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1. Introduction 

The development of nonlinear systems and linear systems is 

almost parallel (Khalil, 2020), but in fact, almost all systems have 

different uncertainties and nonlinearities, so nonlinear system 

control problems have always been one of the hot spots in the 

academic engineering field. Many theoretical methods in modern 

control theory use linear systems as their basic research objects. But 

in the field of actual engineering, we try our best to get the precise 

mathematical model of the system, but due to uncertain interference 

and other factors, we have to solve a series of nonlinear problems. 

Linear models cannot be applied at all in some controlled objects, 

such as aircraft tracking control (Yao et al., 2020) , robotic arm 

systems (Li et al., 2019), multi-agent formation (Wang et al., 2020b), 

etc. we require extremely high control accuracy, so for nonlinear 

system models, a nonlinear control strategy must be adopted to meet 

the needs. 

The control of nonlinear systems can be divided into two aspects: 

system analysis and controller system design. In the former, the 

phase plane method and description function method are applied to 

the research object to realize the absolute stability of the nonlinear 

system. The latter is to design control laws for nonlinear systems to 

achieve control tracking, such as adaptive control (Zhihua et al., 

2006), robust control (Krishnamurthy et al., 2009) , differential 

algebra (Franco et al., 2020), backstepping (Bi and Shi, 2017),NNs 

(Li et al., 2015),sliding mode control (Fujimoto et al., 2021) and 

fuzzy control (Wang et al., 2019), etc. As we all know, scholars 

have provided a large number of effective strategies for nonlinear 

system control, and provided a large amount of theoretical 

foundation for practical engineering applications. In (Zeng Lian and 

Svoboda, 2006), scholars proposed a sliding mode fuzzy NN 

learning control strategy based on disturbance observer, which can 

maintain stable performance in the presence of disturbance. In 

(Chen and Chen, 2007), this paper proposes a linear LTR robust 

observer for the Lipchitz nonlinear system, which has good 

reliability in the face of large interference. In (Yin et al., 2010), 

scholars designed a new iterative learning control scheme for 

nonlinear systems with parameter uncertainties, and experiments 

proved the effectiveness of iterative learning strategies with 

high-order internal models. In (Guifang and Chen, 2018), a display 

controller was established in the gradient direction to deal with the 

random nonlinear system with matching conditions, so that the 

closed-loop system response was globally restricted in probability, 

and an example was given to verify the validity. In (Li et al., 2021), 

to solve the influence of event triggering, the author proposes an 

adaptive finite-time event triggering controller to solve the 

problems in uncertain nonlinear systems. In (Zhang and Wang, 

2021), The author uses observers and NNs to solve the problems of 

unmeasurable states and unknown nonlinearities, and achieves fixed 

time control. Obviously, the finite time control strategy has been 

widely recognized by scholars and a lot of research has been done. 

http://www.ijamce.com/ijamce/index.html
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Due to the complexity and variability of nonlinear systems, scholars 

have carried out targeted research on nonlinear systems under 

different conditions and proposed effective control strategies. This 

paper proposes a non-singular fast terminal fixed-time dual-power 

sliding mode control based on an adaptive NN for nonlinear 

systems with uncertain disturbances. At the same time, a reliable 

fixed-time tracking control strategy is provided for the 

under-driving uncertain nonlinear system of the quadrotor.  

Because the quadrotor system itself is an under-driving system 

with four inputs and six outputs, plus the uncertainty of the actual 

working environment, the quad-rotor system is a rather complex 

nonlinear system. At the same time, because quadrotor UAVs have a 

large number of applications in many fields, such as aerial 

photography (Huang et al., 2016), plant protection drones (Ma et al., 

2019), reconnaissance (Mintchev and Floreano, 2016), etc. The 

research on quadrotor UAVs is of great significance and there are 

already a large number of research results. In (Kim and Ahn, 2019), 

scholars provided an advanced attitude tracking controller for 

quadrotor UAVs that combines an automatic tuner and a disturbance 

observer. The Lyapunov stability was used to prove the offset-free 

convergence and performance recovery characteristics. In (Santoso 

et al., 2020), in order to adapt to the uncertain interference faced by 

the quadcopter, hybrid feedback and feedforward autopilot is 

proposed, which uses nonlinear model prediction technology to 

solve the problem of accurate tracking. As we all know, NNs have 

superior performance in dealing with nonlinear system problems. In 

(Wu et al., 2009), the author applied an adaptive recurrent NN to 

study a kind of nonlinear dynamic system with real-time delay for 

identification and control.In(Salt et al., 2020), The author uses a 

fast-responding spiked NN structure to provide reliable data support 

for the quadrotor dynamic vision sensor. Obviously, there have been 

a lot of academic achievements in the control research of quadrotor 

UAVs. However, due to practical needs, the problem of finite time 

stability has become a hot research topic today (Wu et al., 2021, 

Gao and Guo, 2020, Yang and Niu, 2020). In the control research of 

quadrotor UAVs, in order to enhance the control performance, the 

author solved the problem of quality change in the operation of the 

aircraft (Wang et al., 2020a), and some scholars proposed fixed-time 

control to improve the stability performance (Zhang et al., 2020a). 

In the above research results, it is inevitable that some scholars have 

overlooked the convergence speed, singularity, robust performance, 

and practical fixed-time convergence problems. As we all know, 

these problems have a great impact on the control and work 

efficiency of quadrotor UAVs. 

In the first section of the article, the nonlinear system problems 

and basic lemmas are given. In the second section, a fixed-time 

controller is designed and the necessary proofs are made. In the 

third section, the quadrotor UAV controller. Finally, the algorithm is 

verified by numerical examples. The main contributions of this 

paper can be as follows: 

The design of fixed-time dual-power sliding mode control law 

based on NFTSM function can effectively solve the problems of 

chattering and slow convergence in traditional sliding mode control 

so that the system can be stable in finite time. The algorithm solved 

the possible singular problems. 

Design a fixed-time NN adaptive law, which can approximate an 

uncertain nonlinear system in a finite time without considering the 

ideal weight and the initial value of the weight. 

The algorithm can ensure stability under large interference 

conditions. Compare the algorithm proposed in this paper with the 

paper (Alqaisi et al., 2020) in terms of robust performance. 

2. Problem formulation and preliminary 

Consider the following second-order uncertain nonlinear system: 

1 2

2 ( ) ( , )

x x

x u f x dt x t

=

=  + +
       (1) 

Where nx R  is the state of the system, ( )f x  is the known 

vector field, u R  is the control input,   is a real number and 

dt R  is the uncertain disturbance. The purpose is to elicit the 

tracking control research of the quadrotor UAVs through the 

above-mentioned nonlinear system. 

 

Fig. 1. Schematic of the quadrotor UAV system. 

Taking into account the quadrotor UAV system shown in 

Fig.1(Song et al., 2019),the body coordinate system and the ground 

coordinate system are selected, and the mathematical model of the 

quadrotor system is obtained according to the coordinate system and 

system dynamics model, using Newton's Euler equations. The 

attitude angle is expressed as yaw angle , pitch angle  , and roll 

angle  . Assuming that the quadcopter is a rigid body, its dynamic 

model can be expressed as: 

Position dynamic equation： 

( ) ( )x x ax Au t f d= +  +          (2) 

Attitude dynamic equation： 

( ) ( )p p bp Bu t f d= +  +          (3) 

( )

(sin sin cos sin cos )

sin sin cos cos sin

(cos cos )

x at

y at

z at

P F

P F

P F

    

    

 

= +

= −

=

 (4) 

1 , , ,at a a au F u u u       = = = =     (5) 

1
,

y z r

x x x

z x r

y y y

z

I I I
a

I I I

I I I
b

I I I

c d
I m








 


 



−
= − −

−
= − −

= − =

       (6) 
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Where ( , , )A diag d d d=
1 1 1

( , , )
x y z

B diag
I I I

= ， 

( ) , ,
T

x x y zu t P P P =  
3( ) , ,

T

pu t u u u R  
 =  

3

1( ) , ,
T

x y zf dx dy dz g R    = − − − −   ,   3

2 ( ) , ,
T

f a b c R =  ,

3 3,A B R  ,
3( ), ( )x Pu t u t R , 

m is the mass of the quadrotor UAVs, ( , , )x y zI diag I I I= is the 

moment of inertia of the three coordinate axes in the body 

coordinate system, g  is the selected acceleration of gravity, 

, , , , ,
T

x y z          =    is the air drag coefficient,
rI  is the 

rotor inertia, and 
4 3 2 1w w w w w= + − −  is the total remaining 

rotor Angle. 

3 3( ) , , , ( ) , ,
T T

a x y z bd d d d R d d d d R  
    =   =    are 

uncertain disturbances in the position and attitude system. 
atF  

represents the combined force of the control thrust in the three 

directions, and , ,a a a      is the torque generated by the 

rotation. 

Remark 1. Converting the quadrotor model (2)(3) to the 

above-mentioned form (1) is convenient for the development of 

problem research and unnecessary and repetitive proofs, and can 

convert the theorems obtained in uncertain nonlinear systems to 

quadrotor UAVs under system control. 

Lemma 1 (Chen et al., 2019, Jiang et al., 2016). Suppose the system 

exists a Lyapunov function ( )  +: 0nV R R →  , where scalars

, , , ,p q   R+  are positive real numbers with 

0 1, 1p q    and 0   .Such that 

( ) 0 0V x x=  =            (7) 

( ) ( ) ( )( ) ( )
p q

V x V x V x   − − +   (8) 

Then the origin 0x =  of system ( ) ( ) 0, , 0x f t x x x= =  is 

practically fixed-time stable. The residual set of the system solution 

can be given by 

1 1 1 1

lim ( ) min ( ) , ( )
1 1

p p p q

t T
x V x  

 

 
 

− −

→

    
  

− −    

 (9) 

where scalar satisfies 0 1    ,then the time is bounded as 

1max

1 1

( 1)2 (1 )p qp
T

   −
= +

−−
       (10) 

Lemma 2 (Zhang et al., 2020b). For any constant ,a b R , 

1, 1g h  and
1 1

1
g h
+ = the following Young’s inequality holds: 

1 1g hab a b
g h

 +             (11) 

Lemma 3 (Zhang et al., 2019).For positive constant 
1

=
3

 , vector 

quantity * ˆ, , mW W W R  and satisfy ˆW W W = − .According to 

Young's inequality, the following inequality holds: 

1 1 1 1

2 2 2 2
1ˆ
2

T T
TW W W W W W

   


+ + + +
 

−  − +  (12) 

Where  1 2 3= , ,
T

nW x x x x ,  1 2 3
ˆ ˆ ˆ ˆ ˆ= , ,

T

nW x x x x , 

* * * * *

1 2 3= , ,
T

nW x x x x   ,
1 2 3

ˆ ˆ ˆ ˆ ˆ= , ,
T

nW x x x x        

*ˆ ˆ, , , nW W W W R  . 

Lemma 4 (Xiao et al., 2017).For  1 2 3, ,
T i

ih h h h h R=  ，and 

the constants 0 1, 1n m   ,then the following inequality hold: 

1

1 1 1 1

( ) , ( )

n mi i i i
n m m

j j j j

j j j j

h h h i h−

= = = =

      (13) 

3. Design and analysis 

3.1 Fixed-time adaptive NNs Sliding Mode Control 

In this section, we can divide it into three steps. First, design the 

non-singular fast terminal sliding function and verify stability. 

Secondly, introduce the double-power approach rate and give proof 

of the fixed-time convergence. Finally, design the RBFNNs 

adaptive law, and then we design the Lyapunov function to prove 

that the system can achieve fixed-time convergence. 

Assume an uncertain nonlinear second-order system (1), to 

enable x to track
dx , design error function as 

1 1

1 2 1

2 2

d

d

d

e x x

e e x x

e x x

= −


= = −
 = −

      (14) 

Design NFTSM function as 

1 2

1 1 1 2 2( ) ( )
p p

s e e sign e e sign e = + + (15) 

Where 2 1 2 10, 0,1 2, ,
g

p p p p
h

      =  

2 , , , ,
z

p g h z l N
l

=  are odd numbers. 
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Fig. 2. Control flowchart of second-order nonlinear system 

 

Proof 1: The low order of 
1e  plays a leading role and tends to the 

equilibrium point. The law of system state change on the sliding 

surface is 

2

2

2 2 1

1

1

1 2 1

2

( )

1
( )( ) , (0 1)

p

p

e sign e e

e
e e sign e

p





= −

= = −  
   (16) 

The higher order of 
1e  plays a leading role and tends to the 

equilibrium point. The system state change law on the sliding 

surface is 

2 1

1 2

2 2 1 1

1

1 1

1 2 1

2

( ) ( )

( ) , ( 1)

p p

p p

e sign e e sign e

e p
e e sign e

p

 





= −

 
 = = − 
 
 

   (17) 

There have been a large number of results showing the verification 

of finite time convergence(Liu et al., 2018) ,and then the finite time 

convergence conclusion obtained by simply analogy with the law of 

constant velocity approximation 

When 
1 1e  

1

1 1 1 1 1( ) , 1
n

e k sign e e n= −         (18) 

Compared with the isokinetic approach rate 

1

1 1 1( )
n

k sign e e k−  −            (19) 

This shows that the NFTSM has a faster convergence rate than the 

constant velocity approach rate when it is far from the equilibrium 

point. 

When 
10 1e  

2

1 2 1 1 2( ) , 1
n

e k sign e e n= −         (20) 

Compared with the isokinetic approach rate 

2

2 1 1( )
n

k sign e e k−  −            (21) 

This shows that the NFTSM has a faster convergence rate when 

approaching the equilibrium point than the constant velocity 

approach rate. Through the above analysis, it can be seen that 

1e k= −  can make the system error converges to 0 in finite time, 

so that the NFTSM surface determined by the formula can quickly 

converge to 0 in finite time. Proof completed. 

In the next step, we can design and analyze the controller according 

to the control strategy in Fig.2.  

According to (15) we can get 

1 21 1

2 1 1 2 2 2 ( ( )

)

p p

t d

s e p e e p e f x

u d x

 
− −

= + +

+ + −
  (22) 

To achieve the estimated synovial surface, the equivalent control 

law is designed without considering interference conditions 

2 12 1

2 1 1

2

1
( ( )

(1 )
)

eq d

p p

u f x x

e p e

p





− −

= − +


+
−

        (23) 

We use the dual-power sliding mode approach rate as the switching 

control law as 

1 2

1 2( ) ( )
w w

swu s k s sign s k s sign s= = − −   (24) 

Where 
1 2 1 20, 0,0 1, 1k k w w     , the final control law is 

eq swu u u= +                    (25) 

2 1

1 2

2 1

2 1 1

2

1 2

(1 )1
( ( ) )

( ) ( )

p p

d

w w

e p e
u f x x

p

k s sign s k s sign s





− −
+

= − + −


− −

  (26) 

However, there is an unknown ( )f x in the mathematical model 

of the second-order nonlinear system, so the control law (26) cannot 

completely achieve the superior control effect. Therefore, this paper 

will use RBFNNs to approximate the nonlinear part, which can 

effectively enhance the robust performance of the nonlinear system. 

As a feedforward NN, the RBFNN has the best approximation 

effect and does not have the advantages of local minima and fast 

learning convergence, the schematic diagram of the structure of the 
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RBFNN is shown in Fig. 3. Therefore, it has been used in a large 

number of academic researches and has been effectively verified 

(Zhang et al., 2020c). RBFNNs are used to design NNs control. 

...

...

...

Input layer

Output layer

Hidden layer

1x 2x mx

1c 2c 3c ic

1y 2y ny

ijw

 

Fig. 3. RBFNNs structure diagram. 

Choosing a NN controller 

2 1

1 2

2 1

2 1 1

2

1 2

(1 )1 ˆ( )

( ) ( )

p p

d

w w

e p e
u f x

p

k s sign s k s sign s





− −
+

= − + −


− −

      (27) 

Where ˆ ˆ ( )Tf W h x= -NNs output. 

The sliding surface of the nonlinear system can be written as 

1 21 1

2 1 1 2 2 2 (

( ) )

p p

t d

s e p e e p e u

f x d x

 
− −

= + + 

+ + −
      (28) 

Where 

( )*( ) tf f x d W x  = + =  +          (29)  

Calculate the approximate error of the system model as 

*ˆ ˆ( ) ( )

( )

T T

T

f f f W h x W h x

W h x





= − = + −

= +
     (30) 
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
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Fig.4 Structure diagram of the quadrotor control system 

 

According to the controller (26) and the sliding function (28), we 

can get 

2 1

2

1

2 2 1

2

( ( ) ( )

( ))

p wT

w

s p e W h x k s sign s

k s sign s

 
−

= + −

−
    (31) 

Where 
1 20, 0k k  ， to achieve fixed-time convergence, we 

choose 
1 2 2w w+ = and

1 2

1 5
,

3 3
w w= = .  

Theorem 1: For system (24), when 
1 2 2w w+ = , it can reach the 

fixed time convergence. It can also be considered that there is 

0sw swu u= =  after the finite time convergence T  and the 

convergence time T  has an upper bound supT  that has nothing to 

do with the initial state value 0swu , where 

211

21 2 2

sup

1 2 2

1
arctan( 0 )

(1 )

2 (1 )

wk
T s

kk k w

T
k k w



−
=

−

=
−

   (32) 

 

Proof 2: When 0s  , and 
1 2 2w w+ = , system (24) can get the 

following equation as 

2 22

1 2 0
w w

s k s k s
−

+ + =          (33) 

Then, equation (33) divided by 2w
s on both sides of the equal sign, 

we can get 

2 22 2

1 2 0
w w

s s k s k
− −

+ + =         (34) 

In the next step, we set 21 w
s

−
 = , then 2

1

1 ws −
=  , and substitute 

swu  into equation (34), we can get the generalized Riccati 

differential equation as 

2

2 1 2 2(1 ) (1 ) 0w k w k + −  + − =      (35) 

Then, we can get the general solution of equation (35)as 

2

0 1 2 2

1

tan (1 )
k

T k k w t
k

  = − −
 

      (36) 

Get from (0) 0s s=  as 
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2

2

1

01
1 2 0

1

1 2

1 2 2

( 0) / tan( ) ,

arctan( / 0
0,

(1 )

w

wsw

T
sign s k k T ct t

c
u

k k s
t

k k w

−

−


 −   


= 
 
 −

(37) 

Therefore, the convergence time is 

210 1

21 2 2

1
arctan( 0 )

(1 )

wT k
T s

c kk k w

−
= =

−
 (38) 

From equation (38) we can find that the initial value 0s  only 

appears in the arctangent function
211

2

arctan( 0 )
wk

s
k

−
, and the 

value interval arctan( ) 0, , 0
2

x x
 

  
 

 can be obtained from 

the arctangent function 

sup

1 2 22 (1 )
T T

k k w


 =

−
        (39) 

Therefore, the convergence rate (24) has an upper limit of supT  at 

1 2 2w w+ =  and has nothing to do with the initial value 0s . 

Proof completed. 

Proof 3: Select Lyapunov candidate function 

21

2
SV s=               (40) 

2 1

2 2 2

1 5

3 3
1 2

( )( ( )

( ) ( ))

p T

SV ss sp e sign e W h x

k s sign s k s sign s

 
−

= = +

− −

 (41) 

Select Lyapunov candidate function 

1
, 0

2

T T

NNV W W  = =       (42) 

2 1

2 2
ˆ( ( )

ˆ )

pT

NN z

x

V W sp e h x W

W





 



−
= − −

−
  (43) 

Where 

2 11

2 2
ˆ ˆ ˆ( )

p

z xW sp e h x W W    
−−  = − −

 
(44) 

Select Lyapunov function 

s NNV V V= +               (45) 

2 1

2 2

1 5

3 3
1 2

( ( )

( ) ( ))

s NN

p T

NN

V V V

sp e W h x

k s sign s k s sign s V

 
−

= +

= +

− − +

   (46) 

2

2

2

2

1

2 2

1 5

3 3
1 2

11

2 2

1

2 2

1
1

3
2 2 1

5

3
2

( ( )

( ) ( ))

( [ ( )

ˆ ˆ ])

( ( )

ˆ ˆ( ))

s NN

p T

pT

z x

p

p

T T

z x

V V V

sp e W h x

k s sign s k s sign s

W sp e h x

W W

sp e

sp e k s sign s

k s sign s W W W W

 

 





  

 

 



 

−

−−

−

−

= +

=

+ − −

−

− −

=

+ −

− − −

(47) 

According to Lemma 2 and Lemma 3, the following inequalities can 

be established 

1 1 1

1 2 2 2
1 2

ˆ

1
( )
2

T

z

T T

W W

W W W W



  



  
+ + +

 
−

− 

− +
 (48) 

1 1 1

1 2 2 2
3 4

ˆ

1
( )
2

T

x

T T

W W

W W W W



  



  
+ + +

 
−

− 

− +
 (49) 

1

11

1 1
s s


 


 

 

+

+ +
+ +

 (50) 

Where 1 2 3 40, 0, 0, 0       , then we have 

1 4 8
1

3 3
2 1 2

1 1 1

1 2 2 2
1 2

1 1 1

1 2 2 2
3 4

1 1 1

2 2 12 2 2
1

1 1 1

12 2 2
2 3

4

1
( )

1 1

1
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2

1
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2

1 1 1
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2 2 2

1
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T T

T T

T

T T
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W W W W

W W W W
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W W W W
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
 

  

  

  

  


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 
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

+

+

+ + +
 

−

+ + +
 

−

+ + +

−

+ + +
 

−



= +

 + − −
+ +

− +

− +

  − −

+ −

+
11 1

2 2
2

1

TW p
 




 

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

+
+

 (51) 

1 1

2 2
2 1 2 2

1
2 ( ), 2

1

v

p k p k


  


+ +

 = − =
+

 (52) 

According to Lemma 4, then we can get 

1 1 1

2 2 2
1

1 1 1

2 2 2
2 3

11 1

2 2
4 2

1 1

2 2

( ) ( )

1

s s NN

T

NN

T

x x x

V V V V

W W V

W W p

V V

  

  

 



 

 

 


  



 

+ + +

+ + +
 
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 
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+ +
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 − − + 

       (53) 

Where 
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1

2

1

2

1 1 1 1

2 2 2 2
2 4

1

2

min ,2

min ,2

1

v

x px

x pz

T T

x W W W W

p



   





 

  

 


 


+

+

+ + + +
   

+

 
= − 

 

 
=  

 

 = +

+
+

   (54) 

Then, according to Lemma 1, the system is approximately stable in 

fixed-time, and the convergence time is  

( ) ( )

3

2

max

2 2

1 1
x

x x

T



   

−

= +
− −

 

Where
1 5

,
3 3

 = = ， 0, 0   , px and zp deponds on ,v  . 

Proof completed. 

Remark 2: To verify that the theorem obtained in this paper is not 

limited to simple uncertain nonlinear systems, the theorem will be 

applied to the tracking control of quadrotor UAVs in the next 

section. 

3.2 Application and Analysis of Tracking Control of Quadrotor 

Aircraft 

Considering that the actual working dynamic model of the 

quadrotor is a typical uncertain under-actuated nonlinear system. In 

this section, we will apply the algorithm theorem proposed in the 

previous section to analyze the quadrotor UAV system model.  

In this paper, the attitude calculation is used to obtain the target 

attitude angle of the quadrotor UAV. Assuming expectation 0d = , 

after the attitude calculation of the position subsystem, ,d d  can 

be obtained, so as to achieve tracking control(Chen et al., 2016). 

( ) ( )
2 2 2

sin cos
arcsin

x d y d

d

x y z

P P

P P P

 


 −
 =
 + +
 

   (55) 

( ) ( )cos sin
arctan

x d y d

d

z

P P

P

 


+ 
=   

 
   (56) 

Where
2 2 2

1 s x y zu u P P P= = + + . 

Theorem 2: Taking into account the quadrotor UAV system (2)(3), 

system tracking error (14), sliding mode surface (15) and approach 

rate (24), we can get the tracking virtual control law of the position 

subsystem.  

2 1

1

1 1

2 1

2 1 1

2

1 5

3 3
1 2

ˆ( ( )

(1 )
)

( ) ( )

T

x d

p p

x x x x

u A W h x x

e p e

p

k s sign s k s sign s





−

− −

= − +

+
−

− −

  (57) 

2 11

1 2 2 1
ˆ ( ( )

ˆ ˆ )

p

z x

W sp z h x

W W 

 

 

−−=

− −
          (58) 

Where , ,
T

x x y zu P P P =   is the virtual control input on the 

position of the quadrotor UAV, and
1Ŵ  is the fixed-time adaptive 

law. 

Theorem 3: In the same way, we can get the virtual controller of the 

attitude subsystem. Then we have 

2 1

1

2 2

2 1

2 1 1

2

1 5

3 3
1 2

ˆ( ( )

(1 )
)

( ) ( )

T

p d

p p

p p p p

u B W h x p

e p e

p

k s sign s k s sign s





−

− −

= − +

+
−

− −

      (59) 

2 11

2 2 4 2
ˆ ( ( )

ˆ ˆ )

p

z x

W sp z h x

W W 

 

 

−−=

− −
            (60) 

Where
1 1 2 1 3 1 4 1, , ,d d d dz x x z x x z p p z p p= − = − = − = − is the 

tracking error function of the system. , ,
T

pu u u u  
 =   is the 

control input on the attitude of quadrotor UAVs, and 
2Ŵ  is the 

fixed-time adaptive law. 

Remark 3: According to the proof in the previous section, it is easy 

to draw the same conclusion, so to avoid repeated descriptions, it 

will not be given. 

4. Result 

In this section, simulations are performed to verify the 

effectiveness of the proposed fixed-time adaptive NN sliding mode 

control for uncertain nonlinear systems. And the algorithm is 

applied to a quadrotor UAV, to verify the effective performance and 

anti-interference ability of the algorithm in complex nonlinear 

systems. In the comparative experiment, the most critical attitude 

robustness in the work of a quadrotor UAV was verified. 

4.1 Simulation and verification of uncertain nonlinear systems 

For the nonlinear system (1), the reference trajectory is given as 

sin( )dx t=  

The controller and network parameters are selected as 

1 2

1 2

3000, 0.1, 50, 3

3 5
, , 20, = 2

2 3
z x

k k

p p b

 

 

= = = =

= = = =
 

1( ) cos( ), 1, 0.1sin( )f x x dt t=  = =  

The initial conditions of the system are 

1 1 20.5, 0x x x= = =  
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Fig.5 Position tracking control and error. 

 

Fig.6 Speed tracking control and error. 

 

Fig.7 Trajectories of NNs 

Fig.5-Fig.7 verify the effectiveness of the algorithm in dealing with 

uncertain nonlinear systems, and the maximum time to reach system 

stability is
max 5.742xT = .  

4.2 Simulation of tracking control of Quadrotor UAVs 

In this section, a numerical example is performed to verify the 

tracking control of the quadrotor UAV.  

In simulations B and C, we select the parameters of the 

quadrotor, initial conditions, and reference trajectories

 ( ) ( ), ( ), ( )
T

d d d dx t x t y t z t= and 0d =  of the system are as 

follows 

1 6
2, , 9.8,

5 5

6
, 1.25, 2.5

5

x y z

x x y z

m l g

I I I 

  

  

= = = = = =

= = = = = =

 

3

10( ) 5 1 cos ,5sin ,10 1
10 10

T

t

dx t t t e
  −      

= − −      
        

( ) ( )
2 2 2

sin cos
arcsin

x d y d

d

x y z

P P

P P P

 


 −
 =
 + +
 

 

( ) ( )cos sin
arctan

x d y d

d

z

P P

P

 


+ 
=   

 
 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0.5x y z   = = = = = =  

The position subsystem controller and network parameters are 

1 2 1

2

7
15, 0.1, 50, 1,

3

5
5, = 2, 0.1sin( )

3
z x a

k k p

p b d t

 

 

= = = = =

= = = =，

 

Remark 4. The parameters of the three virtual controllers are the 

same, so we will not describe them. 

 
Fig.8 x  tracks the reference trajectory 

dx ,and the tracking error e . 

 

Fig.9 y  tracks the reference trajectory 
dy  and the tracking error e . 
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Fig. 10 z  tracks the reference trajectory 
dz  and the tracking error e . 

 

Fig.11 3-D space states tracking result 

The attitude subsystem controller and network parameters are 

shown in Table 1. 

Table1. Attitude subsystem controller parameters 

  

1 2 1

2 1 1

7
400, 0.1,

3

5
, 50, 5, = 2

3
z x

k k p

p    

= = =

= = = =

 

  
1 2 1 2

1 1

7 5
400, 0.1, ,

3 3

10, 1, = 2z x

k k p p

   

= = = =

= = =

 

  1 2 1 2

1 1

7 5
400, 1, ,

3 3

10, 1, = 2z x

k k p p

   

= = = =

= = =

 

interference 0.1sin( ), ( , , )id t i   = =  

According to Fig.8-Fig.14, the effectiveness of the algorithm in the 

quadrotor UAV can be obtained, and the fitting effect of the NN is 

shown in Fig.15-Fig.16. The control input of a quadrotor UAV is 

shown in Fig.17.According to Lemma 1, the maximum convergence 

time of three positions max max max 5.513x y zT T T= = =  and the 

maximum convergence time of three postures max 1.7209T = ,

max 5.5232T =  max 5.5232T = can be obtained. According to 

the simulation results, we can find that the system can quickly reach 

stability and has a good tracking effect. 

C．Comparison and verification of the robustness of UAVs attitude 

control 

In this section, the robust performance of two different control 

strategies in quad-rotor attitude control is verified. 

 

Fig.12   tracks the reference trajectory 
d  and the tracking error e . 

 

Fig.13   tracks the reference trajectory 
d  and the tracking error e . 

 

Fig.14   tracks the reference trajectory 
d  and the tracking error e . 
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Fig.15 The trajectory of the NN of the position subsystem 

 

Fig.16 The trajectory of the posture subsystem NN 

 

Fig.17 Controller input. 

Case 1(Fixed-time adaptive NNs sliding mode control) We first 

design a non-singular fast terminal dual-power sliding mode control 

law, and then give a fixed-time RBFNNs control law, and finally 

apply it to the attitude tracking control of the quadrotor. 

Case2(Non-singular fast terminal Super-Twisting sliding mode 

control(Alqaisi et al., 2020):)  

To verify the anti-interference advantage of the fixed-time adaptive 

NNs, the algorithm is used for comparison in the tracking control of 

the quadrotor UAVs. 

When interference 50sin( t)td = is added at 20t  , the 

simulation parameters and results are as follows 

1 2 1

2

7
15, 0.01, 50, 1,

3

5
5, = 2

3
z x

k k p

p b

 

 

= = = = =

= = =，

 

 

Fig.17 Comparison of the results of case1 and case2 . 

 

Fig.18 Comparison of the results of case1 and case2 . 

 

Fig.19 Comparison of the results of case1 and case2 . 

According to the comparison between Fig.17-Fig.19, we get that 

the algorithm has stronger robustness and convergence speed in the 

attitude control of quadrotor UAVs. When 20t  , case1 has higher 

convergence performance than case2 under the same interference 

conditions. After comparison, we can conclude that the algorithm 

proposed in this paper can resist large interference and remain 

stable. 
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5. Conclusion 

In this paper, the fixed-time NN adaptive control technology 

based on the non-singular fast terminal dual-power sliding mode 

algorithm provides a highly robust control strategy for nonlinear 

systems and is verified by an example in a quadrotor UAV tracking 

control for the first time. The state of the weight system of the 

RBFNNs can guarantee convergence in a fixed time, regardless of 

the state. The simulation results show that the fixed-time controller 

proposed in this paper can ensure that the nonlinear system 

converges in finite time when only the controller parameters are 

considered, and it has the superior robust performance. The 

verification of the numerical example shows the effectiveness and 

high robustness of the adaptive fixed-time NN sliding mode control 

method. 
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