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 In this paper, the almost surely exponential stability is investigated of nonlinear hybrid stochastic systems with 

impulse and Markovian switching effects. Applying the stationary probability distribution of Markov process and 

the method of the average dwell-time approach, we obtained sufficient conditions for stable and unstable systems, 

respectively. The proposed results provide a method to set a suitable impulsive time sequences which depends not 

only on the continuous dynamics but also on the Markov switching signal. It is proved that when the continuous 

dynamics are stable, the destabilizing impulses should not occur frequently with a lower bound; Conversely, when 

the continuous dynamics are unstable, the stabilizing impulses must not be overly long with a upper bound, and 

the impulse can stabilize the continuous dynamics. The conclusion is illustrated by a numerical example. 
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1. Introduction 

Impulse and switching are regarded as the typical phenomena in 

the hybrid systems which have played a crucial role in many 

applications. Since systems in the real-world often need to run for a 

long period of time, some fundamental problems, such as stability 

and controllability, are still absorbing and challenging. Generally, 

systems are also subjected to unpredictable situations, such as 

structural changes, external environment disturbances, random 

failures of components, etc. In terms of application, impulse and 

switching provide a natural framework for mathematical modeling 

these situations.  

Stochastic modelling has come to play an important role in 

science and industry, and the systems with Markovian switching 

constitute a classical branch of its research field. This kind of hybrid 

systems combine a part of the state that takes values continuously 

and another part of the state that takes discrete values. 

Developments on stochastic stability can be found in Henderson and 

Plaschko (2014), Mao (1990), Khasminskii (2012), Pardoux and 

Rӑşcanu (2014) among others. Due to its wide usages and 

applications, recently, there have been quite a lot of attentions paid 

to these systems. For example, Yuan, Mao and Lygeros (2009) 

investigated stochastic hybrid delay population dynamics; Sethi et 

al. (1994) presented a research on hierarchical control of stochastic 

manufacturing systems with linear production costs; Yin et al. (2008) 

studied communication power control problems for wireless 

communication networks; Boukas (2008) dealed with the stability 

and stabilization of continuous-time singular Markovian switching 

systems; Patrinos et al. (2014) considered stochastic optimal control 

problems for Markovian switching systems. 

On the other hand, impulsive systems constitute a class of hybrid 

systems in which the states evolve according to continuous-time 

dynamics with instantaneous state jump or reset (also referred as 

impulses). Impulsive control theory has been extensively studied in 

past decades; see, e.g., Haddad (2014), Ambrosino et al. (2009), 

Guans et al. (2002), Lakshmikantham et al. (1989) and the 

references cited therein. In general, the study on such systems is 

divided into two classes which are impulsive perturbation problem 

(IPP) and impulsive control problem (ICP). Roughly speaking, IPP 

can be considered as a robustness analysis of the system subject to 

external continuous disturbances; meanwhile systems are regarded 

as ICP when they are under proper impulsive control to maintain 

certain performances, such as periodic solution, attractor, stability 

and so on. Because impulsive controller usually has a relatively 

simple structure, it has received much attentions recently in various 

applications, examples can be found in many fields such as neural 

networks (Chen et al., 2017), secure communication (Li et al., 2012), 

economics (Dykhta, 2014), biological models (Nundloll et al., 2010) 

and so on. 

In this paper, we consider a class of hybrid systems that involve 

both impulse and Markovian switching. Impulse effects can be used 

to describe the sudden changes to system states, and Markovian 
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switching can decide the current system operation mode. Based on 

the statistic property of Markov process and the method of the 

average dwell-time approach, sufficient conditions are derived for 

mean square exponential stable and unstable systems, respectively. 

The rest of this paper is organized as follows. In section 2, we give 

some necessary notations, and then formulate a hybrid stochastic 

system and some definitions. In section 3, the main results are given. 

In section 4, numerical examples are given to illustrate the results. 

And conclusions are given in section 5. 

2. Preliminaries 

Throughout this paper, unless otherwise specified, we use the 

following notations. Let nR  and mnR   denote n-dimensional real 

space and n×m-dimensional real matrix space, respectively. x  

denotes the Euclidean norm for a vector nRx . The superscript 

“T” denotes the transpose for vectors or matrices. For function 

( )t , the left-limit is denoted by ( ) ( )stt
s

+= −→

− 
0

lim . 

 ( )lRbaPC ;,  denotes the class of piece-wise continuous 

functions from  ba, to lR . ( )E  stands for the expectation. 

Let ( )P,, denote a complete probability space with a filtration 

 
0tt  satisfying the usual conditions (i.e., it is increasing and 

right continuous while 0  contains all p-null sets). 

( ) ( ) ( ) ( )( )twtwtwtw m,,, 21 =  stands for an 

d-dimensional-adapted Brownian motion defined on the probability 

space. Let ( )tr , 0t  be a right-continuous Markov chain on 

the probability space taking values in a discrete and finite state 

space  MS ,,2,1 = . It is well known that almost every 

sample path of ( )tr  is a right-continuous step function. The 

generator ( )
MMij 

=  is given by 

( ) ( ) 
( )

( )
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+
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ijiftot
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Where 0t  is a small time increment, 0ij  is the 

transition rate from mode i  to mode j  if ij   while 

 =
−=

L

ijj ijii ,1
  if ij = , and 

( ) 0lim
0

=+→
tto

t
. The mode switching time sequence 

 ,,, 321 ttt  is strictly increasing without accumulation points 

and satisfies =→ kk tlim . Furthermore, we assume that the 

Markov chain ( )tr  is independent of the Brownian motion 

( )tw . 

Consider the following hybrid system of stochastic differential 
equation with impulses and Markovian switching 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( )




==

+=
−

k

k

tttrtxItx

tttdwtrttxgdttrttxftdx

ˆ,,

ˆ,,,,,

,                          (2) 

Where 00 = tt , ( )tx  is the system state, ( )tr  is a 

Markovian switching signal. The impulsive time sequence 

 ,ˆ,ˆ,ˆ
321 ttt  is strictly increasing without accumulation points 

while =→ kk t̂lim . Without losing generality, we assume 

that the impulsive time sequence  ,ˆ,ˆ,ˆ
321 ttt  is a subsequence 

of the switching time sequence  ,,, 321 ttt .   is a 0

-adapted random variable such that ( ) E . The mappings 

nn RSRRf → +: , 
mnn RSRRg + →: , and 

nn RSRI →:  are all Borel-measurable functions satisfying 

Lipschitz condition and linear growth condition ( the precise growth 
condition will be given later ). These conditions guarantee that E.q. 

(2) has a unique solution. Let ( )0; xtx  denote the solution of the 

equation, for simplicity, we write ( ) ( )txxtx =0;  without 

confusion. For the purpose of stability study, we assume that 

( )( ) 0,,0 =trtf  and ( )( ) 0,,0 =trtg , and 

( )( ) 0,,0 =trtI  for 0t .Thus E.q. (2) has a trivial solution

( ) 00; tx . 

Now some definitions and lemmas are given for deriving the 
main results. 

Definition 1 (Mao & Yuan 2006). Let ( )0; xtx  be the solution 

of Eq. (2), for any 
nRx 0

, 

(і) E.q. (2) is said to be mean square Lyapunov exponential stable if 

( )( ) 0log
1

suplim
2


→

txE
tt

; 

(іі) E.q. (2) is said to be mean square Lyapunov exponential 

unstable if ( )( ) 0log
1

inflim
2


→
txE

tt
. 

Definition 2 (Hespanha et al. 2008). Given an impulsive time 

sequence  ,ˆ,ˆ,ˆ
321 ttt , ( )stN ,  denotes the number of 

instants 
kt̂  in the interval ( ts, . For a given 10   , if 

there exist aT  such that 

( )
( )

( ) aa T

st
stN

T

st

 −

−


+

−

1
,

1
, 

then  is called the average impulsive interval (AII), and   is 

called elasticity factor. 
The following lemmas are necessary to get the main results. 

Lemma 1 (Mao, 1999). Assume that the mappings 
nn RSRRf → +:  and 

mnn RSRRg + →:  

are Lipschitz, and ( )( ) 0,,0 =trtf  and ( )( ) 0,,0 =trtg  

for all 0tt  . Denote the solution of E.q. (4) by ( )0; xtx . Then 

there must be ( )  10;Pr 00 = ttonxtx  for all 00 x  

in nR . That is, almost any solution of E.q. (4) with non-zero initial 

states will not reach the origin.  

Lemma 2. Assume that there exist a function 

( )  ( )RtPCtv ,,0 + , and constants   and   such that 

( ) ( )tvtv  , 
ktt ˆ , 0tt  , and ( ) ( )− tvtv  , 

ktt ˆ= , 

then we have ( ) ( ) ( ) ( )0

, 00 tvetv
ttttN −


 .  

Lemma 3. Assume that there exist a function 

aT
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( )  ( )RtPCtv ,,0 +
, and constants   and 


 such that 

( ) ( )tvtv 
, ktt ˆ

, 0tt 
, and 

( ) ( )− tvtv 
, ktt ˆ=

, 

then we have 
( ) ( ) ( ) ( )0

, 00 tvetv
ttttN −




. 

3. Results 

In order to investigate the stability of Eq. (2), we impose the 

following conditions to mappings f , g  and I . 

Assumption 1: For every mode Si , and all 

( ) + RRtx n, , there exist constants i , i  and i  such 

that  

( ) 2
,, xitxfx i

T  , ( ) 22
,, xitxg i  

( )( ) 22
, xitxI i .               (5) 

where ( )( ) ( )( ) ( )( )( )ittxgittxgtraceittxg T ,,,,,,
2
= . 

For simplicity, we denote ( ) kitr  = , ( ) kitr  =  and 

( ) kitr  =  when ( ) Sitr =  for  )1, + kk ttt , Nk . 

Unless otherwise specified, we take the same representations in the 
following. 

Theorem 1. Assume that E.q. (2) satisfies Assumption 1. For any 

initial value 
nRx =0

, the solution of E.q. (2) follows   

( )( )
( )

2

1

2
1

limsup log 1
log

1

i i

ii M
t i

i a

E x t
t

T

 




 
 

→

+ 
 

  +
 + 

  (8) 

where ( )ii  logsgn−= . In particular, the E.q. (2) is mean 

square Lyapunov exponential stable if 

( )
0log

1

1
2

1












+
++  Mi i

ai

iii
T




 . 

Proof. Clearly, the assertion (8) is true when 00 ==x  

because the solution ( ) 00; =tx  in this case. For any initial 

value 00 =x , we write ( ) ( )txxtx =0;  for simplicity. 

Let ( ) ( ) 2
txtV = , 0tt  . For  )1, + ll ttt , Nl . 

applying the ITÔ formula yields that  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

2 , , , ,

, , , ,

2 , ,

T

T

T

dV t x t f x t t r t dt g x t t r t dw t

trace g x t t r t g x t t r t dt

LV t dt x t g x t t r t dw t

 = + 

 +  

= +

,        

(9) 
Where 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 , ,

, , , ,

T

T

LV t x t f x t t r t

trace g x t t r t g x t t r t

=

 +  

  (10) 

Let 0t  be small enough such that  )1
ˆ,ˆ
++ ll tttt , 

making use of lemma 3.2 in Khasminskill (2012) and Fubini’s 
theorem, we can obtain that  

( )( ) ( )( ) ( )( )dttLVEtxEVttxEV
tt

t
+

=−+ . 

Noticing that  is continuous in the interval  )1
ˆ,ˆ
+ll tt , 

so we get that 

( )( )( ) ( )( )tLVEtxEV =
 .          (11) 

Combing (7) with (11), it follows that 

( )( )( ) ( ) ( )( ) ( )( )( )txEVtxEV trtr  +


2 .   (12) 

For  )10 ,ttt , Applying lemma 2, we have  

( )( ) ( ) ( )( ) ( )( )0

2, 0000

0
txEVetxEV

ttttN

i

ii −+



 . 

From the above it follows that 

( )( ) ( ) ( )( ) ( )( )0

2,

1

010001

0
txEVetxEV

ttttN

i

ii −+



 .     (13) 

Repeating the former process similarly, for  )21, ttt ，we can 

obtain that  

( )( ) ( ) ( )( ) ( )( )1

2, 1001

0
txEVetxEV

ttttN

i

ii −+



 .    (14) 

Substituting (13) into (14) yields that 

( )( ) ( ) ( )( )

( ) ( )( )
( )

11 11

1

1 10 01 0

0

2,

2,

i i

i i

t tN t t

i

t tN t t

i

EV x t e

e EV

 

 



 

+ −

+ −





 

Since ( )tr  is a right-continuous step function with a finite 

number jumps in any finite subinterval of +R . For any 

 )+ ,0t , there must exist an integer Nn  such that 

 )1, + nn ttt . By mathematical induction, we have 

( )( ) ( ) ( )( )

( ) ( )( )( ) ( )11

2,

2,

0 1

i i nn nn

n

i i k kk kk k

k

t tN t t

i

t tN t t

i
k n

EV x t e

e EV

 

 



 ++

+ −

+ −

  −



 
   (15) 

Therefore, we obtain that 

( )( )( ) ( )( )

( )( )

( )

( ) ( )

10 1

10 1

log 2

2

, log

, log log

n n

k k

n

k

i i n

i i k kk n

n i

k k ik n

EV x t t t

t t

N t t

N t t EV

 

 



 

+  −

+  −

 + −

+ + −

+

+ +





 (16) 

Moreover, by the ergodic property of the Markov chain and the 

definition of ( )stN , , we get 

( )( )

( )( )
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0

10 1

21
lim 2

2

n n

k k

i i n

i i ik Mt

i i k kk n

t t

t t t
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+  −

 + −
   +
 + + −
 




 

           (17) 

( )

( ) ( )0

10 1

, log1
lim log

1, log

n

k

k

n i
i

ii Mt
i ak k ik n

N t t

t TN t t

 


   →
+  −

 
  
  ++ 




 
            (18) 

where ( )ii  logsgn−= . 

Since ( ) E , we yield that  

( )( ) 0log
1

lim =
→

EV
tt

.            (19) 

It follows from (15) to (19) that 

( )( )tLVE
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( )( )
( )

2

1

2
1

limsup log 1
log

1

i i

ii M
t i

i a

E x t
t
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→
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  +
 + 

 . 

Thus the assertion (8) is obtained. Evidently, the E.q. (2) is mean 

square Lyapunov exponential stable if 

( )
0log

1

1
2

1












+
++  Mi i

ai
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T




 . 

The proof is completed. 

Remark 1. After proving theorem 1, let us provide a deep insight 

into the condition (8). when 02 + ii   is true for everry 

Si , that is every mode is exponential unstable in the sense of 

mean square, this condition can not be hold for any impulse time 

sequence if 1i  for everry Si . All other combinations of 

i , i  and i  lead to interesting results.  

We now explore some cases as examples. Suppose that a hybrid 

system satisfies the assumption 1 as in (7). when 02 + ii   

is true for every Si , we can choose 
( )( ) aiii T

i e
 ++−


12

 

for every Si  that makes condition (8) to hold. In this case, the 

inequality 02 + ii   implies the continuous dynamics of 

mode i  is exponential unstable in the sense of mean square. Since 

02 + ii  , the impulses must stabilize the system efficiently. 

Thus we must have 1i  and the stabilizing impulses must not 

be overly long with a upper bound 

( )( ) aiiii T ++− 12log  , that is 

( )( )  iiiiaT ++− 12log . Conversely, when 

02 + ii   is true for every Si  and 1i , the 

impulses can potentially destroy the stable and should not occur 
frequently with a lower bound

( )( ) aiiii T ++− 12log , that is 

( )( )  iiiiaT ++− 12log . The other combinations 

are left to readers. 
The following result obtains from the above observations. 

Corollary 1. Suppose E.q. (2) satisfies Assumption 1. 

(і) When 02 + ii   and 10  i for all Si , E.q. (2) 

is exponential stable in the sense of mean square if  

( )( )  iiiiMiaT ++−  12logmin1 ; 

(іі) When 02 + ii   and 1i  for all Si , E.q. (2) is 

exponential stable in the sense of mean square if  

( )( )  iiiiMiaT ++−  12logmax1 . 

Assumption 2. For every mode Si , and all 

( ) + RRtx n, , there exist constants i , i  and i  such 

that 

( ) 2
,, xitxfx i

T  , ( ) 22
,, xitxg i ,  

( )( ) 22
, xitxI i ,                  (20) 

where ( )( ) ( )( ) ( )( )( )ittxgittxgtraceittxg T ,,,,,,
2
= .  

Theorem 2. Assume that E.q. (2) satisfies Assumption 1. For any 

initial value 
nRx =0

, the solution of E.q. (2) follows 

( )( )
( )

2

1

2
1

liminf log 1
log

1

i i

ii Mt
i

i a

E x t
t

T

 




 
 →

+ 
 

  +
 + 

  

,                     (21) 

where ( )ii  logsgn−= . In particular, the Eq. (2) is mean 

square Lyapunov exponential unstable if 

( )
0log

1

1
2

1












+
++  Mi i

ai

iii
T




 . 

Proof. The process is similar to the theorem 1. For any initial value 
nRx =0

, we write ( ) ( )txtx =,  for simplicity again. 

Let ( ) ( ) 2
txtV = , 0tt  . According to the property of Markov 

chain, for any  )+ ,0t , there must exist an integer Nn

such that  )1, + nn ttt . By (20) and lemma 3, we can get from 

(11) that 

( )( ) ( ) ( )( )

( ) ( )( )( ) ( )11

2,

2,

0 1

i i nn nn

n

i i k kk kk k

k

t tN t t

i

t tN t t

i
k n

EV x t e

e EV

 

 



 ++

+ −

+ −

  −



 
   (22) 

Therefore, we obtain that 

( )( )( ) ( )( )

( )( )

( )

( )

( )

10 1

10 1

log 2

2

, log

, log

log

n n

k k

n

k

i i n

i i k kk n

n i

k k ik n

EV x t t t

t t

N t t

N t t

EV

 

 







+  −

+  −

 + −

+ + −

+

+

+





        (23) 

Meanwhile, by the ergodic property of the Markov chain we still 

have (17), and by the definition of ( ),N t s , we get 

( )

( ) ( )0

10 1

, log1
lim log

1, log

n

k

k

n i
i

ii Mt
i ak k ik n

N t t

t TN t t

 


   →
+  −

 
  
  ++ 




 
        (24) 

where ( )ii  logsgn= . 

Combining (17), (19), (23), (24) together, it follows that 

( )( )
( )

2

1

2
1

liminf log 1
log

1

i i

ii Mt
i

i a

E x t
t

T

 




 
 →

+ 
 

  +
 + 

  

. 
Thus the assertion (21) is obtained. Clearly,the Eq. (2) is mean 
square Lyapunov exponential unstable if 

( )
0log

1

1
2

1












+
++  Mi i

ai

iii
T




 . 

The proof is completed. 

4. Simulation examples 

In this section, two examples are given to illustrate the results in 
the previous section. 

Example 1. Consider a 1-dinmetinal hybrid system with two 
subsystems, the parameters are given as following: 

( ) ( )xxtxf 2cos21,, += , ( ) xxtxf 2sin2,, = ,  

( ) xtxg =1,, , ( ) xtxg 32,, = , ( )  2,1=Str , 
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1.01 =d , 2.02 =d , 








−

−
=

4.04.0

2.12.1
.  

Then the stationary distribution of switching signal ( )tr  is 

( )7358.0,2642.0= . we take constants 31 = , 12 = , 

11 = , 32 = , 11 = , 32 = , then Assumption 1 is 

satisfied. We obtain that  

( ) 0033.15.0
1

22 −=−+ =

L

i iiii  . 

( )  2,1=Str , 








−

−
=

7.07.0

4.04.0
, 

( ) ( )xxtxf 2cos21,, += , ( ) xxtxf 2sin2,, = , 

( ) xtxg =1,, , ( ) xtxg 32,, =  , ( ) xxI 7.01, = , 

( ) xxI 2.11, = . Then the stationary distribution of Markov chain 

( )tr  is ( ) ( )3637.0,6363.021 =， . we take constants 

31 = , 12 = , 11 = , 32 = , 7.01 = , 2.12 = , 

then Assumption 1 is satisfied. We let 05.0=  in the definition 

of ( )stN , . If we take 0322.0aT , then we have 

( )
0log

1

1
2

21












+
++ i i

ai

iii
T




 . By 

theorem 1, we obtain that E.q.(2) is mean square Lyapunov 
exponential stable. 

Example 2. Consider the hybrid system with two subsystems as 
following 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )




==

+=
−

ktr

ktrtr

tttxBtx

tttdwtxCdttxAtdx

ˆ,

ˆ,
. 

The data is as below:  

 2,1=S 








−−

−
=

1.18.0

55.1
1A , 









−

−
=

8.01.1

15.42.1
2A , 








 −−
=

51.03.0

5.017.0
1B , 









−

−
=

5.05.0

031.0
2B ,  










−−
=

8.06.0

25.00
1C , 









−
=

3.04.0

2.01.0
2C , 










−

−
=

7.07.0

4.04.0
. 

Then the stationary distribution of Markov chain ( )tr  is 

( ) ( )3637.0,6363.021 =， . we take constants 

8095.01 = , 3350.12 = , 0409.11 = , 

2520.02 = , 6226.01 = , 5530.02 = , then 

Assumption 1 is satisfied. We let 05.0=  in the definition of 

( )stN , . If we take 1965.0aT , then we have 

( )
0log

1

1
2

21












+
++ i i

ai

iii
T




 . By 

theorem 1, we obtain that E.q.(2) is mean square Lyapunov 
exponential stable. 
Numerical simulation is executed. Fig. 1 shows the switching signal 

with two modes, and Fig. 2 shows the system state trajectory. 

 

Fig. 1 switching signal with two modes 

 

Fig. 2 the system state trajectory 

5. Conclusion 

In this paper, the stability property of hybrid stochastic systems is 

investigated with impulse and Marlovian switching effects. We 

derived the sufficient conditions for exponential stable and unstable 

in the sense of mean square. And then a few numerical simulations 

are given to illustrate the results. 
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