07)<0, @)
then E.q. (4) is almost surely exponential stable.
Proof : It is evident that assertion (6) is true when X, =0
because in this case X(t;XO)EO. For simplicity, we denote
X(t; XO)E X(t) in this section without confusion. According to
Lemma 1, X(t) will never reach origin with probability one for

Xy # 0. Making use of ITO formula, we can get that

dhxtrJ

20()
el

WL 2lg(x(t),t,r(t))

tr(t))dt+ g(x(t), t, r(t))dwit)]
g((t) t.rt)]

[

2" ey w‘ !
= h(t)dt+v(t )dw(t)
(8)
2x' (1) o (x(0).tr (1)

2K otEhtrOf | y2 27O o) ¢ 1
K o [ i) oy )

Further more, we obtain that

Iog(|x(t]2):log( )|) _[ (s)ds+Mi(t). ©)
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Where M (t) = J.; V(S)dW(S) is a continuous martingale and it

vanishes at t = (0. By Assumption 1, the quadratic variation of

M (t) satisfies
(M(t)M(t))= J'; [v(s)’ds < 4t max g2 (10)

1<i<L

According to the strong law of large numbers for local martingale, it
follows that

IimM—(t) =0 as. (11)

t—>o t

In addition, applying Assumption 1 again, we obtain that

[[h(s)ds < [ (2ar )+ B% —207% s. @

According to the properties of Markovian chain, it is easy to get that

for any subinterval of R, there are at most a finite number of
switchings for almost every sampling path of r(t). Thus for any
neN

te R* , there must exist an integer such that

telt,t.,) . Lt =

n' - n+l

t= Zk od
is Markovian chaln with a stationary probability distribution

— L —
7Z'L), weget t = Zi:l”it .
law of large numbers and lemma 1, for a sufficiently large t, we
can easily get that

Pr{"t'—

n

ko Tr(t )1k and

T then there must be t =1 +t Since T(t)

T = (7[1, TTyy e By virtue of the

Zlil(ﬂifdi/ﬁij<g}:1: (13)

forany &> 0. that is t = ziLzl (”ifdi /77|) with probability
las T > 0.

By the ergodic property of the switching signal r(t), we can
obtain its stationary probability distribution

T :(7?1'7?2"" ﬁL)*

where 7, = z,(1+d, /77, /Z (1+d, /7).
Furthermore, we get that

2 2

)~ 207 Jis

R A
!LTE 0 (2ar(s) ’ as. (14)
=" 7 (20, + 7 - 207)

From (9). (12) and (14), we can get that

Iimsup%log(|x(tixo)|)
t—wo

<z (a +0.54° —0')

Therefore, the assertion (6) is true. Evidently, if

L 2 2
S 7l +0567 -02)<0,
then E.q. (4) is almost surely exponential stable. The proof is
accomplished.

Remark 1: In [32], the switching signal r(t) was first proposed

by Xiong etc as a special random switching signal with a fixed
dwell time. It provides a better mathematical framework to model
the actual system switching behavior. Although the signal was cited
in other papers, they did not give stationary probability distribution

a.s.

of r(t). In this paper, we deduced that it has a stationary

probability distribution on 772(771,772,---,7?L), where

7 = (l+d, /7 /Z (1+d, /7).

Evidently, 7 isequalto 7 whenall d, (i e S)isequal to0.
Corollary 1: Under Assumption 1, the E.q. (4) is almost surely
exponential stable if ¢, —I—O.S,Bi2 —O'i2 <0 forall ieS.In

such case, the stability of E.q. (4) is unrelated to the switching
signal.
In the following, we discuss the instability of E.q. (4) , and

impose the assumption to mappings f and O below as
imposed in [33].
Assumption 2: For
(X,t)e R" x R™, there exist constants ¢;, [, and O such
that

every mode jeS , and all

X" (x,t,i)> o |x”
[f(x.t,i)= B|X,
‘ng(x,t,ijsai|x|2. (15)
Theorem 2: Let X(t;X,) be the solution of E.q. (4). Under

Assumption 2, the solution X(t; XO) satisfies

.1
Ilrtrllwnfflog(|x(tixo)|)

> ziL:lfi (ai + O.Sﬂi2 — aiz)
forall X, € R". In particularly, If
S 7l +0567 -02)>0, )

then E.q. (4) is almost surely exponential unstable.
: When X, =0, assertion (16) is true apparently.

as. (16)

Proof
Therefore we assume that the initial value X, # 0. For simplicity,

we denote X(t; Xo): X(t) again in this section. Similar to the
process of theorem 1, we still have

Iog(|x(t]2)=log( (o) ) _[ (s)ds+M(t). @8
Where h(t) and M(t) are the same as in Theorem 1. By

Assumption 2, the estimation of the quadratic variation of M (t)
is following that

t
(M(t)M(t))= J.O|v s)ds < 4t max o’

Employing the strong law of large numbers for local martingale, we
can get

IlmM() 0 as (19)

t—>o t

Furthermore, according to Assumption 2 , we obtain that
T t 2 2
J:) h(S)dS > L (2ar(s) + ﬂr(s) — ZO'r(s)hS .

Since r(t) has a stationary probability distribution on 77 ,we can
obtain that
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L1t
lim= [} (2at, + ) - 207, Jis o
=" 7 (20, + 7 - 207)

From (18), (19) and (20) , we get that

o1
Ilrtrl!)onfilog(|x(t)|)

L — 2 2
>3 7 (a+058°—0o7)
Thus, the assertion (16) is correct. Evidently, if
L —
Zi:l”i (ai +0.537 —aiz) >0,
then E.q. (4) is almost surely exponential unstable. The proof is

accomplished.
Corollary 2: Under Assumption 2, the E.q. (4) is almost surely

exponential unstable if ¢, +0.5,Bi2 —O'i2 >0 foral je8§S.

In such case, the stability of E.q. (4) is unrelated to the switching
signal.

In the following, we extend the conclusion of Theorem 1 to the
linear hybrid stochastic systems.

Consider the linear hybrid system of the form

dx(t) = A x(t)dt+C x(t)dwlt). (21)

For simplicity in derivation, we assume that W(t) is a

a.s.

1-dimensional Brownian motion here. The switching signal r(t)
is the same as in Theorem 1. If we denote
ai :ﬂ’max(A )/2’ ﬂi :”Ci”’ O-i :ﬂ’min(ci )/2

forall | € S. Then Assumption 1 is satisfied. Thus we obtain the

following corollary.
Corollary 3: The linear hybrid stochastic system of E.Q. (21) is
almost surely exponential stable if

L 2 2
Zi:l”i (ai +0.54° —o; )< 0.
In particular, if we add a control input u(t) to E.Q. (21), then
we get the systems in the following form

dx(t) = |A o X(t)+ B, ,u(t)t
+ [Cr(t)x(t)+ Dr(t)u(t)]dw(t).

Generally speaking, state feedback is a classical control method.
If we take a state feedback control law U(t) = Kr(t)X(t), then
the Assumption 1 is satisfied with

Qi :ﬂ’max(zﬁ*)/z’ ﬂl :H(:Hv O; :ﬂ’min(c_:i*)/z
for all ieS, where R:A+BiKi, C_:i:Ci+DiKi .

Thus we obtain the following corollary.

(22)

Corollary 4: If there are matrixes |, €S , such that

S 7la+0567 -02)<0

stochastic system of E.Q. (22) is almost surely exponential stable.

holds, then the linear hybrid

4. Simulation analysis

Here, we give three examples to illustrate our results obtained in
section 3.

Example 1. Consider a 1-dinmetinal nonlinear hybrid stochastic
system with two modes in the form of E.Q.(4), the parameters are
given as following

f(x,t,1)=x(2+cos*x). f(xt,2)=xsin2x,
g(x,tl)=x, g(xt,2)=3x, r(t)eS={2},

-12 1.2
0.4 —0.4)
Then the stationary distribution of switching signal r(t) is
T = (0.2642,0.7358).We take constants o, =3, @, =1,

p.=1, B,=3, 0,=1, 0,=3, then Assumption 1 is
satisfied. We obtain that

S 7la,+058% —0?)=-1.033<0.

Thus the system is almost surely exponential stable.

d,=0.1, d, =02, r:(

0 2 4 6 8 10 12
t
Fig. 2 Sample path of I (t)

x1
x2

0 2 4 6 8 10 12
t

Fig. 3 Solution behavior of X1 and X2

Example 2. Let us consider a 2-dimensional hybrid system with
two modes as given in (21). The data is as below:

A= -1 01 A - -1 015
{-08 -11) "% |-01 025)
0 03 014 -0.1
C1= y C2= y
~02 -06 ~0.004 -0.11
1 1
r=(2 ZJ, s={,2}, d,=01, d,=02,

X, =(1-05)" . Then we get o =-0.6964 ,
a,=-02492 , p3,=1033 , p,=05020 |,
o0,=-0.8328, o, =0.0586 . Furthermore, we obtain
Z;ﬁi (O(i +0.54% — O_iz): —1.0038 <0 . According to

Corollary 3, the system is almost surely exponential stable.
Simulation is executed for this system. Fig. 2 shows the sample path
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of r(t) with two modes, and Fig. 3 shows the system state
trajectory.

3
2
v
3
s/
() 1 L L 1 1 ]
0 2 4 6 8 10 12
t
Fig. 4 Switching signal of I’(t)
4 -
x1
2 l\‘\A x2
Yo
2 h
4 s ' . : : !
0 2 4 6 8 10 12

Fig. 5 the system state trajectory of X; and X,

Example 3. Consider a 2-dimention hybrid system with two modes
in the form of E.Q. (22) with

(1 15 -1.2 0.95
15 —2) "% |11 -08)
-1 03 03 05
l: YBZ= )
0.8 -1.2 -2 1
05 0.25 -05 0.2
C]_: ,C2= y
-06 -08 -0.8 0.6
0 05 05 1
D]_: YD2: y
-03 04 0.6 0.7
-1 -03 -07 06
Kl= ,K2= y
05 1 -05 -06
-8 8
r= . S={,2}, d,=0.25, d,=0.15,
2 -2
X, = (L,—0.5)".

Thenwe get o, =0.4453, o, =-2.7876, f, =1.1003,
p,=1.8483, 0, =-0.4017, o, =-9245.

Furthermore we obtain
Zizzli (ai + O-Sﬂiz - Uiz ): -1.2283 <0.

According to Corollary 4, the system is almost surely exponential
stable. Simulation is carried outed for this system. Fig. 4 shows the

sample path of r(t) with two modes, and Fig. 5 shows the system

state trajectory of X; and X, respectively.

Conclusion

In this paper, the stability property of hybrid stochastic systems is
investigated with a random switching signal in which the dwell time
consists of a fixed time and a random sojourn time. We derived the
sufficient conditions for almost surely exponential stable and
unstable of such systems. And then a few numerical simulations are
given to illustrate the results of the theorems.
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