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 Based on the basic mathematical features of mixed-integer programming, the problem of slow convergence and 

low solution quality is found in most of the algorithms based on the basic mathematical features of mixed -integer 

programming and the practical application of the existing solution theory. On this basis, we further analyze the 

adaptability of existing Lagrangian relaxation algorithms to large-scale mixed-integer programming problems, and 

evaluate the advantages and disadvantages of different iterative strategies based on Lagrangian relaxation 

framework in terms of the stability, convergence and solution quality of the algorithms, and confirm the 

superiority of Lagrangian relaxation algorithms for solving large-scale mixed-integer programming. 
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1. Introduction 

A mixed-integer programming problem is an optimization 

problem in which some of the decision variables must be integers, 

i.e., an optimization problem that optimizes a multivariate function 

with integer variables subject to a set of equations or inequalities. 

According to its model and characteristics, it can usually be divided 

into linear mixed-integer programming and nonlinear mixed-integer 

programming. The difficulty of solving nonlinear mixed-integer 

programming problems is much greater than that of linear 

mixed-integer programming problems, so this paper focuses on the 

solution of large-scale linear mixed-integer programming problems. 

Among them, the linear mixed integer programming problems have 

the following forms. 

min𝑐𝑇𝑥 + ℎ𝑇𝑦 （1） 

S.t. 𝐴𝑥 + 𝐺𝑦 ≤ 𝑏 

𝑥 ∈ ℤ+
𝑚, 𝑦 ∈ ℝ+

𝑛  [1] 

The mixed integer programming problem can solve the 

optimization problem of discrete variables, and it has a wide range 

of applications--the model has penetrated into most research fields 

such as engineering technology research, social sciences, and 

economics research. Especially for large-scale combination 

optimization problems such as production scheduling problems, 

electromechanical combination optimization and transportation 

network optimization problems, the mixed integer programming 

model can commendably describe the characteristics of such 

questions, and the calculation technology is simple and has strong 

applicability. In ordinary daily life, the mixed integer programming 

model can also solve the problem of overall arrangement of daily 

work and improving work efficiency. Therefore, the study of 

large-scale mixed integer programming models has pretty practical 

significance. However, with the in-depth research in various fields 

of science and technology, the research content is more specific and 

detailed, and the decision variables and constraints of the mixed 

integer programming model are also more complicated and 

calculation difficult. This requires some special methods to solve 

such problems. Next, this article will introduce several commonly 

used mixed integer programming optimization algorithms and their 

improved algorithms.[2] 

2. Introduction to existing mixed integer programming 

optimization problem methods 

Since Cook [3] introduced the concepts of NP and complete NP in 

1971, the mixed integer programming problem has been extensively 

studied, and it has three main phases as follows. 

2.1 Precise algorithm 

The exact algorithm has been extensively studied in the past 

decades, and its core idea is to solve mixed-integer programming 

optimization problems using fast exponential-time algorithms, 

which are essentially exponential-level violent search algorithms. [3] 

This algorithm is usually applicable to small-scale mixed integer 

solution problems at around 10 nodes, and the more complex the 
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problem, the longer the running time of the exact algorithm, and so 

far it still has not broken the upper bound of 2n
 on running time [3]. 

For the NP- 
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Fig. 1 The relationship between bender decomposition and Dantzig-Wolfe decomposition 

-hard problem, Impagliazzo et al [5] pointed out that sub-exponential 

algorithms do not exist. Although the solution scale of the exact 

algorithm is small, the final solution it seeks must be optimal, and 

the common exact algorithms are the cut-plane method and the 

branch-and-bound method. 

（1）Benders decomposition 

The Benders decomposition was proposed by Jacques F. Benders 

in 1962 [4] and is commonly used to solve extreme value problems 

containing integer and continuous variables. The basic concept is to 

fix the values of the integer variables (complex variables) and 

simplify the optimization problem to obtain a general linear 

programming problem (generally called subproblem). The 

subproblem takes the complex variables as parameters and uses the 

cut-plane method to find the extreme values of the main problem 

and the set of values of the covariates of the general linear 

programming problem (usually called the subproblem) containing 

feasible solutions. That is, only a small number of constraints are 

considered at the beginning for the master problem, and the natural 

cut-plane clusters containing the above-mentioned set of 

characteristics are derived by solving the dual problem [5] until the 

optimal solution is approximated. Moreover, this part of the 

constraints may have significant "diagonal block structure", as 

shown in Figure 1. 

（2）Branch delimitation method 

The idea of branch-and-bound method comes from binary trees, 

and its kernel lies in "branching" and "bounding". The "branching" 

is similar to the framework of "divide and conquer": the algorithm 

takes the necessary constraints and divides the integer mixed 

programming problem into the original problem and the linear 

programming problem without integer constraints, and adds 

additional conditions to the non-integer solutions of the linear 

programming problem without integer constraints. In order to form 

two branches (i.e. two subproblems), additional conditions are 

added to the adjacent integer solutions of non integer solutions of 

linear programming problems without integer constraints. The 

feasible solution space of the two branches can contain all the 

feasible solutions of the original objective function.[9] When a linear 

programming problem without integer constraints does not meet the 

integer constraints of the original problem, then its optimum must 

be the boundary value of the optimum of the original problem, 

while any feasible solution of the objective function is its boundary 

value. [6] 

（3） Dantzig-Wolfe decomposition (DW decomposition) 

The essence of DW decomposition is the column generation 

algorithm, and the DW decomposition is obtained by flipping the 

above Benders decomposition. The same as Benders decomposition 

is that DW decomposition puts complex constraints in the main 

problem and simple constraints in the subproblem constraints, but 

unlike Benders, DW decomposition reduces the constraints and 

increases the variables of the main problem by using the requested 

poles as the base variables of the main problem. 

2.2 Approximation algorithm 

Approximation algorithms are the approximate optimal summary, 

which require some techniques such as greedy strategy, restriction, 

division, cut-off, and relaxation to solve the problem according to 

the specific problem. This type of algorithm has a limit on the size 

of the solution and the results obtained are not optimal. [7] 

（1）Forbidden search algorithm 

The forbidden search algorithm is a stochastic search algorithm [8]. 

The forbidden search algorithm constructs a taboo table during the 

search process to store the found locally optimal solutions, using the 

pardon criterion that the forbidden solutions with promising 

excellent results are pardoned, which avoids falling into local 

optimum solutions and gains more search space [9]. 

（2）Greedy algorithm 

The greedy algorithm is a type of optimal search algorithm and a 

local search algorithm. Its core is to use the method of constructing 

the optimal solution step by step, that is, to make an unchangeable 

and optimal decision to a certain extent at each stage. The criteria 

that determine the assignment and selection of variables at each step 

are called greedy criteria, also known as greedy factors [10] . The 

solutions obtained by the greedy algorithm are usually locally 

optimal, and the global optimal solution can only be obtained by 

repeated search of multiple initial solutions [11]. 

2.3 Heuristic algorithm 

Different from the above-mentioned algorithms, heuristic 

algorithm is a parallel processing algorithm designed based upon 

the phenomena and properties of biology, physics and artificial 

intelligence, such as simulated annealing algorithm, ant colony 

algorithm, artificial neural network algorithm, etc. Heuristic 

algorithms have been widely used in combinatorial optimization 

problems because they do not require problem specificity, global 

optimality, and generality [12]. 

（1）Simulated annealing algorithm 

Because the annealing process of solids is similar to the 

combinatorial optimization process, research scholars introduced 

the principle of annealing of solids into the study of combinatorial 

optimization [13][14]. Similar to the annealing principle of solids, the 

simulated annealing algorithm first sets a large initial solution and 



Y. Chen et al. / IJAMCE 4 (2021) 88-99 

 

the initial value of the control quantity (the higher temperature is 

taken as the initial temperature); iteratively calculates, compares the 

gap of the objective function, gradually makes the value of the 

control parameter smaller (in the process of decreasing the 

temperature parameter), and uses the sudden jump property of 

probability to find the best answers of the original problem in the 

solution space. The simulated annealing algorithm is a stochastic 

optimization-seeking algorithm with a serial structure, which can 

effectively avoid the problem of falling into local minima and 

converging to local optima [15].  

（2）Ant colony algorithm 

A population-based heuristic bionic algorithm, the ant colony 

algorithm, was proposed by Dorigo Macro et al. by simulating the 

behavior of ant colonies in the biological world [16]. Information is 

transferred and exchanged between individual ants through 

pheromones, and ants prefer to move in the direction of high 

concentration of that substance, i.e., the more ants pass on a certain 

path, the higher the probability that the path will be chosen by the 

later. Similar to the movement of ants, the ant colony algorithm 

continuously adjusts the structure of candidate solutions based on 

known information in the adaptation phase; in the collaboration 

phase candidate solutions exchange information and use the 

evolutionary process of the population composed of candidate 

solutions to produce the optimal solution [17]. This algorithm is 

highly applicable to complex optimization problems such as TSP 

and QAP, but it also suffers from slow convergence, long search 

time, and limitation by local optimal solutions [16]. 

（3）Artificial neural network algorithm 

Artificial neural network algorithm is an algorithm for parallel 

processing by simulating the mathematical model of a neural 

network with multiple neurons that can be connected with tuned 

connection weights [16]. The artificial neural network algorithm is 

essentially a multi-level processing system: the input data enter 

from the input layer, forward and backward propagation is 

performed in the implicit layer, and the results are output from the 

output layer [19]. It has massive parallel processing, distributed 

information storage [18] good adaptability and strong learning ability 

for large-scale mixed integer programming optimization problems. 

The convergence speed and the quality of the optimal solution of 

the artificial neural network algorithm are directly linked to the 

selection of the algorithm parameters, while a better formula for 

parameter selection has not been given yet. 

The exact algorithms can be classified into three types: Benders 

decomposition, branch-and-bound, and Dantzig-Wolfe 

decomposition. From a global perspective, the Benders 

decomposition algorithm has a small global gap and is easy to 

obtain the optimal solution. However, its variables must be clearly 

partitioned; the optimal solution is tested until an optimal solution is 

obtained that satisfies all constraints. For branching delimited 

problems, it has good adaptability to pure integer problems and 

mixed integer programming problems. However, the time and space 

complexity of the algorithm is 2n
 at a time. for the Dantzig-Wolfe 

decomposition, it is suitable for solving some mixed integer 

programming problems with a specific structure. However, there is 

little related theory in China. 

Among the approximation algorithms, the forbidden search 

algorithm has a strong local development ability and faster 

convergence speed, and the greedy algorithm has a high quality of 

local optimal solutions. However, the search results of the forbidden 

search algorithm completely depend on the initial solution and 

domain mapping relationship, and the global development ability is 

weak. The greedy algorithm also has some problems, such as weak 

global exploitation ability, and the results may not be optimal 

solutions. 

For heuristic algorithms, we can discuss the advantages and 

disadvantages of the following three algorithms. The simulated 

annealing algorithm has high efficiency, good parallelism, good 

robustness and other good performance. However, it is highly 

dependent on the initial value and easy to sink into local optimal 

solutions. The ant colony algorithm has effective robust and strong 

global search capability, but its population diversity and 

convergence speed are contradictory, and it is easy to be trapped in 

the local optimal solution and difficult to exit from the local optimal 

solution. For artificial neural network algorithm, it has strong fault 

tolerance, strong self-learning and self-adaptive ability. However, its 

slow convergence speed and strong dependence on data cannot 

explain the feasibility of the optimal solution. 

Based on the above analysis, this paper summarizes the solution 

methods of mixed integer programming problems. The comparative 

analysis of various algorithms shows that the current solution 

methods of large-scale mixed integer programming are 

characterized by the difficulty of getting out of local optimum 

solutions, strong data dependence, incompatible convergence speed 

and solution quality. Therefore, how to avoid local optima and 

improve the quality and operational efficiency of the solution 

becomes an urgent problem to be solved. 

3. A Rasch relaxation method for solving large-scale 

mixed-integer programming problems 

3.1 Model optimization under the Rasch framework 

In 1970, Held.M was the first to successfully apply the 

Lagrangian relaxation algorithm to compute the postman problem 

and the minimal tree problem. In 1974, Geoffrion et al. named this 

Lagrangian relaxation-based algorithm Lagrangian Relaxation. 

1974, Held.M described the subgradient method for Lagrangian 

multipliers which provides a good solution for the calculation of the 

Lagrangian multiplier [20].  

Lagrangian relaxation algorithms, agent relaxation algorithms 

and pairwise relaxation algorithms are often used to provide a 

suitable theoretical lower bound (upper bound) for solving the 

minimization (maximization) problem: in general, Lagrangian 

relaxation algorithms are used to solve a suitable theoretical lower 

bound for solving the minimization problem; to solve the 

maximization problem, the maximization problem is first 

transformed into a minimization problem and then solved by 

Lagrangian relaxation algorithms. The essence of the Lagrangian 

relaxation algorithm is to reduce the number of constraints by 

changing the objective function but not changing its linearity, and 

the objective function is always linear during the whole process. In 

other words, the Lagrangian relaxation algorithm treats a large-scale 

mixed-integer programming problem as a series of simple 

subproblems combined by boundary constraints. Using this feature, 

the Lagrangian relaxation algorithm linearly relaxes away (removes 

some of the hard constraints) from some NP-hard combinatorial 

optimization problems by introducing a multiplier (i.e., Lagrangian 

multiplier) and absorbing it into the original problem's objective 

function to simplify the problem. At this time, the selection of 

Lagrange multipliers, the iterative approach used and the correction 

shortening used for different constraints will  
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Fig. 2 Basic flow chart of Lagrange relaxation algorithm 

not only reflect the scale of violation of the current solution to the 

hard constraints, but also affect the quality of the solution. In turn, 

some effective algorithms such as sub-gradient optimization 

algorithm should be used to iteratively update the Lagrange 

multipliers continuously to accelerate the convergence speed, find 

the optimal solution or near-optimal solution, and improve the 

solution quality. (The basic flow chart of Lagrangian relaxation 

algorithm is shown in Figure 2.) 

The Lagrangian relaxation algorithm has the following 

definitions and theorems. 

Definition: If the problem 𝑍𝑅 = min
𝑥∈𝑆𝑅

𝑍𝑅(𝑥) is a relaxation of an 

integer programming, then it satisfies the following two properties. 

𝑆 ⊆ 𝑆𝑅 , 𝑆𝑅  denote a set of solutions; . 

𝑐𝑇𝑥 ≥ 𝑍𝑅(𝑥),∀𝑥 ∈ 𝑆 , 𝑍𝑅(𝑥) are real functions; [21] 

（1）Choose a relaxation strategy to decompose the problem and 

solve it 

Depending on the characteristics of the combinatorial 

optimization problem being solved, the complex constraints are 

defined differently. Therefore, it is necessary to choose the 

appropriate constraints for relaxation according to the specific 

conditions of the objective function. After the relaxation of the 

complex constraints, the feasible solution range will naturally be 

expanded while the original objective function is reduced in 

computational difficulty. Based on this, we should reasonably define 

the original objective function Lagrangian relaxation problem so 

that the decomposed subproblem is easier to solve by reducing the 

constraints of the original objective function while maintaining 

linearity. 

After defining the original objective function Lagrangian 

relaxation problem, a suitable iterative algorithm is chosen to solve 

the optimal solution. In this process, it is worth noting that: since 

the iterative process is an infinite approximation to the optimal 

solution, we may only get the approximate optimal solution; the 

optimal solution of the relaxed subproblem may be contrary to the 

constraint that is absorbed into the objective function. 

（2）Definition of the dual problem and the Lagrange multiplier 

update solution 

As mentioned above: after the relaxation of the original objective 

function, the space of feasible solutions will be expanded; the 

optimal solution of the subproblem is not necessarily the optimal 

solution of the original combinatorial optimization problem; the 

optimal of the subproblem is not feasible. In order to avoid these 

potential problems and to better approximate the optimal solution of 

the original combinatorial optimization problem, the Lagrangian 

dual solution is usually used instead of the original solution method. 

First, given a combinatorial optimization problem, i.e., the 

original problem (PP),assume that its problem description takes the 

form of 

(PP)  𝑍𝑃𝑃 = min𝑐
𝑇𝑥  （2） 

S.t.𝐴𝑥 ≤ 𝑏 

𝑥 ∈ 𝑧+
𝑛 

The corresponding relaxation problem (LP) is. 

(LP) 𝑍𝐿𝑃 = min𝑐
𝑇𝑥 +  𝜆(𝐴𝑥 − 𝑏) （3） 

𝑥 ∈ 𝑧+
𝑛 , 𝜆 > 0 

The dyadic problem (DP) is. 

(DP) 𝑍𝐷𝑃 = max{min𝑐
𝑇𝑥 +  𝜆(𝐴𝑥 − 𝑏)} （4） 

𝑥 ∈ 𝑧+
𝑛 , 𝜆 > 0 

The objective function expression of the dual problem has the 

following relationship with the objective function of the original 

problem: 

PP: 𝑍𝑃𝑃 = min 𝑐
𝑇𝑥 (5) 

DP: 𝑍𝐷𝑃 = max{min𝑐
𝑇𝑥 +  𝜆(𝐴𝑥 − 𝑏)} （6） 

From the above comparison of the objective function value 

max(min𝑐𝑇𝑥) and min{max[min 𝑐𝑇𝑥 +  𝜆(𝑏 − 𝐴𝑥)]},it perceives 

that the objective function value of PP is the maximum  of the DP 

objective function, which is a "maximum-minimal" problem; the 

objective function value of DP is the minimum value of the PP 

objective function, which is "minimum-maximum" problem. (As 
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shown in Figure 3 below) 

At the same time, through the above relations, the following 

theorems can also be obtained: 

Weak duality theorem: as described in the following equation, the 

solution of the subproblem is smaller than that of the original 

problem but larger than that of the dual problem. The difference 

between the value of the original problem and the value of the dual 

problem is called the absolute pairwise gap of the feasible solution. 

𝑍𝐷𝑃 ≦  𝑍𝐿𝑃 ≦  𝑍𝑃𝑃 (10) 

Pairwise optimality theorem: if the absolute pairwise gap is 0 and 

the point where the maximum value of the objective function 

coincides with the minimum value of the pairwise problem, then the 

solution of the subproblem at this point is the optimal solution of 

the original-pairwise problem. (As shown in Figure 4 below) 

3.2 Iterative optimization algorithm 

Transforming the constraints into new general function residual 

conditions by introducing Lagrange multipliers to reduce the 

constraints of the original problem is the basic idea of the Lagrange 

multiplier method. [22][23] The accuracy of approximating the best 

answer depends on the precision of the multiplier selection, 

iterations, the selection of the optimal solution and feasible 

solutions to optimization problems. How to find the update 

direction of the Lagrange multiplier in a short time, simultaneously 

reduce iterations to gain on the optimal boundary has become an 

important issue that affects the efficiency of the Lagrange relaxation 

algorithm. 

Later, some researchers combined the penalty function outpoint 

method and the Lagrange multiplier method, i.e., the Lagrange 

multiplier is introduced under the construction of the penalty 

function to construct the augmented Lagrange function. The 

augmented Lagrangian algorithm approximates the constrained 

optimal point of the original objective function by adjusting the 

penalty factor and the Lagrangian multiplier to derive an 

approximate optimal solution in terms of the convergence criterion 

[24]. 

（1）Subgradient descent method 

The subgradient algorithm was first proposed in the Soviet Union 

in the 1960s [25]. The subgradient algorithm is essentially an 

improvement of the gradient descent method, which can handle a 

larger range of non-derivative convex functions efficiently 

compared to the gradient descent method. Define the subgradient as 

follows. 

( ) ( ) ( )0 0| , , :T nf g f x f x g x x x domf f R R =  + −   →｛ ｝ 

 (7) 

Similar to the definition of gradient, if 𝑓: 𝑅𝑛 → 𝑅 is a convex set 

defined in a Euclidean space ℝ𝑛, then the vector 𝑣 in that space is 

called the subgradient of the function 𝑓(𝑥) at point 𝑥0. The set of 

all subgradients is called the subdifferential 𝜕𝑓(𝑥0). Since the 

subgradient obtains the most equivalent for any convex or 

nonconvex function 𝑓(𝑥) at the point 𝑓(𝑥): 

𝑓(𝑥∗) = min
𝑥
𝑓(𝑥) ⇒ 0 ∈ 𝜕𝑓(𝑥∗) (8) 

Namely , 𝑥∗ is the optimal one when and only when 0 is an 

element of the subgradient set of 𝑓(𝑥∗). Therefore, the subgradient 

algorithm can be used to solve the large-scale mixed integer 

programming problem well. The basic mathematical thought of the 

subgradient algorithm is to replace the gradient with the subgradient, 

and use the negative direction of a subgradient as the search 

direction in each iteration to select the appropriate step size and 

compute the next iteration point. Suppose the number of iterations is 

𝑘 and the step length is 𝑠𝑘. , the subgradient method is used to 

update the multiplier. 

𝜆𝑘+1 = 𝜆𝑘 + 𝑠𝑘𝑔𝑘 （9） 

where 𝑔𝑘 determined by the original problem and multipliers: 

𝑔𝑘 = 𝑔(𝜆𝑘) = 𝐴𝑥(𝜆𝑘) − 𝑏 = ∑ 𝑎𝑖𝑥𝑖(𝜆
𝑘) − 𝑏𝑛

𝑖=1  （10） 

By theorem : 0 ≤ 𝐿∗ − 𝐿𝑘 ≤ (𝜆∗ − 𝜆𝑘)𝑔(𝜆𝑘) , it can be deduced 

that the step size satisfies. 

0 ≤ 𝐿∗ − 𝐿𝑘 ≤
2(𝜆∗−𝜆𝑘)

||𝑔𝑘||
2  （11） 

From this, the domain of feasible solutions of the original 

function can be found as 

 𝑥𝑖(𝜆
𝑘) = arg min

𝑥𝑖
𝑛≤𝑥𝑖≤𝑥𝑖

𝑚
[𝐽𝑖(𝑥𝑖) + (𝜆

𝑘)𝑇(𝑎𝑖𝑥𝑖)] （12） 

However, the sub-gradient algorithm does not have an explicit 

method for step selection (step size and search direction) and does 

not guarantee that the cost function is monotonically decreasing at 

each change. Moreover, due to the Markov property of the 

subgradient algorithm, [26][27] the current subgradient has no memory 

of historical gradients. Therefore, it is highly susceptible to 

oscillations and slow convergence when using sub-gradient to find 

the best. 

From the perspective of step selection criterion, there are several 

commonly used step criteria such as constant-value step, decreasing 

step, divergence step, Polyak step, and dynamic step. The constant 

step criterion is simple in form, but the function value converges to 

a constant only at the iteration point. The multipliers under the 

divergent and decreasing step criterion converge to infinity while 

iteration process goes on , i.e., the subgradient iteration algorithms 

based on these two step convergence criteria are not linearly 

convergent and do not converge fast. The subgradient algorithm 

based on the Polyak step size criterion is linear, but it is highly 

dependent on the optimal solution of the objective function, which 

is not conducive to its generalized use. Therefore, Goffin et al  [28] 

proposed a dynamic step criterion based on the Polyak step criterion. 

Compared with the Polyak step criterion, the improvement of the 

dynamic step criterion is that it obtains better convergence by 

adjusting the approximation of the optimal value. In addition, in 

order to assure the convergence of the subgradient algorithm, many 

scholars have also proposed the agent subgradient algorithm, 

neighborhood conjugate subgradient algorithm, incremental 
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subgradient algorithm, fuzzy subgradient algorithm, random 

subgradient algorithm, etc. from the perspective of step selection 

criterion and using historical subgradient information. 

Instead of updating the multipliers after a complete iteration cycle, 

the proxy subgradient algorithm updates the multipliers after each 

subproblem is solved. In general, the algorithm avoids oscillations 

by performing multiplier updates in the gradient direction of the 

agent subgradient function, which allows the algorithm to add new 

information as soon as it encounters it. However, the agent 

sub-gradient algorithm uses a more frequent multiplier update 

strategy to fasten the convergence of the algorithm, which further 

increases the original computational complexity. In addition, if the 

starting multiplier is not chosen properly or the iteration step is too 

large, it is highly likely to cause the problem of lower bound 

violation for the agent pairwise [29]. 

Zhao et al [30] introduced the concept of fuzziness into the 

sub-gradient algorithm and proposed an algorithm that uses 

fuzziness to determine the gradient weights, which is usually called 

the fuzzy sub-gradient algorithm. In the fuzzy sub-gradient 

algorithm, it is usually considered that the smaller the difference 

between a certain historical sub-gradient direction and the currently 

obtained sub-gradient direction, the greater the weight in that 

historical sub-gradient direction is considered. Based on the above 

theory, the fuzzy sub-gradient algorithm extracts the weight 

coefficients of historical sub-gradients by using the affiliation 

function in the iteration process, and the result of linear weighting 

of these weight coefficients is used as the new iteration direction, 

which can make full use of all the historical gradient information 

and can better suppress the oscillation phenomenon. However, in 

practical application, the fuzzy sub-gradient algorithm has a certain 

chance to make the iteration step size decrease, and the short-term 

convergence effect of individual algorithms may be poor [31].  

Along the sub gradient direction of the component function, the 

intermediate variables are used to adjust the sub gradient to ensure 

that the variables of each iteration are incrementally carried out for 

several times, that is, the incremental sub gradient iteration method 

is called incremental sub gradient method [32]. Since the iterative 

process of this algorithm involves sub-iterations of component 

functions, the difference in the order of component function 

iterations significantly affects the convergence rate of this algorithm. 

In order to find an optimal iteration order, scholars [33][34] introduced 

"random" into the subgradient algorithm and proposed the 

stochastic subgradient algorithm. It is proved by literature [35][36] that 

the convergence performance of randomly selected iteration order is 

better than that of the algorithm with fixed order of iteration. 

The adjoint subgradient algorithm is an extension of the classical 

subgradient iterative algorithm, which is often used to find two 

non-integrable convex functions and problems. The algorithm 

makes full use of the additive structure of the primal problem in 

Hilbert space and sets the forward gradient step (display step) and 

the backward approximation step (implicit step) to compute the 

function nearest operator. This algorithm generates sequences with 

weak convergence and a more complicated iterative process. When 

the integrable convex function approximation operator is complex 

and the subgradient is simple to compute, the neighboring 

subgradient algorithm can find a more accurate solution [37]. The 

conjugate sub-gradient algorithm generally uses a linear 

combination of historical and present gradients to construct the 

search direction [38], and the previous search direction always 

remains conjugate to the current gradient direction [39]. Every time 

the search direction is determined, the error meter of the direction is 

updated to the minimum, that is, in the process of searching the 

optimal value, each search direction is searched only once. 

Therefore, the conjugate subgradient algorithm has the advantages 

of step convergence, high stability, high requirements for iteration 

termination results, only the previous search direction is required 

for each iteration, small computational memory required, and better 

effect for seeking the solution of large sparse matrices. The spectral 

distribution of the coefficient matrix determines the convergence 

efficiency of the conjugate subgradient algorithm and the 

convergence speed is slower as the eigenvalues are more dispersed 

and the condition number of the coefficient matrix is larger. 

（2）Newton's method 

The original Newton's method is designed to solve second-order 

continuous differentiable convex functions, and its basic idea is to 

do second-order Taylor expansion on the non-smooth function near 

the previous minimax estimate, and then find the current minimax 

estimate, so Newton's method has second-order convergence, and 

the convergence is better than the gradient descent method. One of 

the most important features of Newton's method is the use of 

generalized Jacobi matrix instead of derivatives to solve the 

maximization of the likelihood function or used to solve the 

function zero value. Its iterative formula is as follows. 
1

1 , 0,1,2,...k k K kx x H g k−

+ = −  =  (13) 
1

k k kd H g−= −   
Where kH is the non-singular symmetric Hessian matrix, kg is 

the gradient operator, and kd is the search direction. 

However, the iteration of Newton's method is a fixed-step 

iteration, so Newton's method is not stable in the convergence 

process, and the iteration sequence can diverge when the objective 

function is a non-quadratic function [40-42]. 

In order to ensure that the iteration sequence converges during the 

iterative process, some scholars have modified the Newton method, 

i.e., by setting parameters to let the algorithm perform a linear 

search along the Newton direction to find the next iteration point [43]. 

This iterative algorithm is called damped Newton's method, which 

has the feature of large range convergence, and can obtain the 

globally optimal point. The specific formula is as follows. 

�̅� = 𝑥 + 𝛼𝑝 (14) 

𝑝 = −[𝐹′(𝑥)]−1𝐹(𝑥) 

Where 𝑥 is the historical iterative approximation, and �̅� is the 

present iterative approximation, 𝑝 is the Newton correction, and 

𝐹(𝑥) i s the Jacobi matrix at𝑥 [26]. The parameter𝛼 is the damping 

factor, which ranges from 𝛼 ∈ (0,1]], and𝛼 satisfying. 

‖𝐹(�̅�)‖ = ‖𝐹(𝑥) + 𝛼𝛽‖ < (1− 𝜇𝛼)‖𝐹(𝑥)‖ (15) 

𝜇 ∈ (0,1) 

The damped Newton algorithm also has some drawbacks: the 

search direction is not easily determined and may not be the optimal 

descent direction. When the Hessian matrix is singular, the search 

direction cannot be determined. Also, when the objective function is 

not quadratic, the optimal solution cannot be solved in one iteration, 

and the inverse matrix of the Hessian matrix needs to be solved 

repeatedly, which is not suitable for solving large-scale 

mixed-integer programming problems [44]. 

To solve the problems that the search direction of the damped 

Newton method cannot be determined and the computational 

complexity is large, scholars use the proposed Newton method 

matrix instead of the Hessian matrix to approximate the curvature of 

the objective function and the first-order derivative to construct the 
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objective function. The proposed Newton's method was first 

proposed by Davidon in 1959, and the first result was given by 

Powell in 1971 [45]. The commonly used formulas for the proposed 

Newton matrix are th e Broyden rank-one correction formula, the 

symmetric rank-one correction formula, the DFP correction formula, 

and the BFGS correction formula [46] [47]. Similar to the most rapid 

descent method, the proposed Newton method requires only the 

amount of gradient change to obtain a super linear convergence. 

Based on this, the proposed Newton method is one of the effective 

methods for solving unconstrained, constrained, and large-scale 

optimization problems. Despite the small computational complexity 

of the proposed Newton method and the fast convergence speed of 

the Newton method, when the global convergence of the proposed 

Newton method is not stable, the linear search is not suitable [48]. 

Unlike the Newton method in which the nonlinear equations are 

expanded to Taylor series, the Gaussian Newton method uses Taylor 

series expansions to approximate the nonlinear regression function 

instead, and corrects the regression coefficients several times to 

approximate the best regression coefficients of the original model to 

ensure that the residual sum of squares of the original model is 

minimized. In other words, Gaussian Newton's method is based on 

the original Newton's method by introducing a reduced order 

condition and thus neglecting the second order partial derivatives 
[49]. This approach simplifies the Hessian and second-order matrix 

calculations while still ensuring the original second-order 

convergence, and is one of the classical practices for solving 

nonlinear least squares. In general, the local convergence of the 

Gaussian Newton method is slow or appears to be non-convergent if 

the residuals are not convergent to zero. In addition, if the Jacobi 

matrix is not of full rank, the Gaussian Newton method cannot be 

used to solve the problem. In order to further improve the global 

convergence of Newton's method, another scholar [50] combined the 

trust domain technique with Newton's method and proposed the 

trust domain Newton's method. This algorithm has no positive 

definite requirement for the second-order derivative matrix and can 

obtain better global convergence.  

（3）Augmented Lagrangian multiplier method 

In 1998, Reockafellar and Wets introduced the augmented 

Lagrangian relaxation function to solve optimization problems 

[49][50]. The augmented Lagrangian algorithm transforms a series of 

stationary value problems containing complex constraints into a 

series of unconditional generalized stationary value problems by 

introducing Lagrangian multipliers is the basic idea of the 

Lagrangian multiplier method [51]. In order to ensure the smoothness 

of the objective function even after the relaxation, the non-negative 

constraint of the inequality constraint in the KKL condition [52] can 

be removed theorem and the inequality constraint is redefined to 

obtain the augmented Lagrangian function as follows:[53] 

𝐿(𝑥, 𝜆, 𝜎) = 𝑐𝑇𝑥 −∑{𝜆𝑖𝑐
𝑇𝑥 −

1

2
𝜎𝑖 × [𝑐

𝑇𝑥]2} − ∑ 𝐿𝑗(𝑥, 𝜆, 𝜎)

𝑛

𝑗=𝑚+1

𝑚

𝑖=1

 

𝐿𝑗(𝑥, 𝜆, 𝜎)

{
 
 

 
 𝜆𝑗(Ax − b) −

1

2
𝜎𝑖 × [A𝑥 − 𝑏]

2          (𝜆𝑗 − 𝜎𝑗𝑐
𝑇𝑥 > 0)

1

2

𝜆𝑗
2

𝜎𝑗
                 其它

 

(16) 

Where, 𝜎𝑖 , 𝜎𝑗  is the penalty factor, and, 𝜆𝑖𝜆𝑗 is the Lagrangian 

multiplier. Further, there is the iterative formula as follows. 

𝜆𝑗
𝑘+1 = 𝜆𝑗

𝑘 − 𝜎𝑖
𝑘𝑐𝑇𝑥     (𝑖 = 1,2,… ,𝑚) (17) 

𝜆𝑗
𝑘+1 = max {𝜆𝑗

𝑘 − 𝜎𝑗
𝑘(A𝑥𝑘 − b) } 

When satisfied 𝜎𝑘 = √∑ [𝑐𝑇𝑥]2 +𝑚
𝑖=1 ∑ [min (( A𝑥𝑘 −𝑛

𝑗=𝑚+1

b) ,
𝜆𝑗
𝑘

𝜆𝑗
𝑘)]

2, the iteration stops. 

In essence, the augmented Lagrangian algorithm is an extension 

of the Lagrangian algorithm. Unlike the Lagrange multiplier method, 

the augmented Lagrange algorithm uses the augmented functional 

form to keep the values of the penalty function within a reasonable 

range, i.e., it does not require increasing the penalty parameter to 

positive infinity to ensure convergence and does not cause 

pathological problems [54]. To further improve the accuracy of the 

solution, the Lagrangian function can be minimized unconstrained 

so that the Lagrangian multiplier infinitely approximates the KKT 

multiplier for which extreme values are available. Since the optimal 

KKT multiplier is not available in the practical case, the solution 

may have some deviations. To further improve the accuracy of the 

solution, Di.Pillo and Grippo [55][56] added the first-order necessary 

optimality condition as a penalty term to the original function to 

improve the quality of the solution. Although the convergence of the 

augmentation functions proposed by Di.Pillo and Grippo was better, 

these functions had to use the extremal function, which led to 

integrability at the infinity point. Later, Aiping Jiang and other 

scholars introduced the NCP function into the augmented 

Lagrangian function to solve the problem of integrability of the 

augmented function at infinity [57]. 

3.3 Comparison of different iterative strategies 

Subgradient descent is the most basic and commonly used 

optimization method. However, many literatures pointed out [58-60] 

that the conventional sub-gradient algorithm when the previous 

 𝑠𝑘−1 forms an obtuse angle with the current 𝑠𝑘 (as shown in the 

figure.5), constitutes a sawtooth phenomenon, making no 

significant improvement in the accuracy of the search direction 

from 𝜆𝑘−1  to 𝜆𝑘+1 in two iterations . That is, the closer the 

sub-gradient algorithm is to the target value, the smaller the step 

size is, the slower the search speed is, and the phenomenon of 

"zigzag" oscillation may also appear (as shown in the figure.5). In 

response to this oscillation phenomenon, conjugate subgradient 

algorithm [61], neighborhood subgradient method [62], stochastic 

gradient descent method, batch gradient descent method and other 

algorithms are often introduced at this stage to improve the solution 

efficiency, but due to the limitation of convergence speed and 

solution quality, these iterative algorithms still have limitations for 

mixed integer programming problems with large-scale samples and 

strongly convex bounded conditions. 
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Fig. 5 Sub-gradient descent method search iteration schematic 

The essence of Newton's method is to use 𝑓(𝑥) the first few 

Taylor series to find the best answers of the equation [63]. Newton's 

method overcomes the problem of inefficient convergence of the 

subgradient algorithm and is thus widely used in practical 

mixed-integer programming problems. In essence, compared to the 

subgradient descent method, Newton's method is quadratic 

convergence, and thus Newton's method has good global 

convergence [64]. However, iteration of Newton's method depends on 

the previous step of the sought 𝑓 ,(𝑥) in turn, i.e., each iteration of 

the search requires the solution of the Jacobi matrix of the objective 

function, which has a large computational complexity. To reduce the 

computational complexity of Newton's method, domestic and 

foreign scholars have used algorithms such as the proposed 

Newton's method [65] and the damped Newton's method to reduce 

the dependence on the derivative of the objective function. However, 

such algorithms cannot guarantee the stability and convergence of 

the search process well, e.g., the exact safety factor cannot be found 

when the given search area does not contain the most dangerous 

sliding surface [66].  

The compatibility and loss point asymptotic validity of the 

augmented Lagrange multiplier method [67] effectively overcome the 

numerical instability and slow convergence of the traditional 

Lagrange multiplier method [68]. The augmented Lagrange multiplier 

method adds the quadratic penalty term related to the constraint to 

the original Lagrange multiplier method, and overcomes the 

undesirable effects caused by the quadratic penalty term tending to 

infinity by recursively correcting the Lagrange multiplier. However, 

the accuracy of the augmented Lagrange multiplier method depends 

on the KKL condition that the optimal multiplier is known, while 

the optimal KKL multiplier is unknown in practical mixed-integer 

programming problems, and is no better method for unconstrained 

minimization of infinite degree of augmented Lagrangian function 

[69]. Thus, the multiplicative Lagrangian multiplier method still has 

large limitations in practical applications. 

To address the above problem, the original algorithm can be 

improved by considering the logarithmic method, i.e., adding a 

barrier function to the original objective function. 

𝐵(𝑥) = −∑ ln {−𝑔𝑗(𝑥)}
𝑟
𝑗=1  (18) 

𝐵(𝑥) = −∑
1

𝑔𝑗(𝑥)

𝑟

𝑗=1

 

And a one-step Newton iteration method is used to decompose 

the minimum obstacle function in the Newton direction. We expect 

that in the future this algorithm will be better adapted to large-scale 

mixed-integer programming problems while improving the stability 

and convergence speed of the algorithm. 

4. Application examples 

A typical application of the Lagrangian relaxation algorithm is 

the optimal scheduling of production lines. 

The overall planning problem is described as follows: with 

workpieces 𝑖（𝑖 ∈ {1,2,… , 𝑛}）, a total of 𝑔 production processing 

links, lin k𝑗 has 𝐿𝑗 machines; processing time is 𝑝𝑖𝑗, weight is 𝑤𝑖; 

transportation time of adjacent workpieces is 𝛽𝑖t𝑖,𝑖+1 ; the 

completion time of the 𝑖 workpiece on the 𝑗 processing link is 

denoted as 𝑄𝑖𝑗 ; 𝑥𝑛  is a 0-1 variable, when the 𝑖 workpiece is 

being processed on the 𝑗  processing link at moment 𝑥𝑛 = 1 , 

otherwise 𝑥𝑛 = 0
 [70]  

Min∑ 𝑤𝑖𝑄𝑖𝑗
|𝛿|
𝑖=1  (19) 

The following constraints are satisfied:[71] 

（1） Machine capacity constraint 

The machine capacity constraint means that the number of 

processes that can be processed on a production line per unit of time 

cannot exceed the number of machines available in that time period 

𝐿𝑗 . If a workpiecei Each processing step of the workpiece 

requires 𝑏𝑖𝑗 . Each processing step of the workpiece requires one 

machine. The constraint is as follows. 

∑ 𝑏𝑖𝑗𝑥𝑡𝑖𝑗 ≤𝑖∈𝛿 𝐿𝑗, (𝑡 = 1,… ,𝑇; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… ,𝑚) (20) 

（2） Process priority constraints 

Only when the processing of the 𝑗 process is completed and the 

workpiece 𝑖 is transported to the 𝑗 + 1 process, the 𝑗 + 1 process 

can start processing, and the moment of arrival of the workpiece is 

recorded as 𝛼𝑖. 

𝑄𝑖𝑗+𝛽𝑖t𝑖,𝑖+1 + 𝑝𝑖+1,𝑗 ≤ 𝑄𝑖𝑗+1(𝑗 = 1, . . , 𝑠 − 1; 𝑖 = 1,… ,𝑚) (21) 

𝑔1𝑖 ≥ 𝛼𝑖 , (𝑖 = 1,2,… ,𝑚) 

（3） Processing time constraint 

The machining time constraint is the workpiece 𝑖  in the 𝑗 

process. 

∑ x𝑡𝑖𝑗 = 𝑝𝑚, (𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑠)
𝑇
𝑡=1  (22) 

（4） Variable range constraint: 

x𝑡𝑖𝑗 ∈ {0,1} (23) 

J𝑖𝑗 , 𝑄𝑖𝑗 ∈ {1,2,… , 𝑇} 

Let the number of workpieces 𝑖 = {80,120,150} , the number of 

machines is 3, the number of machining stages is 3, the machining 

time and weights in[1, 𝐿𝑗], obeys uniform distribution . The dynamic 

arrival time obeys a uniform distribution at [1,5] and the two 

adjacent processing stages transport time is [4,6] obeys a uniform 

distribution. The Lagrangian relaxation algorithm is programmed 

using Matlab, and when the program is stopped after running for 

60s, the true pairwise gap is obtained as follows. 

Let the target value of the optimal pairwise gap be 𝐽𝐿 , and the 

best upper bound is 𝜙𝑢, then the resulting agent pairwise gap is 

(𝜙𝑢−𝐽𝐿)

𝐽𝐿
× 100% (24) 

After solving the Lagrangian relaxation algorithm, the difference 

between the true agent-pair gap and the agent gap is in the range of 

 

Fig. 6 Sub-gradient iteration algorithm oscillation phenomenon graph  
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[0.95,2.68] The difference between the agent-pair gap and the true 

agent gap is extremely small, which indicates that the Lagrangian 

relaxation algorithm has a superior convergence performance in 

solving large-scale mixed-integer programming problems from the 

average performance point of view. Meanwhile, the average 

pairwise gap of 12.44% is obtained in 60s computation time, which 

indicates that the Lagrangian relaxation algorithm is extremely 

applicable to the large-scale mixed integer programming problem, 

i.e., the Lagrangian relaxation algorithm can obtain a good solution 

in a shorter time. In addition, as the production scheduling problem 

scales further (e.g., the number of workpieces increases, etc.), the 

pairwise gap increases, but the number of iterations decreases and 

the quality of the solved solution is better than that of other solution 

methods. Therefore, the Lagrangian relaxation algorithm has better 

solving capability compared with the conventional methods for 

solving the production scheduling problem. 

5. Future Outlook 

The Lagrangian relaxation algorithm uses the introduction of 

penalty terms to decompose the large-scale problem into a set of 

simpler subproblems, and then determines the direction of the 

Lagrangian multiplier update according to the degree of constraint 

destruction, coordinates the contradiction between the subproblems, 

and iterates cyclically to approach the optimal solution. Since the 

Lagrangian relaxation algorithm can effectively simplify the model, 

the algorithm has strong modeling ability and is not only applicable 

to discrete optimization problems, but also to solve continuous 

optimization problems. In addition, the Lagrangian relaxation 

algorithm is flexible and can improve a lower bound (upper bound) 

for the optimal solution of the target problem, narrowing the range 

of the search for the optimal solution. Taking production scheduling 

as an example, the Lagrangian relaxation algorithm provides a 

reliable approximate solution while providing more information 

about the entire production environment. When different conditional 

constraints are relaxed, the optimal multipliers reflect the actual 

situation of the constraints: when the machine capacity constraints 

are relaxed, the optimal multipliers reflect the machine operation in 

each time period; when the process constraints are relaxed, the 

optimal multipliers reflect the sensitivity of the production 

environment factors to the processing time. Thus, it is more 

convenient for decision makers to grasp the actual situation and 

make reasonable allocation of resources [72]. Data experiments show 

that the Lagrangian relaxation algorithm converges quickly and can 

obtain a feasible near-optimal solution in a short running time, 

saving decision time. Based on all the advantages, the extension of 

its Lagrangian relaxation algorithm can not only obtain good time, 

resource, and economic benefits in the process industry [73], but also 

simplify the computational complexity and improve the operational 

efficiency in other industries such as distribution network state 

estimation [74], network fault location [75], and multi-sensor 

multi-objective tracking [76]. 

At the present research stage, the Lagrangian relaxation algorithm 

has made good progress for solving large-scale mixed-integer 

programming problems, obtaining many theoretical results and 

achieving good benefits in practical applications. However, there is 

still a large amount of work that needs further depth and 

improvement. 

(1) For how to reduce the complexity of large-scale 

mixed-integer programming problems, the core idea of Lagrangian 

relaxation algorithm is still to start from problem decomposition, 

and rarely consider starting from model simplification directly. If 

some unimportant constraints can be combined, removed and 

simplified, the model can be simplified into a "rough model", and 

the rough solution can be obtained on the basis of the Lagrangian 

relaxation algorithm combined with the theory of sequential 

optimization, and then the optimal solution can be approximated 

step by step according to the need to reduce the complexity of the 

goal function from the root and improve the quality of the result . In 

addition, for the present, the research on the solution methods of 

large-scale mixed integer programming problems under uncertainty 

is still very limited, while in practical application, there are more 

uncertainties such as machine failures. Further, further research is 

needed for the Lagrangian relaxation algorithm for solving 

large-scale mixed integer programming problems under uncertainty 

scenarios [77].  

(2) The Lagrangian multiplier update mechanism needs to be 

improved. In Lagrangian relaxation algorithm obtains a new 

feasible solution by adjusting the multipliers, and then compares 

this new feasible solution with the best feasible solution obtained in 

the previous stage. If the new feasible solution is optimal, the new 

feasible solution is set as the optimal feasible solution, otherwise the 

feasible solution of the previous stage is maintained and the optimal 

solution is approached gradually. However, if a better feasible 

solution is not obtained by adjusting the multipliers several times, 

the angle formed by two adjacent subgradients will keep increasing, 

and the more violent the oscillation is, which slows down the 

convergence of the algorithm. Therefore, a correction to the 

multiplier update mechanism can effectively improve the solution 

efficiency of the algorithm [78]. Although at this stage of research, 

the incremental Lagrangian relaxation algorithm proposed by Peter 

B. Luch [79] and Dangqing [80] makes timely use of known 

information to speed up the update frequency of multipliers, the 

incremental Lagrangian relaxation algorithm is less studied at this 

stage and still needs further research. 

(3) From the analysis of the algorithm examples in the previous 

section, the key to the solution efficiency of the Lagrangian 

relaxation relaxation algorithm lies in the solution efficiency of the 

pairwise problem. Therefore, for some problems with large inherent 

gaps, the range accuracy of the feasible solutions obtained is not 

 

Fig.7 Calculation results 
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high, i.e., the quality of feasible solutions is not high. Therefore, 

how to shorten the pairwise gap based on the existing Lagrangian 

relaxation framework is a proven way to improve the solution 

efficiency of Lagrangian relaxation algorithm. 

(4) In addition, the meaning of the Lagrange multiplier being zero 

is less discussed at this stage, and it is usually assumed that when 

the Lagrange multiplier is zero, the constraint being relaxed by the 

multiplier actually does not work as a constraint. That is, there may 

be three cases: the first case is that the feasible solution possesses 

this property before this constraint; the second case is that the 

original additional constraint is the natural boundary condition of 

the original function [81], i.e., the resident value equation of the 

variational theorem is mistakenly taken as the boundary constraint; 

the third case is that the initial self-varying function has no binding 

effect on the selected value range, i.e., the added constraint cannot 

narrow the self-varying function's The third case is that the initial 

range of the self-varying function is not constrained, i.e., the added 

constraints cannot narrow the range of the self-varying function. For 

the present, the first two cases have been discussed more, while the 

problem described by the third case has only recently been taken 

seriously by scholars. 

(5) The performance theory of Lagrangian relaxation algorithm 

needs to be improved. At present, the efficiency of the Lagrangian 

relaxation algorithm solution is mainly measured by the comparison 

of simulation results, and there is no guarantee for the quality of the 

solution under the worst conditions. In addition, it is also impossible 

to specifically find out the computational complexity and space 

complexity required to increase the accuracy of the near-optimal 

solution from 99% to 99.99%, i.e., the existing analytical theory of 

Lagrangian relaxation algorithm cannot find out the marginal effect 

of the algorithm. To further improve the solution quality of the 

algorithm, the analytical theory of Lagrangian relaxation algorithm 

needs to be improved. 

6. Conclusion 

In this paper, we study and analyze the solution theory of existing 

mixed-integer programming problems, focusing on Lagrangian 

relaxation optimization algorithms for large-scale mixed-integer 

programming. By comparing different algorithms, the general 

defects of the existing solution algorithms are summarized. Through 

the study of existing Lagrangian relaxation algorithms, it is 

concluded that the basic idea is to replace the multipliers of all 

subproblems decomposed by the original objective function with 

the Lagrangian multipliers of a set of subproblems, thus reducing 

the computational complexity of the original objective function. The 

search direction is obtained more easily by calculating the 

approximate solution of the relaxation problem instead of the 

optimal solution at each iteration, thus demonstrating the feasibility 

of applying the Lagrangian relaxation algorithm to solving 

large-scale mixed-integer programming optimization problems. In 

addition, based on the analysis of the existing iterative algorithms of 

Lagrangian relaxation, it can be found that the Lagrangian 

relaxation technique has the following shortcomings: there is a 

"sawtooth phenomenon" in the multiplier updating process; the 

dependence on the previous iteration is too high; the computational 

complexity is large; and the KKL multipliers are not well 

determined. Based on the Lagrangian relaxation framework, further 

research work should be carried out on the basis of Newton's 

method, proxy gradient, genetic algorithm and other optimization 

techniques, including model supplementation, analytical expression 

and optimization strategies[82][83]. 
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