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 Despite the fundamental progress achieved so far, a general theory on stability and convergence of switching 

multiple model adaptive control system is still absent. In the bulk of literature, most of the existing works have 

been specific to particular switching function or particular control scheme, while only a few attempts have been 

made towards a unified analysis of the subject from a general perspective, and the results are far from satisfaction. 

Based on the new concept—Virtual Equivalent System, a unified theoretical framework for switching multiple 

model adaptive control system is established in this paper. 
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1. Introduction 

Adaptive control technology was originated from gain-scheduling 

control scheme of high-performance autopilot in 1950s. As a main 

component of adaptive control, model reference adaptive control 

(MRAC) was proposed by Professor Whitaker to solve the autopilot 

control problem. From the viewpoint of theory research of optimal 

control of stochastic system with unknown or time varying 

parameters, self-tuning control (STC) was proposed by Professor 

Kalman, and then connected with applications through the 

pioneering work of Professor Astrom and Professor Wittenmark. It 

has been well-known that MRAC is actually a special class of STC. 

The only difference is that MRAC was first developed for 

continuous-time plants for model following, whereas STC was 

initially developed for stochastic discrete-time plant. 

Multiple model adaptive control (MMAC) strategy was suggested 

in 1990s to improve the transient performance of classical adaptive 

control systems. Up to now, many switching MMAC algorithms 

have been put forward. Generally speaking, there are mainly two 

types of switching MMAC: indirect switching[1-5] and direct 

switching[6-10]. Indirect switching control can also be viewed as 

supervisory control because a supervisory function is used to decide 

when and which controller should be switched. Narendra, K. S. and 

Autenrieth, T. have used this method to improve the transient 

response of adaptive control systems[11-13]. As for direct switching 

control, the choice of when to switch to the next controller in a 

predetermined sequence is based directly on the output of the 

system. Since mid 1980’s, papers about switching MMAC have 

covered continuous time system , discrete time system[14-15], 

nonlinear system[16], stochastic system[17], etc. and there are also 

some successful practical applications in this field. 

Despite the fundamental progress achieved so far, there is still no 

a unified theory on adaptive control (conventional adaptive control 

and multiple model adaptive control)；Here we list some remarks to 

support the viewpoint. 

In spite of 40 years of research, several books and hundreds of 

articles we still lack, in our view, a universally accepted design 

methodology for adaptive control which is based on sound 

theoretical issues and suitable for engineering implementations in 

real-life control systems[18]. 

A good theory should give also good clues to the construction of 

new algorithms. Unfortunately, there is no collection of results that 

can be called a theory of adaptive control in the sense specified[19].  

Despite a significant number of practical applications and 

significant supporting theory, we are still a long way from having a 

full understanding of this important class of control strategies[20]. 

Despite the vast literature on the subject, there is still a general 

feeling that adaptive control is a collection of unrelated technical 

tools and tricks[21]. 

With the help of virtual equivalent system concept[22], we have 

developed two criteria to judge the stability and convergence of 

different switching MMAC algorithms. To a certain extent, these 

criteria are independent of specific control law and parameter 

estimation algorithm, and can thus provide a unified theoretical 

framework for understanding and evaluating different kinds of 
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switching MMAC schemes. 

2. Description of switching MMAC 

The basic architectures of switching MMAC systems are shown 

in Figure 1, which was concerned with continuous time plant in 

state space[12]. Generally speaking, there are three components of a 

switching MMAC system: model set, controller set and switching 

logic or mechanism. With model set ={Mi,i=1,…,N}, we want to 

cover the uncertainty of plant P to be controlled. There is an 

estimated model in . According to each Mi, Ci is designed to 

satisfy some performance index. ={Ci, i=1, …, N} is the 

controller set. There is an adaptive controller in  according to the 

estimated model. Switching mechanism is used to decide when and 

which controller should be switched. 

 

Fig. 1.Switching MMAC[18] 

From analysis point of view, we could use a very simple block 

diagram to represent a switching MMAC system, see Figure 2. The 

essential characteristic of switching MMAC is that the controller is 

time-varying. And the details of controller switching is minor for 

stability analysis. 

yr(k)

C(k) P

y(k)

u(k)

+

-

 

Fig. 2. Simplified Block Diagram of Switching MMAC 

In Figure 2, yr(k)<∞ is the reference input of the closed-loop 

control system. C(k) denotes the time-varying controller of 

switching MMAC. P is the plant to be controlled, which takes the 

form ( ) ( ) ( ) ( )

( )

( )

1 1

1 1

1

1 1

0 1

 

  1   

   

d

n

n

m

m

A q y k q B q u k

A q a q a q

B q b b q b q

− − −

− − −

− − −

=

= + +  +

= + +  +

        (1) 

3. Virtual equivalent system of switching MMAC 

In this section we give three kinds of virtual equivalent systems 

of switching MMAC according to the situations of parameter 

estimates. 

3.1Parameter estimates converge to its real values 

If parameter estimates converge to its real values, i.e. the 

parameters of P, and the switching mechanism switch to adaptive 

controller finally, the time-varying controller C(k) in Figure 2 will 

converge to a certain time-invariant controller C = f(P), if only the 

mapping is continuous. 

f：M→                    (2) 

Then we can construct a virtual equivalent system of switching 

MMAC in the input-output sense; see Figure 3, where Δu(k) is a 

complementary signal and it will play an very important role in the 

analysis. 

0
( )= ( ) ( )=u k u k u k − 𝜙𝑐

𝑇(k)θc(k)-𝜙𝑐
𝑇θc      (3) 

𝜙𝑐
𝑇(k)is the regression vector  

of control signal, generally speaking we have 

𝜙𝑐
𝑇(k)=[y(k),y(k-1), …,u(k-1), …]        (4) 

of course , the number of elements of 𝜙𝑐
𝑇(k) is limited. 

θc(k) and θc are the parameter vectors of time-varying controller 

C(k) and time-invariant controller C respectively.  

Then we have 

Δu(k) = o(||ϕc(k)||)             (5) 

yr(k)

C P

u(k)

+

- u0(k)

+ +
y(k)

Δu(k)

 

Fig. 3.Equivalent System I 

3.2 Parameter estimates converge to non-real values 

If parameter estimates converge to non-real values, denoted by P0 

(vector form θ0), and the switching mechanism switch to adaptive 

controller finally, the time-varying controller C(k) (vector form θc(k)) 

in Figure 2 will converge to a certain time-invariant controller 

C0=f(P0) (vector form θc0), if only the mapping f(.) is continuous. 

Then we can construct a virtual equivalent system of switching 

MMAC in the input-output sense, see Figure 4, where 

0

0

( )= ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ

T

T T T

e k y k k d

y k k d k k d k k d

− −

= − − + − − −

 

     
 (6) 

0 0
( )= ( ) ( )= ( ) ( )- ( )T T

c c c c
u k u k u k k k k −               (7) 

( )T k d−  is the regression vector of parameter estimation, 

( )ˆ k  is the estimated parameter vector, and the corresponding 

transfer function of ( )ˆ k  isPm(k). 

As parameter estimates converge, i.e. 0
( )ˆ k →  , we have

0
( )

c c
k →  , that means 

( )= ( ( ) )
c

u k o k                     (8) 
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yr(k)

u(k)

+

- u0(k)

+ +

y(k)

Δu(k)

C0 P0

+ +

e(k)

 

Fig. 4. Equivalent System II 

3.3 Parameter estimates converge to non-real values 

In this situation, we have to limit the adaptive controller in 

switching MMAC as designed by one-step-ahead strategy[23]. 

Otherwise we cannot have the property of Δu(k) as in equations (5) 

and (8), which is critical to virtual equivalent system method. We 

may still use Figure 3. as the virtual equivalent system of this 

situation. 

4. Main results 

With the help of the virtual equivalent systems of switching 

MMAC, we have the following theorems for different situations of 

parameter estimation. 

4.1 Parameter estimates converge to its real values 

Theorem 1 

If a switching MMAC system has the following properties: 

1) The parameter estimates converge to its real values; 

2) After limited number of switches, the switching mechanism 

switches to adaptive controller finally; 

3) The mapping from estimated parameters into controller 

parameters is continuous; 

4) The controller is well defined such that <C,P> constitutes a 

stable closed-loop system. 

Then the switching MMAC system is stable and convergent. 

Proof.  

Conditions 1), 2), 3) guarantee that the virtual equivalent system 

exists. 

Decompose Figure 1 into two subsystems; see Figure 5 and 

Figure 6. 

 

yr(k)
+

-

C P

u (k) y (k)

 

Fig. 5. Subsystem 1 

+

-

+ +

Δu(k)

C P

0

u  (k)

y  (k)

 

Fig. 6. Subsystem 2 

By superposition principle of linear system, we have 

( )= '( )+ ''( )y k y k y k                  (9) 

( )= ( )+ ( )' ''u k u k u k               (10) 

By condition 4), subsystem 1 is a stable system. Then we get 

( )'y k                         (11) 

( )'u k                         (12) 

As for subsystem 2, it is also a stable closed-loop system. And by 

conditions 1) and 3) we know that equation (5) holds. 

Then we have 

( ) ( ( ) )''
c

y k o k=               (13) 

( ) ( ( ) )''
c

u k o k=                    (14) 

By (9) and (10), it is obvious that 

( )= ( )+ ( )= ( )+ ( ( ) )' '' '
c

y k y k y k y k o k
          (15) 

( )= ( )+ ( )= ( )+ ( ( ) )' '' '
c

u k u k u k u k o k
         (16) 

From now on, we use reduction to absurdity to get our result. 

Suppose the virtual equivalent system is not stable, i.e.y(k)and 

u(k) are both unbounded. Then ( )
c

k  is also unbounded. There 

must exist a subsequence ( )
c

l  that goes to infinity. 

For elements of ( )
c

l , we have 

( )= ( )+ ( )= ( ) ( ( ) )

( 1)= ( 1)+ ( 1)= ( 1) ( ( 1) )

( 2)= ( 2)+ ( 2)= ( 2) ( ( 2) )

' '' '

' '' '

' '' '

c

c

c

y l y l y l y l o l

y l y l y l y l o l

y l y l y l y l o l







+

− − − − + −

− − − − + −

    (17) 

 

( )= ( )+ ( )= ( ) ( ( ) )

( 1)= ( 1)+ ( 1)= ( 1) ( ( 1) )

( 2)= ( 2)+ ( 2)= ( 2) ( ( 2) )

' '' '

' '' '

' '' '

c

c

c

u l u l u l u l o l

u l u l u l u l o l

u l u l u l u l o l







+

− − − − + −

− − − − + −

    (18) 

 

From Lemma 1 (See Appendix), we know that 

( ) ( ( ) + ), 1 2 0, , ...,
c c

l i O l M i I M− = =          (19) 

where  is a limited integer. 

Then we obtain the following inequalities 

2 2 2
( 1) ( 1) ( ( ) )'

c
y l y l o l−  − +             (20) 

 

2 2 2
( 1) ( 1) ( ( ) )'

c
u l u l o l−  − +             (21) 
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2 2
( ) ( )

r r
y l y l=               (22) 

2 2
( 1) ( 1)

r r
y l y l− = −                 (23) 

 

Making sums from Equation (20) to Equation (23) and taking 

Equations (11)-(12) into account, we get 

2

2

( )
0

( )

c

c

l

l





                  (24) 

That is obviously absurd. Then the assumption that the virtual 

equivalent system is unstable can’t hold. 

It means the virtual equivalent system is stable, i.e. 

( )y k                     (25) 

( )u k                       (26) 

Further we have 

( )
c

l                      (27) 

Then Equations (15) - (16) yield 

( ) ( )'y k y k→                      (28) 

( ) ( )'u k u k→                      (29) 

That means the virtual equivalent system is convergent. So, the 

switching MMAC system is stable and convergent. That completes 

the proof. 

5. Parameter estimates converge to non-true values 

Theorem 2 

If a switching MMAC system has the following properties: 

1) The parameter estimates converge, Pm(k) is uniformly 

controllable and the estimation error satisfies. 

( )- ( ) ( )= ( + ( ) ) 0ˆ ,
Ty k k d k o k d− −      (30) 

2) After limited number of switches, the switching mechanism 

switches to adaptive controllerfinally; 

3) The mapping from estimated parameters into controller 

parameters is continuous; 

4) The controller is well defined such that <C0,P0> constitutes a 

stable closed-loop system 

Then the switching MMAC system is stable and convergent. 

Proof.  

Conditions 1), 2), 3) guarantee that the virtual equivalent system 

exists. 

Decompose Figure 4 into three subsystems; see Figure 7, Figure8 

and Figure 9. 

In Figure 8, condition 1) and condition 3) guarantee  

( )= ( ( ) )
c

u k o k                      (31) 

And from the definition of ( )T

c
k  in equation (4), we have 

( ) ( ( ) )+ 0,
c

k O k d M M = −            (32) 

Then Equation (31) and Equation (32) indicate 

( )= ( + ( ) ) 0,u k o k d   −  (33) 

And we also have (see Lemma 2 in Appendix) 

( ) 1 2, , , ...,k d i O k d i i I − − = − − =（ ） （ ）    (34) 

where Iis a limited integer. 

+

-

P0

y (k)yr(k)

C0

u (k)

 

Figure. 7 Subsystem 1 

From Equation (30) of condition 1 and Equation (6), we know 

that in Figure 9. 

( )= ( ( ) ) 0,e k o k d  + −               (35) 

Then we can develop the result of Theorem 2 following the 

similar procedures of the proof of Theorem 1. Details omitted. 

+

-

+ +

Δu(k)

C0 P0

0

u  (k)

y  (k)

 

Figure. 8 Subsystem 2 

+

-

+ +
C0 P0

0

u   (k)

y   (k)

e(k)

 

Figure. 9 Subsystem 3 

4.3 Parameter estimates may not converge 

Theorem 3  

If a switching MMAC system with one-step-ahead adaptive 

controller, has the following property: 

The parameter estimation error satisfies 

( )- ( ) ( )= ( + ( ) ) 0ˆ ,
Ty k k d k o k d    − −        (36) 

2) B(q-1)is Hurwitz stable andb00; 

3) The control signal u(k) exists; 

4) After limited number of switches, the switching mechanism 

switches to adaptive controller finally. 

Then the switching MMAC system is stable and convergent. 

Proof.  

The virtual equivalent system and its decomposition subsystems 

are shown in Figure 3, Figure 5 and Figure 6. 
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First we introduce one-step-ahead adaptive control strategy. 

Rewrite equation (1) in prediction form[23] 

( )= ( ) ( )ˆTy k d k k +                   (37) 

Then one-step-ahead adaptive control signal u(k) is decided by 

( ) ( ) ( )*ˆT k k y k d  = +                   (38) 

y*(k+d)is identical to yr(k+d). Equation (39) means 

1 2 2

1

1
( )= [- ( ) - ( 1)-...- ( 1)- ( 1)

-...- ( 1)+ ( )]*

ˆ ˆ ˆ ˆ
ˆ

ˆ

n n

n

n m d

u k y k y k y k n u k

u k m d y k d

   




+

+

+ +

− − − + −

− − + +

(39) 

Accordingly 

0 1 2 2

1

1
( )= [- ( ) - ( 1)-...- ( 1)- ( 1)

-...- ( 1)+ ( )]*

ˆ ˆ ˆ ˆ

ˆ

n n

n

n m d

u k y k y k y k n u k

u k m d y k d

   




+

+

+ +

− − − + −

− − + +

(40) 

From Equations (39) and (40), we have 

1 0 1 1 1 1 1
( )- ( )= ( ) ( )+( ) ( )'ˆ ˆ

n n n n n n
u k u k u k u k u k     

+ + + + + +
− −  (41) 

Further, it is obvious that 

1 0 1 1 1

1

1

1

1
( )= [ ( )- ( )+( - ) ( )]

1
= [ ( ) - ( ) ( )]

1
= [ ( )- ( ) ( )]

ˆ ˆ

ˆ

ˆ

n n n n

n

T T

n

T

n

u k u k u k u k

k d k d k

y k k d k

   


   


 


+ + + +

+

+

+



− −

−

   (42) 

Here, θn+1is b0 in Equation (1). 

Based on condition (1), we obtain 

( )= ( + ( ) ) 0,u k o k d   −             (43) 

The remained procedures are similar to the proof of Theorem 1. 

Details are omitted. 

Note: in reference[23], it givesthe following property under some 

certain conditions. 

( )- ( ) ( 1)= ( + ( ) ) 0ˆ ,
Ty k k d k o k d    − − −  (44) 

and 

( )- ( ) 0ˆ ˆlim
t

t t k 
→

− →              (45) 

Then we know that Equation (36) holds. 

5. Concluding remarks 

Based on virtual equivalent system concept methodology, we 

developed some general criteria for judging the stability and 

convergence of switching MMAC systems in which the adaptive 

control strategy and parameter estimation algorithm are arbitrary to 

some extent. Thus we argue that virtual equivalent system could 

provide a unified theoretical framework or a general theory for 

switching MMAC system. In the future research work, we will 

focus on extending multiple model adaptive control (combining 

switching strategy and weighting strategy) to solve the fault-tolerant 

control of complex control problems, linear time-varying control 

problem, and nonlinear control problem. 

The advantage of switching MMAC is the fastness in response to 

the system parameter change, but its drawback is the robustness to 

the disturbances and noises; and the advantage of weighted MMAC 

is the smooth of adaptive process under noise or disturbance, but its 

drawback is the slow response to the system parameter change. In 

the future, we have a plan to make use of advantages of these two 

schemes. For this goal, an MMAC scheme based on 

switch/weighting intelligent fusion algorithm will be considered. 

The corresponding research work are as follows: 1) 

switching/weighting intelligent fusion algorithm against 

disturbances and noises of the system; 2) stability and convergence 

analysis of the corresponding closed-loop control system. To be 

specific, the switching/weighting intelligent fusion MMAC will 

adopt weighting algorithm to unify the switching function and 

weighting function to construct a new type of multiple model 

adaptive control system. 
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APPENDIX 

Lemma 1. 

For the regression vector ( )T

c
k  as defined in Equation (4), we 

have the following estimation result: 

( ) ( ( ) )+ 0 ; =1,2,...,,
c c

l i O l M M i I− =      

where  is a limited integer. 

Proof: 

Suppose 

1 2 3
( )=[ ( ), ( 1),... ( ), ( ), ( ),... ( )]T

c r r
k y k y k y k s u k s y k y k s− − − −  

Then we have 

1 2 3
( )=[ ( ), ( 1),... ( ), ( 1),... ( ), ( )]T

c r
l y l y l y l s u l u l s y l s− − − − −  

1

2 3

( 1)=[ ( 1), ( 2),... ( -1), ( 2),...

( -1), ( 1),... ( 1)]

T

c

r r

l y l y l y l s u l

u l s y l y l s

− − − − −

− − − −


 

By components comparison between ( )T

c
l  and ( )T

c
l , we 

obtain 

2 2 2 2

1

2 2 2 2

2 3

( 1) = ( ) ( -1)- ( )+

( -1)- ( 1) ( -1)- ( )

c c

r r

l l y l s y l

u l s u l y l s y l

− + −

− − + −

 
 

Because |yr(k)|<M,0 <M <∞, then we get 

2 2 2 2

1 2
( 1) ( ) ( -1)+ ( -1)+

c c
l l y l s u l s M−  + − −   

Generally speaking, we have 

s1 n, s2m 

From Equation (1), we know that  

 

 

 

 

 

 

 

 

 

 

 

1 2

1 2

1 2

2 2

1 2

2 2

1 1 2 2 2 2 2

1 1 1 22 2

1 1

( -1)+ ( -1)

{ ( -1) ( -1)}= ( ( ) )
l s l s

l s l s c

l s l s

y l s u l s

a b
a y l s b u l s O l

a b

− − − −

− − − −

− − − −

− − 

+
− + − 

 

Then we have 

( 1) ( ( ) )+
c c

l O l M− =   

And similarly, for limited integer , we can get 

( ) ( ( ) )+ 1 2, , , ...,
c c

l i O l M i I− = =   

That completes the proof of Lemma 1. 

Lemma 2.  

For the regression vector ( )T k d−  as defined in Equation (6), 

we have the following estimation: 

( ) ( ( ) ), 1 2, , ...,k d i O k d i I− − = − =   

where  is a limited integer. 

Proof: 

The procedures of the proof are similar to that of Lemma 1. Thus 

details are omitted here to save space. 
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