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 This paper investigates the problem of finite-time synchronization for the uncertain complex system. For generic 

networks with unknown dynamics of node and unknown coupling functions, a new controller is designed. Then 

the Lyapunov stability theory is used to prove that the designed controller can ensure that the synchronization state 

is asymptotically stable. The main characteristic of this designed controller is rather simple in form and the 

topological structure of the network can be selected as needed. Finally, Lorenz system is taken as an example for 

numerical simulation demonstration to verify the effectiveness and feasibility of the proposed approach. 
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1. Introduction 

In recent years, complex dynamic networks have attracted the 

attention of many people in related fields. There are various 

complex networks in daily life, and their analysis and control is a 

hot issue in recent years. Complex network is a system structure 

composed of a large number of interrelated dynamic nodes. 

Different nodes represent different individuals in different 

environments. For example, the nervous system can be regarded as 

a large number of nerve cells connected with each other through 

nerve fibers[1][2]. Examples of complex networks include the 

Internet, the World Wide Web, food webs, electric power grids, 

cellular and metabolic networks, etc. There are a large number of 

complex networks in our life. It is of great practical significance to 

study the operation mechanism, dynamic behavior, synchronization 

ability and anti-interference ability of these complex networks in 

order to better manage and make use of these real complex 

networks. 

Among many dynamical behaviors of complex networks, 

synchronization is one of the most valuable research topic. In fact, 

synchronization is a typical collective behavior and basic movement 

in nature. For example, the synchronization of coupled oscillators 

can explain many natural phenomena well. In addition, some 

synchronization phenomena are very useful in our daily lives, such 

as the synchronous transmission of digital or analog signals in 

communication networks[3]-[9]. However, the current research on 

synchronization of complex networks mostly assumes that the 

internal coupling of the complex network is known, that is, it is 

assumed that the internal coupling function of any two nodes in the 

complex network is known, and the structure of the complex 

network is also known. However, in reality, it is difficult to 

determine the coupling relationship and connection structure 

between nodes in a complex network. Therefore, it is more 

meaningful to study the coupling relationship between nodes and 

the unknown connection structure in complex networks. 

Although there have been studies on complex networks with 

uncertain coupling functions, the designed controller is very 

complex. In addition, it should be pointed out that although many 

network synchronization strategies have been proposed, the 

synchronization time cannot be guaranteed.[3] In some cases, it may 

take a very long time to achieve synchronization. From the 

perspective of practical applications, it is more reasonable to 

achieve synchronization in a limited time. Moreover, the limited 

time synchronization of the complex network means faster 

synchronization speed and lower synchronization cost[10]. 

Meanwhile, the finite-time control techniques have demonstrated 

better robustness and disturbance rejection properties[22]. 

Finite-time stability is of finite-time control. This means the 

optimality in settling time[23]. Therefore, the research on the 

limited time synchronization of complex network is very valuable 

and meaningful. 

This paper is organized as follows. In Section 2, the uncertain 

complex dynamic network model and several related lemmas are 

given. In Section 3, the finite time synchronization criterion of 

network is discussed. In Section 4, a specific example is given to 

mailto:Yang_li@qut.edu.cn
http://www.ijamce.com/


Z. Yan et al. / IJAMCE 4 (2021) 113-118 

 

prove the effectiveness of the main results obtained in Section 3. 

Finally, a conclusion is drawn in Section 5. 

2. The problem statement and preliminaries 

In this section, an uncertain complex dynamic network model is 

introduced, and some preliminary definitions and lemmas are given.  

2.1 An Uncertain Complex Dynamical Network Model 

Consider a continuous time uncertain complex dynamic network 

consisting of N identical nodes. The system is described as follows: 

 ( ) ( )1 2, , ,...,i i i n iy f y t h y y y u= + +  (1) 

where 1,2,...,i n= ; ( )1, 2,...,

T n

i i i iny y y y R=   is the state vector of the 

i th node; : nf R R+ →  is a smooth nonlinear vector field;

: ... n

ih R R+  → are nonlinear smooth diffusive 

coupling functions; n

iu R  are the control inputs. 

In addition, ( )1 2, ,...,i nh y y y  is a general function, which can 

represent not only the linear connection between node states, but 

also the nonlinear connection between node states. For example 
When  

 
1

n

i ij j

j

h c a x
=

=   (2) 

Where c is the coupling strength between the network nodes, 

  is the internal coupling matrix, ija is matrix element of the 

coupling matrix representing the topological, and 
1

0
n

ijj
a

=
= Here

( )1 2, ,...,i nh y y y can indicate that the connection between nodes is 

linear. 

When  

 
1

( )
n

i ij j

j

h c a H x
=

=   (3) 

Where ( )H  is the internal coupling function between two 

adjacent nodes. Here ( )1 2, ,...,i nh y y y can indicate that the 

connection between nodes is nonlinear. 

Whether it is linear or nonlinear connection, the internal coupling 

function in the network model is always the same. However, in fact, 

h can represent not only the same internal coupling function, but 

also different internal coupling functions. For example, there are 

two nodes 0 0 0 0, ( )i j i j ,and  

 
0 0 0 0

1 1

, ( )
n n

i i j j j j j j

j j

h c a x h c a H x
= =

=  =   (4) 

This situation can not be expressed by linear connection structure 

or nonlinear connection structure which this paper studies is this 

situation. This paper studies the synchronization problem of 

complex networks with uncertain internal connection structure. 

2.2 preliminary definitions and lemmas 

Consider that the j th isolated node dynamical sub-network of 

network (1) is taken as the synchronization target, and its dynamic 

equation is expressed as 

 ( )j jx f x t= ，  (5) 

where1 j n  , j i  

Network synchronizationisa typical collective behavior [3]. 

Finite-time synchronization means that the drive and response 

vectors synchronize within finite time[10]. In the following, a 

rigorous mathematical definition is introduced for the concept of 

network synchronization in finite-time. 

Define system (5) as the master system and system (1) as the 

slave system. If there exists a constant 1 0t  ,such that 

 ( ) ( )
1

lim 0i j
t t

y t x t
→

−   (6) 

where1 ,1 ,i n j n i j     Then, it can be said that the network 

(1) realizes limited time synchronization 

Define the error vector as 

 ( ) ( ) ( )i i je t y t x t= −  (7)
 
 

Then the objective of controller iu is to guide the dynamical 

network (1) to synchronize in finite-time. The precise definition is 

as follows. 

Definition 1. The complex network (1) is said to be stochastically 

synchronized in finite time if, for a suitable designed feedback 

controller, there exists a constant 1t > 0,such that 

 ( )
1

lim 0i
t t

e t
→

=  (8) 

and  

 ( ) ( ) 0i jy t x t−   (9) 

where1 ,1 ,i n j n i j      

From Eq. (4), the error dynamics is obtained as follows 

 ( ) ( ) ( )1 2( ) , t , t , ,...,i i j i n ie t f y f x h y y y u= − + +  (10) 

Lemma 1 [3]. Assume that a continuous, positive-definite 

function V(t) satisfies the following differential inequality: 

 ( ) ( ) ( )0 0, , 0V t V t t t V t −     (11) 

where 0,0 1     are two constants. Then, for any given 

0t ,V(t) satisfies the following inequality:  

 ( ) ( ) ( )( )1 1

0 0 0 11 ,V T V t t t t t t   − − − − −    (12) 

and satisfies the following equality: 
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 ( ) 10,V t t t    (13) 

with 1t  given by  

 
( )

( )

1

0

1 0
1

V t
t t



 

−

= +
−

 (14) 

Proof. Consider the following differential equation 

 
0 0( ) ( ), ( ) ( )X t cX t X t V t= − =  (15) 

Although this differential equation does not satisfy the global 

Lipschitz condition, the unique solution to this equation can be 

found as 

 ( )1 1

0 0( ) ( ) 1 ( )X t X t c t t  − −= − − −  (16) 

and 

 1( ) 0,x t t t    (17) 

It is direct to prove that ( )x t is differential for 0t t ,one can 

obtains 

 ( )1 1

0 0 0 1( ) ( ) 1 ( ),V t V t c t t t t t  − − − − −    (18) 

and 

 1( ) 0,V t t t=    (19) 

With 1t given in (14). The proof is completed. 

Lemma 2 [3] . Suppose 1 2, ,..., nx x x are positive number and 

0 2   , then the following inequality holds 

 
2

2

1 1

n n

i i

i i

x x





= =

 
  
 

   (20) 

3. Finite-time synchronization of complex networks 

In this section, a finite time synchronization controller is 

designed, and the Lyapunov stability theory is used to prove that the 

modified controller can ensure the gradual stability of the 

synchronization state in a finite time. 

The sliding mode function is defined as 

 
0

s ( ) ( ) sgn( ( )) ( )
t

i i i it e t e e d


   = +   (21) 

Where 0   and 0 1   are constants. 

Then taking time derivative of the sliding mode function, one can 

gain 

 s ( ) ( ) sgn( ( )) ( )i i i it e t e e


  = +  (22) 

When the sliding surface is stable, i.e. s ( ) 0i t = ,there must be 

 ( ) sgn( ( )) ( )i i ie t e e


  = −  (23) 

Theorem 1. Consider the sliding mode dynamics Eq. (23). The 

sliding surface will be asymptotically stable, its trajectories 

converge to the equilibrium ( ) 0ie t = in a finite time 1t . 

Proof. Define a Lyapunov function as follows: 

 2

1

1

1

2

n

i

i

V e
=

=   (24) 

Then taking time derivative of the Lyapunov function 1V , one 

can gain 

 1

1

n

i i

i

V e e
=

=  (25) 

Replacing ie  from Eq. (23) into the equation above, it yields 

 
1

1

1

n

i i

i

V k e
+

=

= −   (26) 

From Lemma 2, Eq. (20), one can obtain 

 

1
1

2
22

1

1

1 1

2 2

1
2

2

2

n

i i

i

i

V k e

k V




 

+
+

=

+ +

 
 −  

 

= −


 (27) 

Therefore based on Lemma 1, The sliding surface will be 

asymptotically stable in a finite time 1t . Hence the proof is 

completed. 

Theorem 2. The error system (7) can be finite-timely stabilized 

by the controller 

( ) ( ) ( )

 

1 2, t , t , ,..., sgns ( )

sgn( ( )) ( )

i j i i n i

i i i

u f x f y h y y y t

k e t e t


= − − −

−
 (28) 

where 1 ,1 , 0 1, 0ii n j n i j k          

Proof. Define a Lyapunov function as follows: 

 2

2

1

1

2

n

i

i

V s
=

=   (29) 

Then taking time derivative of the Lyapunov function 2V , one 

can gain 

 2

1

n

i i

i

V s s
=

=  (30) 

Replacing is  from Eq. (22) into the equation above, it yields 

 2

1

[ ( ) sgn( ( )) ( ) ]
n

i i i i

i

V s e t e e


  
=

== +  (31) 

Consider the Eq. (28)and(10), one can gain 

 2

1

n

i i

i

V k s
=

= −   (32) 

From Lemma 2, Eq. (20), one can obtain 

 

1
1

2
22

2

1

1 1

2 2
2

1
2

2

2

n

i i

i

i

V k s

k V




 

+
+

=

+ +

 
 −  

 

= −


 (33) 

From Lemma 1, the error system (7) can be finite-timely 
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stabilized by the controller iu . Then the slave system (1) will 

synchronize the master system (5) in a finite time. 

The above formula proves that the system approaches the sliding 

mode surface in a finite time and does not leave the sliding mode 

surface. In addition, since the sliding mode surface is stable, the 

closed-loop system is asymptotically stable. 

4. Simulations 

In this section, an example is given to illustrate the effectiveness 

of the above synchronization controller. 

In simulation, consider a dynamical network consisting of 3 

identical Lorenz systems. Take a single node (1) in the network as 

the synchronization target. Here, node dynamics is described by 

1 1

2 2 1 3

1 23 3

0j j

j j j j

j jj j

x x

x A x x x

x xx x

     
     

= + −     
        

    

 

and 

1 1

2 2 1 3

1 23 3

0i i

i i i i

i ii i

y y

y A y y y

y yy y

     
     

= + −     
    
      

where 

0

1 0

0 0

a a

A c

b

− 
 

= − 
 −   

a=10,b=8/3,c=28,and 1 3,1 3,i j i j     The networked 

system (1) is defined as follows: 

1 1 1 1 1 1 2

2 2 1 3

1 2 2 2 1 2 23 3

0 ( ) 2 ( ) ( )

0

( ) 2 ( ) ( )

i i i i i

i i i i i

i i i i ii i

y y f y f y f y

y A y y y u

y y f y f y f yy y

+ +

+ +

− +       
       

= + − + +       
       − +      

(34) 

Where 1 2 1 2 1 2 3 3 1 4 2( ) ( ), ( ) , ,i i i i i i if y a y y f y y y by y y y y= − = −  

Assume that 1

2
1,ik = = , the initial value of the system is

(0) (5,6,7) (0) (50+10 ,60 10 ,70 10 )ix y i i i= = + +， and 1,2, 3i j= =  

As expected, one can find that the trajectories of the closed loop 

slave system can synchronize the trajectories of the master system 

within finite-time. 

The is state trajectories of Lorenz system shown in Fig. 1-6 

 

Fig. 1. State trajectories of Lorenz system 31x  and 11y  

 

Fig. 2. State trajectories of Lorenz system 32x  and 12y  

 

Fig. 3. State trajectories of Lorenz system 33x  and 13y  

From Fig.1-Fig.3, we can see the trajectory indicate the 

synchronization results. The states 31x  is tracking the state 11y  in 

finite time, the states 32x  is tracking the state 12y  in finite time,, 

the states 33x  is tracking the state 13y  in finite time, where initial 

condition with 

(0) (5,6,7)x =  

1(0) (60,70,80)y =  

2(0) (70,80,90)y =  

 

Fig. 4. State trajectories of Lorenz system 31x  and 21y  
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Fig. 5. State trajectories of Lorenz system 32x  and 22y  

 

Fig. 6. State trajectories of Lorenz system 33x  and 23y  

From Fig.4-Fig.6, we can see the trajectory indicate the 

synchronization results. The states 31x  is tracking the state 11y  in 

finite time, the states 32x  is tracking the state 12y  in finite time,, 

the states 33x  is tracking the state 13y  in finite time, where initial 

condition with 

(0) (5,6,7)x =  

1(0) (60,70,80)y =  

2(0) (70,80,90)y =  

It can be seen that under the action of the relevant controll

er, the trajectories of all network nodes can be synchronized q

uickly in a limited time. These simulation results have illustrat

ed the effectiveness of the proposed method. 

5. Conclusion 

This paper studies the synchronization of uncertain complex 

dynamic networks in finite time, proposes a finite time 

synchronization controller, and proves that the designed controller 

can ensure the asymptotic stability of the synchronization state in 

finite time by using Lyapunov stability theory. The research results 

show that this method can realize complex finite time 

synchronization whether the structure of complex network is known 

or not and whether the connection structure between node states is 

linear or nonlinear. The advantage of this method is that it has 

simple structure, high universality and is more conducive to 

practical engineering application. In addition, in practical 

application, we can design a controller with the same structure, and 

then tune and transform its parameters to obtain a suitable overall 

controller. Finally, its effectiveness is verified by numerical 

simulation. 
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