Contents lists available at YXpublications

International Journal of Applied Mathematics in **Control Engineering**

Journal homepage: http://www.ijamce.com

Analysis of the Influence Factors of Typhoon Disaster on Catastrophe Insurance Demand in China

Jing Wei^{a,*}

^a College of Science, North China University of Science and Technology, Sanhe 065201, CHINA

ARTICLE INFO

Article history: Received 15 January 2021 Accepted 26 March 2021 Available online 28 March 2021

Keywords: Catastrophe risk Insurance demand Panel data The empirical research

ABSTRACT

This paper conducts an empirical study on typhoon insurance demand in China. Some property insurance premium income data of Hainan, Fujian, Guangdong, Zhejiang and Guangxi were selected as explained variables, and Eviews was used for panel data analysis. Through analysis, it is found that the direct economic losses caused by typhoon disasters are positively correlated with the premium income. The gross regional product, people's risk attitude and the government disaster relief system explain the premium income more strongly, while the social capital has a limited explanation for the premium income. Based on the results of empirical research, some suggestions are put forward, such as providing specific types of insurance, strengthening risk education and drawing lessons from foreign advanced experience.

Published by Y.X.Union. All rights reserved.

Introduction 1.

In recent years, in the global scope, a variety of natural disasters occur frequently, and China is one of the few countries in the world with the most types of natural disasters, the highest frequency, the largest intensity and the most serious catastrophe losses. According to the National Basic Situation on Natural Disasters released by the Ministry of Emergency Management, 260 million people were affected by natural disasters in China in 2018 and 2019, resulting in a direct economic loss of 591.55 billion yuan.

In the face of such severe risk of catastrophe loss, the traditional mechanism of disaster loss treatment and compensation in China is still based on the national financial relief as the main body and social donation and counterpart support as the auxiliary. Although the effect of this mechanism is quite remarkable, in the long run, it restrains the growth of China's economy to some extent. Therefore, it is necessary to establish a catastrophe risk management system in line with China's national conditions.

According to the practical experience of foreign countries, the post-disaster compensation of catastrophe insurance can quickly fill the gap of capital liquidity after the catastrophe event, improve the society's post-disaster recovery ability, and also promote the further development of disaster prevention and loss prevention work, thus occupies an unshakable position in the catastrophe risk management system. Therefore, in order to establish catastrophe risk

* Corresponding author.

management system, catastrophe insurance should be studied first.

Although there have been a large number of researches on catastrophe insurance in China, they focus on the establishment of catastrophe insurance system from the standpoint of catastrophe insurance suppliers, but do not pay enough attention to the demand side of catastrophe insurance. Foreign experience shows that the demand of catastrophe insurance plays an important role in the effect of catastrophe insurance system.

From the perspective of research methods, most of the domestic research is based on theoretical analysis, with few empirical analysis. Zhang Yue^[1] summarized the research results of catastrophe insurance demand at home and abroad, and believed that the theoretical research and empirical research on catastrophe insurance demand were seriously derailed at present, and the model proposed in theoretical research could not be supported by empirical research.

In terms of the factors influencing the demand for catastrophe insurance, Li Haitang ^[2] believed that the demand for catastrophe insurance was affected by risk, income, price, psychology and the government's disaster relief compensation system. Pan Tanrui [3] also holds the same view; Zhang Yue [4] found that liquidity constraints would also affect the demand for catastrophe insurance. Tian Ling and Yao Peng [5] found that China's current post-disaster donation system has a certain degree of "crowding out effect" on the demand for catastrophe insurance.

As for the method used in empirical research, since there is no

special insurance type in China at present, researchers tend to adopt the form of questionnaire survey. Zhu Wei and Chen Bingzheng ^[6] conducted a questionnaire survey on earthquake risk perception and earthquake insurance demand among residents in Beijing, Chengdu and Dalian.Tian Ling, Yao Peng and Wang Hanbing ^[7] conducted a sample questionnaire survey on 681 peasant households in Chuxiong Prefecture, and studied the impact of risk perception and government behavior on the demand for catastrophe insurance. However, the cost of questionnaire research is too high, because it usually requires money to improve the quality of the questionnaire, which restricts the sample size. In addition to the questionnaire survey, Tian Ling and Zhang Yue ^[8] used the panel analysis method to study the influencing factors of catastrophe insurance demand.

In this paper, the premium income data of some provinces in coastal areas seriously affected by typhoons are selected as the research object, and the panel data analysis method is adopted to conduct empirical analysis to verify the existing catastrophe insurance theory, and then provide reference for the establishment of catastrophe insurance system.

2. Variable definition and data source

China's coastal areas were seriously affected by typhoons, among which Hainan, Fujian, Guangdong, Zhejiang and Guangxi were the most severely affected provinces. Therefore, we chose to collect data from these provinces for empirical analysis.

(1) Premium income

China's current home property insurance, enterprise property insurance and agricultural insurance insurance underwriting responsibilities include typhoon. So to hainan, fujian, guangdong, zhejiang and those affected by the typhoon in guangxi province enterprises general insurance, home insurance and agricultural insurance premium income as the sum of typhoon insurance demand be explained variable, coupled with our hypothesis: "when launching specific catastrophe insurance, buy the insurance policyholders tend to buy", is the ability to represent the typhoon insurance demand. Parts of these provinces property insurance premium income source for China's insurance yearbook from 2009 to 2018, the data shown in the following table (including because not be listed in China's insurance yearbook home insurance income, income and other premium income is mainly penates danger, so the premium income in the form of insurance enterprises income, agriculture insurance and other insurance revenue the sum of these three kinds of income) :

Table 1 Part of Property Insurance Premium Income Table (Unit: Million Yuan)

V	province 282.51	Zhejiang	Fujian	Guangdon	Guangxi Zhuang
Year	province	province province		g province	Autonomous Region
2008	282.51	2312.55	1079.67	3230.63	565.55
2009	271.92	2460.8	1229.66	3521.06	610.97
2010	537.35	2800.49	1474.7	3742.35	679.87
2011	447.44	3336.52	1673.23	4687.1	831.53
2012	500.43	3977.53	1860.39	5450.06	924.37
2013	773.67	4744.87	2016.53	5614.77	1150.66

2014	759.24	4843.71	2137.77	6582.02	1419.55
2015	792.81	4958.25	2252.62	6493.61	1578.49
2016	798.5	5160.49	2214.14	6581.23	1578.5
2017	1021.68	5396.91	2555.44	6965.15	2171.2

(2) Typhoon disasters

In the theory of catastrophe insurance demand, background risk is considered to be an important factor affecting catastrophe insurance demand. Therefore, the typhoon disaster situation in these provinces should be considered. The typhoon disaster situation is quantified by the direct economic loss data in the "Typhoon Disaster Loss Table" in the Statistical Yearbook of Chinese Civil Affairs. The data were collected from China Civil Affairs Statistical Yearbook from 2009 to 2018, as shown in the table below:

Table 2 Table of direct economic losses from typhoon (unit: 100 million yuan)

	Hainan	Zhejiang	Fujian	Guangdong	Guangxi Zhuang
Year	province	province	province	province	Autonomous Region
2008	5.5	5.5 18.5		159.1	60.7
2009	6.8	6.8 88.86		47.54	1.16
2010	2.8	1.3	39.7	116.2	6.4
2011	85.2	23.1	10.6	36.6	36.4
2012	12.6	275.5	17.1	44.3	27.3
2013	34.8	609	103.6	421.8	40.2
2014	176.9	10.8	16.5	255.3	170.1
2015	12.4	219.5	88.6	288	17.7
2016	76.7	113	433.7	59.4	3.8
2017	2.2	11.5	9.5	294.5	2.8

(3) Gross Regional Product

In catastrophe insurance demand theory, income is considered to be an important influence factors of catastrophe insurance demand, but in the theory, they usually study object is a family, so the family income is an important factor, however, we here be explained variables included income of company worth insurance, so it is not appropriate income as explanatory variables. Therefore, we choose gross regional product to replace income as the explanatory variable. The data source is National Bureau of Statistics - Statistical Data - Data Query, and the data are shown in the following table:

Table 3 Table of Gross Regional Product (Unit: 100 million yuan)

					Guangxi
X7	Hainan	Zhejiang	Fujian	Guangdong	Zhuang
Year	province	province	province	province	Autonomous
					Region
2008	1503.06	21462.69	10823.01	37138.85	7021
2009	1654.21	22998.24	12236.53	39923.24	7759.16
2010	2064.5	27747.65	14737.12	46544.63	9569.85

2011	2522.66	32363.38	17560.18	53908.59	11720.87
2012	2855.54	34739.13	19701.78	57924.76	13035.1
2013	3177.56	37756.58	21868.49	63357.92	14449.9
2014	3500.72	40173.03	24055.76	68777.25	15672.89
2015	3702.76	42886.49	25979.82	73876.37	16803.12
2016	4053.2	47251.36	28519.15	80666.72	18317.64
2017	4462.54	51768.26	32182.09	89705.23	18523.26

J. Wei et al. / IJAMCE 4 (2021) 18-24

(4) the risk attitude of the applicant

In catastrophe insurance demand theory, policyholders' risk attitude is considered to be an important factor affecting catastrophe insurance demand, and policyholders with risk aversion are more inclined to purchase catastrophe insurance. Therefore, the risk attitude of people in these provinces needs to be considered. However, because the risk attitude is qualitative rather than quantitative, the education level of employees is chosen to be quantified. Here we assume that more educated people are more rational, that is, people with higher education are more likely to hold a risk aversion attitude. We choose "China statistical yearbook and employment in the" employment education scale 'university college diploma in number, the number of university undergraduate course diploma and postgraduate diploma in accounting for the proportion of the number of employees as a measure of the insured risk attitude data, the data source for 2009 to 2018, the China statistical yearbook and employment, the data shown in the table below:

 Table 4 Proportion of Junior College, Undergraduate and Postgraduate in

 Employment (Unit: Percent)

Year	Hainan	Zhejiang	Fujian	Guangdong	Guangxi Zhuang Autonomou
	province	province	province	province	s Region
2008	6.13	8.9	7.42	8.81	3.76
2009	6.14	10.38	12.03	7.72	4.45
2010	9.13	11.49	9.98	10.81	7.38
2011	11.44	15.96	15.72	12.48	7.99
2012	13.31	17.7	16.36	12.15	8.88
2013	14.19	19.16	17.04	14.21	8.33
2014	15.24	21.52	18.01	15.38	10.46
2015	13.9	24.7	17.9	17.3	13.5
2016	14.4	25.2	18.7	18.6	13.2
2017	14.7	26.5	18.8	18.6	12.9

(5) Social capital

In catastrophe insurance demand theory, family social capital is considered a factors affecting catastrophe insurance demand, because of family social capital, the greater the reconstruction after the catastrophe is faster, so may weaken the demand for catastrophe insurance to buy, but on the other hand, the size of the family, the greater the its after experienced a catastrophe is, the more loss, so this could prompt it to buy catastrophe insurance. So we consider these provinces of social capital, we choose to use in the Chinese journal of population and employment statistics yearbook "regional number, population, sex ratio and the average household size table" in the average household scale to measure the social capital of family, the data source for 2009 to 2018, Chinese journal of population and employment statistics yearbook, the data shown in the table below:

Year	Hainan province	Zhejiang province	Fujian province	Guangdong province	Guangxi Zhuang Autonomou	
					s Region	
2008	3.75	2.81	3.05	3.41	3.55	
2009	3.75	2.8	2.96	3.3	3.57	
2010	3.46	2.62	2.98	3.11	3.34	
2011	3.54	2.59	2.78	3.33	3.15	
2012	3.64	2.68	2.82	3.26	3.32	
2013	3.52	2.54	2.72	3.15	3.31	
2014	3.59	2.54	2.69	3.19	3.23	
2015	3.65	2.69	3.1	3.23	3.51	
2016	3.78	2.68	3.05	3.1	3.55	
2017	3.58	2.62	3.03	3.05	3.51	

Table 5 Average household size table (unit: person per household)

(6) Government disaster relief system

In the theory of catastrophe insurance demand, government disaster relief system is considered to be an important factor affecting the demand for catastrophe insurance, because when people in disaster-stricken areas take it for granted that government disaster relief is provided, they are no longer likely to purchase catastrophe insurance, and government disaster relief will have a great inhibiting effect on the demand for catastrophe insurance. Therefore, we need to take it into consideration. We choose the government's natural disaster relief expenditure data from China Civil Affairs Statistical Yearbook from 2009 to 2018 as the explanatory variable. The data are shown in the following table:

 Table 6 Government expenditure on natural disaster relief (unit: 100 million yuan)

V	Hainan	Zhejiang	Fujian	Guangdong	Guangxi Zhuang
Year	province	province	province	province	Autonomous Region
2008	0.591	0.376	0.444	1.104	5.3974
2009	0.96649	1.28282	0.9806	2.19562	4.79025
2010	2.55693	1.12019	4.4655	4.59946	6.55214
2011	1.9228	1.72699	3.38129	2.84882	6.29976
2012	0.36	0.98	1.0983	1.51	3.5883
2013	0.57541	3.31987	2.67879	6.87835	4.87926
2014	2.838	0.404	0.5384	2.862	4.0779

2015	0.5653	2.0241	2.8144	2.019	3.7232
2016	0.56133	3.61514	6.0913	3.74135	4.86493
2017	0.131	0.884	0.2182	0.447	2.7986

3. Regression equation and regression results

We first take the logarithm of the variables of the absolute quantity, convert the absolute quantity into the relative quantity, eliminate the influence of the unit, reduce its fluctuation range, and make the data more stable.

Use Eviews10 software. Firstly, the stationarity of panel data was checked, and unit root test was carried out for each variable. (null hypothesis: unit root process; alternative hypothesis: stationary).

(1) The premium income

Pool: TAIFENG Workfile:				0	Pool: TAIFENG Workfile:				0	Pool: TAIFENG Workfile				
Verse Proc Object Print Name	Freeze Est	mate Defe	e PoolGeni	Shert	View Proc Object Print Name	Freeze Est	imate Defi	té PookGenr	Sheet	View Proc Object Print Nam	e freeze Est	Istate Defi	ne PoolGerr	Sheet
Pool Unit	Root Test o	LNREVER	UE?		Pool Unit	Root Test of	n LNREVER	KJE?		Pool Un	it Root Test o	n LAREVE	NUE?	
Pool unit root test. Summary Senes: LINEE/ENUE_FULAN, LINEE/ENUE_GULANDA, I ANG Date: 002500 Time: 1224 Sample: 2008 2017 Eropenous vanables: Individua Automable selection of maxima Automable selection of maxima Automable selection	NREVENUE I effects, ind m lags based on SI	ji Advani, vidual line 2:0 to 1	LNREVENU Ir hends	e,sei	Pool unit root test. Summary Sense: LHREVENUE, FOJUHU, LHREVENUE, GUANCO, MNG Date: 032550 Time: 12:27 Sample: 2008 2017 Enogenous variables: Individual Automatic salection of maximu Automatic lag length selection Hereity-West Journalic bandher	INREVENUE al effects m lags based on SH	E_H4INAN	UNREVENU	e_Zheji	Pool unit not test. Summary Series: LIAREVENUE_FULM UNREVENUE_GUMNOX ANG Date: 03/25/20 Time: 12:31 Sample: 2008 2017 Engenous variables: None Automatic tags ingets select Netwey-West automatic band	UNREVENUE	_Напичи, С: 0 to 1	UNREVENU	e_dhej
			Cross-		Netbod	Statistic		Cross-	Obs	in the second se	Statistic	Prob.**	Cross-	Obs
Vethod	Statistic		sections	Obs	Nult Unit root (assumes comm			sections	UQS	Nettod Null: Unit root (assumes com			sections	008
Null: Unit root (assumes comm			123	- 31 · · ·	Levin, Lin & Chu t'	-3.83722		6	42	Levin Lin & Chu P	6.33515	1,0000	5	43
Levin, Lin & Chu t*	-2.14201	0.0161	5	43	Level, Lin & Criu F	13.03/22	0.0001		**	Lenit, Line Gity i	0.00010	1,0000		
Breitung I-stat	0.36097	0.6409	5	38	Nult Unit root (assumes induic	And some stand				Nult Unit root (assumes indi	and some from the state			
					Im. Pesaran and Shin W-stat	-0.66827	0.2520		12	ADF - Fisher Chi-square	0.31351	1,0000		43
ault Unit root (assumes indivi				100	ADF - Fisher Chi-square	15.3461	0 1199	ž.	42 42	PP - Fisher Chi-square	0.01528	1,0000	ě.	45
m, Pesaran and Shin W-stat	0.18929	0.5751	5	43	PP - Fisher Chi-square	21.5369	0.0176		45		0.01040	1,0000	~	~~
4DF - Fisher Chi-square	8.56294	0.5644	5	43	TT -T terrer con-aduare	£1.0004	0.0110		**	** Probabilities for Fisher les	is are compute	of online as	mondate	CN
PP - Fisher Chi-square	14.0530	0.1705	5	45	** Probabilities for Fisher tests	tota computer	ad uning in	a summaria	CN .	-square distribution All of				
Probabilities for Fisher tests -square distribution. All off					-square distribution. All off									

Fig. 1 Horizontal unit root test of sequential Inrevenue

The test results show that the null hypothesis cannot be rejected and the sequential lnrevenue is a unit root process containing individual intercept term and trend term.

Then do unit root test after the first-order difference:

View Pro		Print Name	1		1		Sneet
		Pool Unit R	oot Test	on D(LNI	REVEN	IUE?)	
Pool unit	root test: Si	ummary					
LNR		SUANGXI, L					IE_ZHEJI
Date: 03/	25/20 Tim	e: 12:39					
	2008 2017						
Exogeno	us variables			individua	al linea	r trends	
Automati	c selection						
Automati Automati	c lag length	selection t	based on				
Automati Automati		selection t	based on			t kernel	
Automati Automati	c lag length	selection t	based on			200000	
Automati Automati Newey-V	c lag length	selection t	dth selec	tion and	Bartlet	Cross-	Obs
Automati Automati Newey-W	c lag length /est automa	selection t atic bandwi	oased on dth selec Statist	tion and	Bartlet	200000	Obs
Automati Automati Newey-W Method Null: Unit	c lag length /est automa t root (assu	selection t atic bandwi	oased on dth selec Statist	tion and ic Pro	Bartlet	Cross- sections	Obs 36
Automati Automati Newey-W Method Null: Unit	c lag length /est automa t root (assure h & Chu t*	selection t atic bandwi	Statist	tion and ic Pro oot proce 22 0.0	Bartlet	Cross-	
Automati Automati Newey-W Method Null: Unit Levin, Lir Breitung	c lag length /est automa t root (assur h & Chu t* t-stat	selection t atic bandwid	Statist on unit re -3.6182 -1.5914	tion and tic Pro- pot proce 22 0.0 40 0.0	Bartlet 05.** 9558	Cross- sections 5	36
Automati Automati Newey-W Method Null: Unit Levin, Lir Breitung	c lag length /est automa t root (assure h & Chu t*	selection t atic bandwid	Statist on unit re -3.6182 -1.5914	tion and tic Pro- pot proce 22 0.0 40 0.0	Bartlet 05.** 9558	Cross- sections 5	36
Automati Automati Newey-W Method Null: Unit Levin, Lir Breitung Null: Unit	c lag length /est automa t root (assur h & Chu t* t-stat	selection t atic bandwiv mes comm mes individ	Statist Statist on unit ro -3.6182 -1.5914	tion and tic Pro toot proce 22 0.0 40 0.0	Bartlet 05.** 9558	Cross- sections 5 5	36
Automati Automati Newey-W Method Null: Unit Levin, Lir Breitung Null: Unit Im, Pesa	c lag length /est automa t root (assur a & Chu t* t-stat t root (assur	mes individ mes individ	Statist Statist on unit ro -3.6182 -1.5914	tion and tic Pro oot proce 22 0.0 40 0.0 root proce	Bartlet 0b.** ess) 0001 0558 ess)	Cross- sections 5 5	36 31

Fig. 2 One difference unit root test of sequential Inrevenue

The test results show that the null hypothesis is rejected, and the sequence D (Inrevenue) obtained after the first difference is a horizontal stationary sequence containing individual intercept term and trend term, so the sequence Inrevenue is a first-order integrated sequence (I(1) sequence).

2. Direct economic losses from typhoon

E) Pool TAIFENG WorkFiel View [Fisc Object] [Field Name Pool Up		mate Dete	PostGerr	Sheet	Pool: TAFENG Workfile		nate Dell	e PosiGets		D Pool TAIFENS Workfil View Proc Object Print Ita Pool		mate Defi	ne PoolGeri	(Sheet)
Pool unit root test Summary Series UNLDSL_FUUHL UNL UNLDSL_FANNAU UNLOS Date 03/25/20 Time: 12:47 Sample: 2000 2017 Engensous variabites indvidua Automatic palection of maximum Automatic palection of maximum Newsy-West automatic handwit	E_DHEJWAN II effects Im tags based on SK	: 0 to 1		eedaa,	Pool unit root least Dummary Benes LINLOSE_FULIAN LIAL DIALOSE_FULIAN LIAL Date: CO2520. Time: 12:43 Sample: 2003 2017 Exceptions variables: Individus Automatic selection of maximus Automatic lay length selection 1 Newsy-Time! automatic bandwit	E_2HEJHANG I offecta, indi milaga based on SIC	rdual line : 0 to 1	ar brends	4468	Pool unit root test: Summan Series (NLOSE, PULAN, LIL LUR, COE, HARAN, LIN, Dahr, 0305/20 Time: 12-48 Sample: 2008-2017 Exogenous variables: Name Automatic selection of main Automatic tag tength select Nerwe-West automatic ban	num lags	2 0 10 1		HINGOD,
and a	Intate		Crass-	028	dans.	00010005	1.00	Cross-	1000	Bathout	Duristic	-	Cross-	Obs
Nut Unif root lassumes comm			6405208	014	Nethod Null Unitroot (assumes carrier	Statistic	Prob.**	sections	Obs	Null Unif roof (assumes co	Crustives.	P100.**	14CL011	Ups
ents, Lin & Chu P	-4.54440	0.0000	5	-64	Levin, Lin-& Chu P Breitung 1-stat	-4.37333 -1.64575	0.0000	5	44	Levin, Lin & Chu P	-0.98228	0.1630	6	43
Null: Unit root (assumes individ	fual unit root	process)			area and a second se					Null Unit root (assumes in:	Midual unit roof	process)		
m, Pesaran and Shin W-stat	-2.26007	0.0119	5	44	Null Unitroot (assumes indici-				0.68	ADF - Fisher Chi-square	10,2956	0.4157	5	43
ADF - Fisher Chi-square	22.6500	0.0121	5	44 44 45	Im, Peparan and Shin W-stat	-0.66714	0.2523	5	44	PP - Fisher Chi-square	10.8842	0.3656	5	45
PP - Fisher Chi-square	23.5299	0.0090	5		ADF - Fisher Chi-square PP - Fisher Chi-square	15.1957 24.7174	0.1251	8	44 45	** Probabilities for Fisher te	its are compute	d using a	n asumptotic	CN
Probabilities for Fisher tests -square distribution. All oth					** Probabilities for Fisher lests -square distribution. All oth					-square distribution. All	other tests ass	ume asym	ptotic norma	uity.

Fig. 3 Horizontal unit root test of sequence Inlose

The test results show that the null hypothesis is rejected, and the sequence lnlose is a horizontal stationary sequence with no trend in individual intercept, that is, a single integer (I(0) sequence) of zero order.

3. Government Disaster Relief Expenditure (Inexpand)

T Pool TAIFENG Workfile View Proc Object Pros Name Pool Unit		mate Deta	Pacifiane	Sheet	Pool TAIFENG Workfile 1 View Proc Object Prot Name Pool Unit		inide Deti	se Possilers	Sheet	Deck TAIFENG Workflar View Proc Object Print Raw Post Ob		mate Defin	ne PaoliGen	Sheet
Pool unit root test. Summary Series: UNEXPAND_PUJAN_U UNEXPAND_GUARDOL, ID Date: 03c25c0_Time: 1252 Bampie: 2008 2017 Empericon variables: Individua Automatic selection of maximu Automatic lag length selection. Newey: West automatic bandwi	EXPAND_R I effects, ind m lags based on SR	NINAN, EN Ministration 2.9 to 1	DPAND_2H	EJWNG	Pool unit root feet: Summary Series: LNEXPAND, SUMMON, LN UHERMAD, SUMMON, LN Date: 0325/20, Time: 12:53 Sumple: 2006 2017 Exceptions writibles: hollwdas Automatic: selection of mainmark Automatic: laelection of mainmark Summark Laelection of the selection of t	EXPAND_H i effects m lags based on 59	NNAN, LN C: 6 to 1	DP440_D	EMMG	Pool unit roof test: Summary Benes: LNEXPAND, JULIAN, LNEXPAND, GUANGEL Date: 032520 Time: 1254 Sample: 2008 2017 Exopenso: valuatios: None Automatic selection of mamin Automatic lag length selection Newe; "Net automatic band	NEXPAND_H	NNN, LNE	EIPHND_Z	EIMIG
Hathord	Support	Prot.**	Cross-	Obs	Wethod	Statute	Prop.**	Cross-	004	Method	Statute	Prob.**	Cross-	Cha
Null: Unit root (assumes comm	toot thru nor	process)	secons	1000	Null Unitroot (assumes comm Leven Lim & Chu P	on unit root			44	Null Unit root cassumes com	toor tinu nom	process)		
Levin, Lin & Chu P	-5.50152	0.0000	5	41	Level Unit Char	-0.941/2	0.0000		44	Levin, Lin & Chu P	-2.00335	0.0226	5	44
Breitung t-stat Halt: Unit root (assumes indei Im, Pesiaran and Shin W-stat ADF - Flater Chi-square	0.61056 gual unit root -0.76465 17.6872	0.7319 process) 0.2222 0.0005		36 41	Null: Unit roof (assumes indust Im, Pesaran and Shin W-stat ADF - Fisher Chi-square PP - Fisher Chi-square	2.92536 26.9927 36.5385	0.0024 0.0027 0.0001	5 5 5	44 44 45	Haut Unit root lassames inde ADF - Fisher Chi-square PP - Fisher Chi-square	45ual unit root 32 1419 33 8959	process) 0.0904 0.0902	5	44 45
PP - Fisher Chi-square	35.9726	0.0000		41	Manual Advances of the Owner State of the Owner Sta	-	-		and the second second	** Probabilities for Fisher lest	to are compute	Cusino M	as-metoto	CN
** Probabilities for Fisher tests -square distribution. All off	are compute er tests ass	id using ar ume asym	asymptotic ptotic norma	Chi Ry	** Probabilities for Fisher tests -square distribution. All oth	are comput- ier tests ass	ed using a ume asym	i asymptotic ptotic norma	CN AN	-square deltribution. All o	dher leals ass	utte asyttę	plotic norm	182

Fig. 4 Horizontal unit root test of sequence lnexpand

The test results show that the null hypothesis is rejected, and the sequence lnexpand is a horizontal stationary sequence with no trend in individual intercepts, that is, a single integer (I(0) sequence) of zero order.

4. Gross Regional Product (lngdp)

Pool Us	E Rock Tes	E on LNGDE	12		Pool UP	ait Root Test	too LNGO	n		Pool Unit Root Test on LMGDP?				
sei unit roothast: Summary eines: UNSDP_JPUJANI LINGOP LINGOP_JANANI, UNGOP_J de: 0302503: Time: 12:58 emple: 2008 2017 rogenous: variables: Individual formatic selection of maximum formatic selection of maximu	FIEJIANG effects, ind Haps ased on Sil	Nidual line C: 0 to 1	ar trends	а,	Pool unit root test: Summary Series: LNGDP_PLANN, LNGDP LNGDP_VANNN, LNGDP_ Date: 532520 Time: 12:58 Sample: 2300 2017 Exogenous variables: Individual Automatic selection of maximum Automatic agliength selection of Newsy-West automatic bandwis Balanced objectations for each	,2HB, JHANG I effects m lage based on SK dth selector	2.0		50.	Pool unit root test: Summary Belliss: LNGOP, FULANC, LUG LUICOP, HARAN, LUICO Date: 0325/20 Time: 1258 Sample: 2008 2017 Exopensas variables: None Automatic selection of maxim Automatic selection of maxim Severy-West automatic band	P_ZHEJAANG um lags n based on Sit	C: 010 1		14
thed	Shinte	Pres **	Cross-	Obs			_	Cross-	_	Nethod	Statute	Proh.**	Cross-	024
all Unit root (assumes commo				000	Shift of	Statute	Paul,	sections	Obs	Null: Unit root (assumes com			100011	0.00
	-11.1295	0.0000	5	41	7041 Unit roof (assumes comm	horn unit roof				Levin Lin & Chulf	10.8494	10000		42
witung t-stat	1.02151	0.8495	6	36	Levin Lin & Chuit"	-4.51010	0.0000		45					- 5
										Null Unit root (assumes indu				
all Unit root (assumes individa					Null Unit root (assumes induid					ADF - Fisher Chi-square	0.83615	0.9999		42
	-1.85787	0.0315	5	41	Im, Pesaran and Shin W-stat	-0.79131	0.2144		45	PP - Fisher Chi-souare	0.00206	1,0000		- 45
OF - Fisher Chi-souare	32.5983	0.0003	5	41	ADF - Fisher CN-square	12,9897	0.2242	5	45	International Academic Stateman				_
P - Fisher Chi-square	0.79864	0.9999	5	45	PP - Fisher Chi-square	42.9599	0.0000	5	45	** Probabilities for Fisher test	a are compute	ed using an	asimptotic	Chi
0F - Fisher Chi-square P - Fisher Chi-square Probabilities for Fisher texts a	0.79864	0.9999	5	45	ADF - Fisher Chi-square PP - Fisher Chi-square ** Probabilities for Fisher tests -	42.9599	0.0000	5	45	** Probabilities for Fisher test -square distribution. All o				

Fig. 5 Horizontal unit root test of sequential lngdp

The test results show that the null hypothesis is rejected, and the sequence LNGDP is a horizontal stationary series with individual intercept and trend, that is, a single integer (I(0) sequence) of zero order.

5. Average Household Size (Insize)

(P) Pools TAIPENG Workfler TAIPENG DATED-stretmedy View Proc Object Print, Name Presse Estimate Define PoolSerr Direct Pool Unit Root Test on LN S2E?	Pool: TAPENO Workfle: TAPENO DATED:Linited, Yeen Proc Object Print Name Press: Estimate Datine Position: Sheet Pool:Unit Root Test on LINSZE?	Pool TAITENG Workfile TAITENG DATED Livelined, Or 0
Point with cellskis Bommary server, MURCE UNANU (UNBCE, GUNARDONG, UNBCE, GUNARDA, UNBCE, HARTAN, UNBCE, JAELANG DEL STATUST, DEL STATUST, STATUST, STATUST, STATUST, Despetions sanatises Indekaue Refst, indekaue Itematis fanda Automatic selection of manimultage Automatic selection based on BCC 0 to 1 Management and another all sections and Statist served.	Pour uniteratives traininum terres Losses, Public Joseph Guinego Const, United Const United Hold Net United Declaration (United Hold Net 1997) Ecogeneous stratistics: Note Automatic setedio drastimis tago Automatic setedio drastimis tago	Provide transfer Summary Beams (1992): "Land Labora, Summary, Linkse, Culandar, UNDEX, Hennik Linkse, Jackawa Dana (1996): The 139 Samer 2002 (1997): "Linkse Hold Human Scheder of Infrastrum Right Automatic Linksed of Infrastrum Right Automatic Linksed of Infrastrum Right Automatic Linksed of Infrastrum Right Automatic Linksed of Infrastrum Right
Method Distance Ocross- test Cores- test Cores-test Cores- test Cores-test Cores- test Cores-test Cores-test <thcores- test Corest Corest<th>Internet Exactly in the section Creation Last Life from (Laserness component) with out process) Creation (Laserness component) Creation (Laserness component) Last Life from (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Last Life from (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison)<th>Cost- Cost- Cost-</th></th></thcores- 	Internet Exactly in the section Creation Last Life from (Laserness component) with out process) Creation (Laserness component) Creation (Laserness component) Last Life from (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Last Life from (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Creation (Laserness comparison) Value (Laserness comparison) Creation (Laserness comparison) <th>Cost- Cost- Cost-</th>	Cost- Cost-
** Probabilities for Flasher tests are computed using an asymptotic Chi square distitution. All other tests assume asymptotic normality	**Probabilities for Fisher Institute computed using an asymptotic Chi- square distribution. All other feels assume asymptotic normality.	** Protocelles for Future fields are computed using an asymptotic Chi- oquare diatitudon. All other fields assume asymptotic normality.

Fig. 6 Horizontal unit root test of sequence Insize

The test results show that the null hypothesis is rejected, and the sequence LNSIZE is a horizontal stationary sequence with no trend in individual intercept, that is, a single integer (I(0) sequence) of zero order.

6. Risk Attitude

E Pool: TATENG Workfler /scs Pool: Olgest Print Name Pool Unit		mate Dete	ne PostGerr	Sheet	Pool TAIFENG Workfile		wate Defe	PosiGero	Sheet	(P) Pool: TAITENG WorkEll Wew Proc. Object Print, Na Pool U		Define Po		Sheet.
Pool unit root test. Summary Senes: EDUCATION_FUSHAL1 EDUCATION_GUARDLE NG Date: 03/25/00 Time: 13:07 Sample: 2008 2017 Ebogeroos variables: Indixolas Automatic selection of maxima Automatic selection of maxima Automatic selection of maxima Newsy-West automatic bandwit	DUCATION, (effects, ind m tags based on Sil	HAINAN, E sidual line 2.0 to 1	DUCATION,	ALB-G	Pari and mothes howmay Benes EDUCATION LUNAN EDUCATION CAUARDONS. EDUCATION LUNARED EDUCATION LANARDE EDUCATION LUNARED BODOSTON THE STORE STORE STORE STORE STORE STORE Store Reservices Inducation Store date Instelling Store Store Store Store Reservices Inducation Store date Instelling Store S			Part and the the termine sense topolocitory (June EDOCATOR, GUIARDONE, EDOCATOR, GUIARD, EDOCATOR, GUIARDONE, EDOCATOR, GUIARD, EDOCATOR, JANEAR BO Sense 1000 Sense			DIEA			
Aethod Auft: Unit loof (assumes comm	Datate	Prog.**	Cross- sectors	024	Nathod Null Unit root (assumes com	Statistic	Prot.**	Cross- sections	094	Method Null: Unit root casaumes con	Statute Pro	1.14 .840	093- 5003	0.05
evin, Lin & Chu P reitung Lotat	-2.37043	0.0089	5	41 20	Lein, Lin & Chu P	-2.00131	0.0227	5	44	Levin, Lin & Chu !"		000	5	44
returg Fotal ull Unit root casesames individ n. Pesaran and Sten W-stel				41	Null Unit root (assumes inder Im, Pesaran and Shin W-stat ADE - Eisber Chi-struare	gual unit root 0.67738 5.47551	0.7509 0.8572	5 4	4	Null: Unit root (assumes ind ADF - Fisher Chi-square PP - Fisher Chi-square	0.29941 1.0	(55) 000 000	5	44
DF - Fisher Chi-square	12.9647	0.2257	5	41	PP - Fisher Chi-square	11,2303	0.3399		45					_
P - Fisher Chi-square	21.9479	0.0154	5	45	Management of the local division of the loca				and the second second	** Probabilities for Fisher ter	its are computed usi	10 AN 8817	riptotic (č2ni
Probabilities for Fisher tests -square distribution. All off	are compute entests ass	d using an ume asym	asymptotic ptotic norma	CN Hy.	** Probabilities for Fisher tesh -square distribution. All of	s are compute her tests asso	d using an ime asjim	asymptotic ptotic norma	Chi Ry	-square distribution All	2041 IBID ABOUTTE	aymplatic	ournai	<i>u</i> .

Fig. 7 Horizontal unit root test of sequential education

The test results show that the null hypothesis cannot be rejected, and the sequence education is a unit root process containing individual intercepts and trends.

Then do unit root test after the first-order difference:

View Proc Object Print N	nit Root Test on			Games
Poolu	nit Root lest on	DIEDUCAT	ION ()	
Series: EDUCATION_FUII EDUCATION_GUANG NG Date: 03/25/20 Time: 16.5 Sample: 2008 2017	NI, EDUCATION_			ZHEJIA
Exogenous variables: Indiv Automatic selection of max Automatic lag length select	imum lags tion based on SK	= 0 to 1		
Exogenous variables: India Automatic selection of mar Automatic lag length select Newey-West automatic bar	imum lags tion based on SK	= 0 to 1	ett kernel	
Exogenous variables: India Automatic selection of mai Automatic lag length select Newey-West automatic ba	imum lags tion based on SK	: 0 to 1 and Bartle	ett kernel Cross-	Obs
Exogenous variables: India Automatic selection of mar Automatic lag length select Newey-West automatic ba	imum lags ton based on SK ndwidth selection Statistic	C 0 to 1 and Bartle Prob.**	ett kernel	Obs
Exogenous variables: Indiv Automatic selection of max Automatic lag length select	imum lags ton based on SK ndwidth selection Statistic	C 0 to 1 and Bartle Prob.** process)	ett kernel Cross- sections 5	Obs 36
Exogenous variables. India Automatic selection of man Automatic lag length select Newey-West automatic bar Method Null: Unit root (assumes c	imum lags tion based on SK ndwidth selection Statistic ommon unit root	2: 0 to 1 and Bartle Prob.** process) 0.0000	ett kernel Cross- sections	
Exogenous variables: Indi Automatic selection of max Automatic lag length select Newsy-West automatic bar Method Null: Unit root (assumes o Levin, Lin & Chu th Breitung I-stat	imum lags tion based on Sit adwidth selection Statistic ommon unit root -7.52543 -1.10952	2: 0 to 1 and Bartle Prob.** process) 0.0000 0.1335	ett kernel Cross- sections 5	36
Exogenous variables: Indik Automatic selection of mais Automatic lag length select Newey-West automatic bar Method Null: Unit root (assumes o Levin, Lin & Chu I*	imum lags tion based on Sit ndwidth selection <u>Statistic</u> <u>ommon unit root</u> -7.52543 -1.10952 idwidual unit root	Prob.** process) 0.0000 0.1335 process)	Cross- sections 5 5	36
Excipencies variables: Indit Automatic eaeledion of mais Automatic lag length select Newey-West automatic bar Method Nait: Unit root (assumes of Levin, Lin & Chiu † Breikung 1-stat Nuit: Unit root (assumes in	imum lags tion based on Sit ndwidth selection <u>Statistic</u> <u>ommon unit root</u> -7.52543 -1.10952 idwidual unit root	2: 0 to 1 and Bartle process) 0.0000 0.1335 process) 0.0835	ett kernel Cross- sections 5	36 31

Fig. 8 Difference unit root test for sequence education

The test results show that the null hypothesis is rejected, and the D (Education) obtained by the sequence Education after a first difference is a horizontal stationary sequence containing individual intercept and trend, so the sequence Education is a first-order integrated sequence (I(1) sequence).

The results of the stationarity test show that 4 variables are zero-order integers and 2 variables are first-order integers. The number of variables corresponding to the maximum single integer order is greater than or equal to 2, so panel co-integration test can be carried out.

The following is the panel co-integration test (null hypothesis: there is no co-integration relationship; Alternative hypothesis: existence of co-integration relationship) :

P Pool: TAIFENG	Workfile: TAIFEN	IG DATED:	Untitled\			×	
View Proc Object	Print Name Freeze	Estimate	Define Poo	IGenr	Sheet		
Kao Residual Contegration Test							
ADF			t-Statis -2.8907		Prob. 0.0019	-	
Residual variance HAC variance			0.0159 0.0105				
Dependent Variabl Method: Panel Lea Date: 03/25/20 Til Sample (adjusted)	st Squares me: 17:29 : 2009 2017 ons: 9 after adjustm					-	

Fig. 9 Panel co-integration test

The test results show that there is a co-integration relationship when the null hypothesis is rejected. This indicates that these six variables have a long-term equilibrium relationship, so the classical regression model method can be used to establish a regression model.

Next, check the model Settings.

Maximum likelihood ratio test (LR test) was performed on the regression results (null hypothesis: mixed model; Alternative hypothesis: fixed effect model or random effect model) :

View Proc Object Pri	nt Name Freeze	Estimate For	ecast Stats Re	sids	
Redundant Fixed Effe Equation: EQ02 Test period fixed effec					Î
Effects Test		Statistic	Prob.		
Period F Period Chi-square		1.288261 14.306565	(9,35) 9	0.2779	
Dependent Variable: L Method: Panel Least S Date: 03/25/20 Time:	NREVENUE Squares				
Period fixed effects ter Dependent Variable: L Method: Panel Least 5 Date: 03/25/20 Time: Sample: 2008 2017 Periods included: 10 Cross-sections include Total panel (balanced Variable	NREVENUE 3quares 19:38 led: 5	0 Std. Error	1-Statistic	Prob.	
Dependent Variable: L Method: Panel Least 3 Date: 03/25/20 Time: Sample: 2008 2017 Periods included: 10 Cross-sections includ Total panel (balanced Variable	NREVENUE Squares 19:38 led: 5) observations: 5 Coefficient	Std. Error			
Dependent Variable: L Method: Panel Least S Date: 03/25/20 Time: Sample: 2008 2017 Periods included: 10 Cross-sections includ Total panel (balanced	NREVENUE 3quares 19:38 led: 5) observations: 5		1-Statistic -0.623033 0.979242	Prob. 0.5365 0.3328	
Dependent Variable: L Method: Panel Least 5 Date: 03/25/20 Time: Sample: 2008 2017 Periods included: 10 Cross-sections includ Total panel (balanced Variable C	NREVENUE Squares 19:38 ted: 5) observations: 5 Coefficient -0.396471	Std. Error 0.636356 0.330153 0.020479	-0.623033	0.5365	
Dependent Variable: L Method: Panel Least 3 Date: 03:26:20 Time: Sample: 2008 2017 Periods included: 10 Cross-sections incluc Total panel (balanced Variable C LNSIZE	NREVENUE 3guares 19:38 led: 5) observations: 5 Coefficient -0.396471 0.323299	Std. Error 0.636356 0.330153	-0.623033 0.979242	0.5365	

Fig. 10 Maximum likelihood ratio test

The test results show that the null hypothesis cannot be

rejected and the mixed regression panel data model is more suitable.

Then the panel co-integration test was carried out, and the statistical value of the co-integration test was -2.891, and the corresponding probability was 0.002. The null hypothesis was rejected, and there was a co-integration relationship. This shows that the six variables have a long-term equilibrium relationship, so the classical regression model method can be used to establish the regression model.

Next, check the model Settings. The maximum likelihood ratio test was conducted on the regression results, and the test results showed that the statistical value was 1.288, and the corresponding probability was 0.278. Therefore, the null hypothesis could not be rejected, and it was appropriate to establish a mixed regression panel data model.

The mixed regression panel data model takes the following form:

$$\begin{split} Ln(revenue_it) &= \alpha + \beta_1 * Ln(lose_it) + \beta_2 * Ln(expand_it) + \beta_3 * Ln(\lg dp_it) + \beta_4 * Ln(size_it) + \beta_5 * Ln(education_it) + \varepsilon_it \end{split}$$

Where, I = Fujian, Guangdong, Guangxi, Hainan, Zhejiang, t =

2008,2009,....., 2017.

Model regression results:

1 1 1		Estimate	Forecast Stats	Resids
Dependent Variable: LI				
Method: Panel Least Si Date: 03/25/20 Time:				
Sample: 2008 2017	10.42			
Periods included: 10				
Cross-sections include	d 5			
Total panel (balanced)		50		
				-
Variable	Coefficient	Std. Erro	or t-Statistic	Prob.
С	-0.396471	0.63635	6 -0.623033	0.5365
LNSIZE	0.323299	0.33015	3 0.979242	0.3328
LNLOSE	0.028288	0.02047	9 1.381317	0.1742
LNGDP	0.729417	0.03667	5 19.88885	0.0000
LNEXPAND	-0.091732	0.03120		
EDUCATION	0.028418	0.00709	4.004906	0.0002
R-squared	0.957804	Mean dep	endent var	7.51462
Adjusted R-squared	0.953009	S.D. depe	ndent var	0.890969
S.E. of regression	0.193138	Akaike infi	o criterion	-0.338657
Sum squared resid	1.641300	Schwarz o		-0.109214
Log likelihood	14.46643		uinn criter.	-0.251284
F-statistic	199.7525	Durbin-Wa	atson stat	0.866439
Prob(F-statistic)	0.000000			

Fig.11 Model regression results

Next, model test was carried out to make residual diagnosis:

Section independence test (null hypothesis: there is no contemporaneous section correlation; Alternative hypothesis: there is a cross-section correlation at the same time) :

Equation: EQ02 Workfile: TA View Proc Object Print Name Fr			
Residual Cross-Section Depende Null hypothesis: No cross-section Equation: EQ02 Periods included: 10		ation) in re	siduals
Cross-sections included: 5 Total panel observations: 50 Note: non-zero cross-section mea Cross-section means were remov		on of corre	lations
Test	Statistic	d.f.	Prob.
Breusch-Pagan LM Pesaran scaled LM Pesaran CD	33.93293 5.351566 0.533136	10	0.0002 0.0000 0.5939

Fig. 12 Section independence test

The test results show that the null hypothesis is rejected and there is a cross-sectional correlation at the same time. Heteroscedasticity test (null hypothesis: residuals are homoscedasticity; Alternative hypothesis: Heteroscedasticity exists in residuals) :

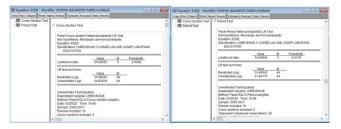


Fig. 13 Heteroscedasticity test

The test results show that the null hypothesis is rejected and the residuals are heteroscedasticity.

Based on the results of the above model test, the model is modified. The generalized least squares is set as cross-section weights, and the robust estimation of the covariance of the coefficients is set as White cross-section.

Final regression results of the model:

iew Proc Object Prin	nt Name Freeze	Estimate For	ecast Stats R	esids
Dependent Variable: L lethod: Panel EGLS (Jate: 03/25/20 Time: Jample: 2008 2017 Veriods included: 10 Cross-sections includ ofal panel (balanced inear estimation after White cross-sections i	Cross-section v 20:00 ed: 5 observations: 5 one-step weigt	50 hting matrix	f. corrected)	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.221911	0.539902	-0.411021	0.6831
LNSIZE	0.129800	0.197438	0.657420	0.5143
LNLOSE	0.030170	0.017546	1.719437	0.0926
LNGDP	0.740779	0.033275	22.26213	0.0000
LNEXPAND	-0.094131	0.030582	-3.077997	0.0036
	0.024896	0.003296	7.553985	0.0000
EDUCATION				
EDUCATION	Weighted	Statistics		
EDUCATION R-squared	Weighted 0.962432	Statistics Mean depend	lent var	7.927969
R-squared				7.927969
R-squared Adjusted R-squared	0.962432	Mean depend	ent var	
R-squared Idjusted R-squared S.E. of regression	0.962432 0.958163	Mean depend S.D. depende	nt var I resid	2.128815
	0.962432 0.958163 0.188788	Mean depende S.D. depende Sum squared	nt var I resid	2.128815

Fig. 14 Final regression results of the model

The preliminary regression results were obtained, followed by model test and residual diagnosis. The cross-sectional independence test results show that the null hypothesis is rejected, and the cross-sectional correlation exists. The results of heteroscedasticity test showed that the null hypothesis was rejected and the residuals had heteroscedasticity.

Based on the results of the above model test, the model is modified.

T 1		4.	0.1	
Final	regression	results	of the	model
1 11141	regression	results	or the	mouch.

variable	coefficient	P value
С	-0.222	0.68
Lnsize	0.13	0.51
Lnlose	0.0301*	0.09
Lngdp	0.741**	0.00
Lnexpand	-0.094**	0.0036
Education	0.025**	0.00

Note: 1.* means significant at 10% confidence level; 2.** indicates significant at a 5% confidence level.

2. The F statistic and DW statistic of the model are 225 and 0.84 respectively.

The regression results of the model show that the correction R

square is large, indicating that the model fitting degree is good. F test is significantly non-zero, indicating that the corresponding parameters of the five variables are not all zero, that is to say, the combination of the five explanatory variables has a significant impact on the premium income of the explained variable. The T test results showed that the explanatory variables lngdp, lnexpand and education coefficients were significant, the explanatory variable lnlose coefficient was significant, and the explanatory variable lnsize coefficient was not significant.

4. Result analysis

(1) Typhoon disasters

According to the regression results of the model, the coefficient of direct economic loss of typhoon disaster is relatively significant, which is positively correlated with the premium income. This indicates that the frequent occurrence of typhoon disasters will promote the demand for catastrophe insurance to some extent, which also verifies the theory of catastrophe insurance demand theory that background risks will positively influence the demand for catastrophe insurance.

(2) Gross Regional Product

From the regression results of the model, it can be seen that the coefficient of regional gross product is significant, which is positively correlated with premium income, and the regional gross product has a strong explanatory power to premium income. This shows that the economic level is indeed a very important factor affecting the demand for catastrophe insurance. The higher the economic level of people is, the higher the corresponding demand for catastrophe insurance will be, and the economic development is closely related to the demand for catastrophe insurance.

(3) the risk attitude of the applicant

From the regression results of the model, it can be seen that the coefficient of the education level of employees is significant, and the education level of employees is positively correlated with the premium income. This indicates that the risk aversion attitude will promote the demand for catastrophe insurance to some extent. In other words, if the policyholder's risk attitude is risk aversion, he is more likely to purchase catastrophe insurance.

(4) Social capital

According to the regression results of the model, the coefficient of the average household size is not significant, and the average household size has limited explanation for the premium income. The possible reason is that our choice is to take the sum of the income of home property insurance, enterprise property insurance and agricultural insurance as the explained variable premium income, in which enterprise property insurance accounts for a large proportion, but the connection between enterprise property insurance and household is not very big. At the same time, another possible reason is that the definition of social capital is relatively broad, and the average household size index we selected is not particularly representative, so it can not well reflect the social capital of a family.

(5) Government disaster relief system

According to the regression results of the model, the coefficient of the government's natural disaster relief expenditure is significant, and the government's natural disaster relief expenditure is negatively correlated with the premium income. This indicates that the government disaster relief system has a significant inhibitory effect on the demand for catastrophe insurance, which also verifies that the government disaster relief system has a so-called "crowding out effect" on the demand for catastrophe

insurance in the theory of catastrophe insurance demand. Residents in disaster-stricken areas will no longer be willing to buy catastrophe insurance when they are used to waiting for government rescue and compensation.

5. Conclusions and Suggestions

Summarizing the conclusions drawn from the above empirical analysis, we can know that:

(1) The higher the economic level, the higher the demand for catastrophe insurance.

(2) Risk attitude is risk aversion, so there will be a willingness to purchase catastrophe insurance.

(3) The government disaster relief system has a great impact on the demand for catastrophe insurance. If the disaster relief system is mainly assisted by the national government, the demand for catastrophe insurance will be restrained.

Accordingly, we propose the following suggestions:

(1) Provide specific catastrophe insurance types. China has become the world's second largest economy, and China's economy is still developing rapidly, so the demand for catastrophe insurance is bound to be higher and higher, and the call for the establishment of catastrophe risk management system is also becoming stronger and stronger. Therefore, governments and each big insurance company should be cooperation as soon as possible, combined with the rate of insurance company actuarial advantages and national government propaganda and policy regulation, introduced specific catastrophe risks, in order to let the insurance is covered by insurance have more choices, not only choice, although there is a natural disaster insurance liability but common property insurance premiums are low.

(2) Improve the public's awareness of catastrophe risk prevention. The national government should strengthen the education related to catastrophe risk, improve the risk prevention awareness, risk diversification awareness and disaster self-rescue knowledge of the people in the disaster-stricken areas, popularize the role of catastrophe insurance to the public, or provide corresponding subsidies for those who buy catastrophe insurance, so as to change the risk attitude of the people in the disaster-stricken areas.

(3) Learn from the existing excellent catastrophe insurance system. The national government should make full use of the developed foreign natural disaster relief system, learn from foreign catastrophe risk management system, and combine with China's national conditions to change the current traditional inefficient natural disaster relief system in China, so as to reduce the financial burden, improve the efficiency of fund utilization and reduce the fluctuation of fiscal expenditure demand. The establishment of catastrophe risk management system is a more rational and long-term solution. China should give full play to the advantages of market economy and establish a catastrophe risk management system suitable for China.

Acknowledgements

Jing Wei would like to acknowledge financial support provided by National Natural Science Foundation of China (11702094),Natural Science Foundation of Hebei Province, E2017209178) and Fundamental Research Funds for the Central Universities, (3142018060, 3142013025, 3142016023).

References

[1] Zhang Yue. Overview of Chinese and foreign researches on catastrophe insurance demand [J]. Shanghai Insurance, 2014 (5):43-46.

[2] Li Haitang. On the demand and supply of catastrophe insurance [J].Journal of Insurance Vocational College (bimonthly), 2009, 23(2):45-48.

[3] Pan Tanrui. Catastrophe insurance market demand analysis and response measures [J]. Times Finance, 2013(4):147-148.

[4] Zhang Yue. Influence of Policyholder Liquidity Constraints on Catastrophe Insurance Demand -- Analysis Based on Behrman Equation [J].Modern Business, 2012, (10):94-95.

[5] Tian Ling, Yao Peng. Journal of Wuhan University of Technology: Social Science Edition, 2014(27):733. (in Chinese)

[6] Zhu Wei, Chen Bingzheng. Analysis on the influencing factors of catastrophe insurance demand of Chinese residents: A case study of earthquake risk [J]. Insurance Research, 2015(2):14-23.

[7] Tian Ling, Yao Peng, Wang Hanbing. Research on the relationship between government behavior, risk perception and catastrophe insurance demand [J]. China Soft Science, 2015(09):70-81.

[8] Tian Ling, Zhang Yue. An empirical study on the influencing factors of catastrophe insurance demand in China -- Based on panel analysis of partial premium income in five provinces [J].Journal of Wuhan University of Technology (Social Science Edition), 2013, 26(2):175-179.

[9] Zhang Yue. Study on Influencing Factors of Catastrophe Insurance Demand: Theoretical Model and Empirical Verification[D]. Doctoral Dissertation of Wuhan University, 2012.

[10] Zhao Jin. Catastrophe Insurance Demand: Analysis and Policy Suggestions [J]. Journal of Insurance Vocational College (Bimonth), 2011, 25(5):41-46.

Jing Wei is an associate professor in College of Science, North China University of Science and Technology, Sanhe, China. She obtained her BS degree from Yanshan University, China in 2003 and her MS degree from Yanshan University, China in 2006. Her main research interests are in the areas of insurance actuarial and risk analysis.