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 Prescribed performance control (PPC) has received increasing attention because it can obtain high quality control 

performance of the system in recent years, especially in the fields of the spacecraft and unmanned aerial vehicle. 

However, the designed controllers are always complex and there are a lot of control parameters to be tuned to 

guarantee the high-quality performance of the system. In this paper, a PID-liked prescribed performance controller 

is used to control a helicopter plant. A grey wolf optimization (GWO) algorithm is used to optimize the 9 PPC 

parameters. And the artificial bee colony (ABC) algorithm and sparrow search algorithm (SSA) are used to 

compare to GWO. The result of the numerical simulations shows that the application of the GWO guarantees the 

high-quality performance of the PPC. 
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1. Introduction 

Unmanned helicopters have been widely used in many military 

and civilian fields because of their good maneuverability, vertical 

hovering, low risk of casualties, and ease of use (Xu, G. et al., 2020). 

Additionally, flight stability, high quality transient performance 

(convergence rate, maximum overshoot, et al.) is also the key to the 

study of attitude control of unmanned helicopters. However, the 

unmanned helicopters attitude control system is an under-actuated 

and multi-input, multi-output nonlinear system with strong coupling, 

and the model is uncertain and subject to external interference (Li, Y. 

and Song, S., 2012; He, H., et al., 2018). These characteristics limit 

the control performance of the system. However, the widely used 

PID (proportional, integral, derivative) control and LQR algorithm 

require approximate linearization (Li, Y. and Song, S., 2012) and 

cannot meet the requirements of high precision control. 

Prescribed performance control (PPC), as a potential way to 

quantitatively describe the transient performance and steady-state 

performance of a system, has received much attention in recent 

years. PPC method was first proposed by Bechlioulis and 

Rovithakis (Bechlioulis C. and Rovithakis G. A., 2008; Bechlioulis, 

C. P. and Rovithakis, G. A., 2008; Bechlioulis, C. et al., 2009; 

Bechlioulis, C. P. and Rovithakis, G. A., 2011). It predefines the 

tracking error of the control system by introducing the prescribed 

performance function (PPF) and an error transformation technique. 

By selecting a suitable PPF, the tracking error of the system 

converges to an arbitrarily small set of residuals, the convergence 

rate is greater than a preset constant, and the maximum overshoot is 

less than a preset value.  

In this paper, a PID-liked prescribed performance controller is 

designed to achieve the high-quality attitude control performance of 

the unmanned helicopters. This controller has a lot of parameters, 

thus parameters tuning becomes a big challenge. And manually 

tuning is time-consuming and unrealistic and hardly to achieve 

required performance (Soni, V. et al., 2016). Reference (Tang, J. et 

al., 2010) adopts an iterative learning algorithm to tune PID 

controller parameters. Reference (Poksawat, P. et al., 2016) designs 

an automatic PID controller parameter optimizing algorithm to tune 

the controller parameters. Other tuning methods such as 

Ziegler-Nichols, Haalman and  -Tuning, Internal Model Principle 

(IMC) and so on are used in PID parameters tuning (Wu, H. et al., 

2014). However, above mentioned tuning methods rely on the 

accurate system models or only suitable for linear system and 

always difficult to balance the transient performance and 

steady-state performance. 

Recently, many soft computing algorithms have been 

implemented in many fields. Such as reference (Wang, H. and L. 

Liu, 2019), which uses partheno-genetic algorithm and simulated 

annealing algorithm in degree constrained minimum spanning tree 

problem; reference (Liu, H., X. Lv, and J. Xiao, 2018), which uses 

particle swarm optimization (PSO) algorithm for water environment 
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quality assessment; reference (Wang, Y., et al., 2018), which applies 

an improved ant colony algorithm in robot path planning. In terms 

of control parameter optimizing, reference (Mpanza, L. J. and Pedro, 

J. O., 2019) adopts an ant colony optimization (ACO) algorithm to 

optimize a sliding mode controller with 8 parameters. Reference 

(Gomez, V. et al., 2020) uses a particle swarm optimization 

algorithm for multi-objective problems to tune a complex PID 

controller for unmanned aerial vehicles. In (Shen, S. and Xu, J., 

2020), an adaptive genetic algorithm-particle swarm optimization 

(AGA-PSO) is adopted to tune the complex controller parameters. 

Many references show that better system performance can be 

obtained by using metaheuristic optimization algorithms for 

parameter tuning compared to traditional tuning techniques. Grey 

Wolf Optimizer (GWO) is a new metaheuristic swarm intelligence 

algorithm first presented in reference (Mirjalili, S. et al., 2014) by 

Mirjalili et al. in 2014. Many applications of GWO have been 

proposed in references. Reference (Soni, V. et al., 2016) suggests a 

“hybrid GWO and Pattern Search Algorithm (hGWO-PS)” to 

optimize a 2DOF-PID controller. Reference (Precup, R.-E. et al., 

2017) adopts GWO to optimize a PI fuzzy controller. The GWO 

algorithm has following advantages: simple, flexible and robust; 

local minima avoidance; few parameters; no derivation information 

is needed in the initial search; model free optimization algorithm 

(Panda, M. and Das, B., 2019; Faris, H. et al., 2018). Thus, the 

GWO algorithm is proposed to optimize the prescribed performance 

controller in this paper. 

The rest sections of the paper are organized as: Section 2 

introduces the mathematical model of the 3-degree-of-freedom 

(3-DOF) unmanned helicopter attitude control system. In section 3, 

a PID-liked prescribed performance controller is given and an 

objective function is introduced. In section 4, the mathematical 

model of GWO algorithm is introduced. Section 5 presents the 

simulation results. The conclusions of this paper are given in section 

6. 

2. Dynamic Model of 3-DOF Unmanned Helicopter Plant 

In this section, the unmanned helicopter plant and coordinate 

systems are introduced, then the dynamics model of the plant is 

presented. In this paper, the dynamic model of unmanned helicopter 

plant in reference (Zhu, B. et al., 2019) is adopted. A 3-DOF 

unmanned helicopter plant and its components is shown in Fig. 1. 

 

Fig. 1. 3-DOF unmanned helicopter plant 

 

A global coordinate system (Cartesian coordinate system) and a 

body coordinate system (Cartesian coordinate system) is provided 

to describe the attitude of the helicopter plant (see Fig. 2). 

 
Fig. 2. Coordinate system of the plant 

 

Following assumptions are given to simplify the model before the 

dynamic modelling: 

(1) The helicopter plant system is a rigid system. 

(2) The helicopter plant system is symmetrical. 

(3) Linear DC motors. 

The dynamics of the three channels (pitch, yaw, roll) can be 

visualized in Fig. 3. The attitude angle vector is [ , , ]X   =  (pitch, 

yaw, roll, respectively), attitude angular velocity vector is  

[ , , ]u v w =  (pitch, yaw, roll, respectively). [ , ]
l r

F F F=  is the 

lifting force vector of the DC motors. The symmetric inertia matrix 

is as follows: 
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J J J
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where 0, 0, 0xy xz yzJ J J= = = .  

Thus, the dynamic model of the 3-DOF unmanned helicopter 

plant can be written in the following form: 
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where
c

M is the mass of counterweight ,
h

M is the total mass of 

the short rod and two motors, 
c

l is the distance from the 

counterweight to yaw axis, 
h

l is the distance from roll axis to yaw 

axis, 
r

l is the distance from the center of gravity of the motor to roll 

axis. 

To facilitate the design of the controller and according to Fig. 3, 

the lifting forces of the motor is converted into the control force of 

three channels, as follows 
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The dynamic model equation (1) can be rewritten as: 
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(a) Pitch channel 

 

(b) Yaw channel 

 

(c) Roll channel 

Fig. 3. Three attitude channels of the plant. (a) Pitch channel, (b) Yaw channel, (c) 

Roll channel 

3. Prescribed Performance Controller Design 

In this section, the prescribed performance function and error 

transformation method are introduced. A PID-liked prescribed 

performance controller is presented. Then a discrete objective 

function is introduced to quantitatively describe the performance of 

the helicopter control system. 

3.1 Prescribed Performance Function and Error Transformation 

The control purpose of PPC method is: 

(1) The tracking error of the system converges to an 

arbitrarily small set of residuals.  

(2) The convergence rate is not less than a preset constant. 

(3) The maximum overshoot is less than a sufficiently small 

preset value. 

Thus, the smooth function ( ) :t
+ +
→ is introduced as PPF to 

define the error boundary, as follows 

 
0( ) ( ) stt e   −

 = − +                 (4) 

where the parameters in equation (4) satisfy
0

0, 0, 0s 


   , 

which define the initial error bound, ultimate error bound, and 

convergence rate of boundary, respectively. Fig. 4 illustrates the 

exponential PPF. PPF also has the following properties: 

(1) ( ) 0, 0t t     and is strictly decreasing. 

(2) lim ( ) 0
t

t 


→

=  . 

(3) 
0

(0) (0)e =  . 

 

 

Fig. 4. Exponential prescribed performance function 

 

The following inequality is given to achieve the preset transient 

performance and steady-state performance. 

( ) ( ) ( ), 0t e t t t −                     (5) 

where  and  are positive constants, ( ) ( ) ( )de t x t x t= − is the 

original error of the attitude angle, ( )dx t  is the desired attitude 

angle. 

An error transformation ( )
tr

f  is introduced to transform the 

inequality constraint (5) to equivalent "unconstrained" one: 

( ) ( ) ( )tre t f t =                    (6) 

The error transformation ( )
tr

f  is defined as: 

( )tr
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where  is the transformed error. And ( )
tr

f  satisfies the following 

properties 

(1) ( )trf  −    

(2) lim ( )trf
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→−

= − . 

According to equation (6) and (7), the expression of  is the 

inverse function of (7) which can be written as: 

1
ln( )

2

 


 

+
=

−
                    (8) 

where /e = is the normalization of original error.  

The derivative of  is 

2

e e 




−
=                         (9) 

The time derivative of  is 

2

1

2 ( )( )

d e e

dt

     


     

 + −
= =
 + −

     (10) 

In this paper, 1, 1 = = . It can be proved that by using the 

transformed error  to design the controller, the system can satisfy 

the inequality (5) and achieve the prescribed performance (Sun, R. 

et al., 2018). 

3.2 Prescribed Performance Controller 

The helicopter plant attitude control system is nonlinear, channels 

strongly coupled, under-actuated with multi-input and multi-output. 

Considering the complexity and feasibility of the controller in 

practical application of unmanned helicopter, a PID based controller 

with PPF is adopted. 

The roll channel and yaw channel are coupled to each other. 

Therefore, in each iteration the expected roll angle 
pre

  needs to be 

updated: ( / )
pre

arctan F F
 

 =  to achieve yaw motion. The structure 
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of the control frame is shown in Fig. 5. And the transformed error 

 is used to design the controller. The control force vector 

[ , , ]F F F F
  

=  in equation (2) are calculated as 
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             (11) 

where )  , , ,(,i i i

P I Dk k k i   = are control parameters of the 

prescribed performance controller,
.

)  (, , ,i i i    =  are 

transformed errors and its derivative of pitch, yaw, roll channels. 

According to equation (2), the lifting forces [ , ]r lF F F= of the DC 

motors can be calculated as follows: 
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2 2
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= + −

              (12) 

 

Fig. 5. The structure of controller frame 

3.3 Objective Function 

In this subsection, an objective function is presented to describe 

the overall performance of the system. A commonly used 

integral-type objective function in (Mpanza, L. J. and Pedro, J. O., 

2019) is adopted. For the purpose of numerical simulation, the 

integral-type objective function is changed to a discrete form: 
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i
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where ih is the step of simulation, T is the total simulation time, 

pre
  and 

pre
  are expected attitude angles of pitch channel and 

yaw channel, respectively.  (max ) /
i pre pre

  −  is a correction for 

overshoot, and is the weight. 

4. Grey Wolf Optimization Algorithm 

Grey Wolf Optimization (GWO) algorithm is a nature inspired 

metaheuristic algorithm. GWO algorithm describes the leadership 

hierarchy and the hunting behaviors of the grey wolves (Panda, M. 

and Das, B., 2019). The mathematical modeling of the GWO 

algorithm consists of five steps (for single objective problem) 

(Mirjalili, S. et al., 2014). 

Step1: Social hierarchy 

A grey wolf pack consists of 5-12 wolves. And a grey wolf pack 

has a strict social hierarchy and is often divided into four layers (Fig. 

6): alpha wolf ( ), beta wolf (  ), delta wolf ( ), omega wolf 

( ). The social status of each layer is also shown in Fig. 6. 

 

Fig. 6. Hierarchy and social status of grey wolf 

 

Step2: Encircling prey 

The encircling behavior of grey wolf group can be described by 

the following equations, 

( ) ( )
i

D CP t P t= −              (14) 

( 1) ( )iP t P t AD+ = −        (15) 

where t is the current iteration, ( )
i

P t  is the position of prey at 
tht iteration which represents the current optimal solution, ( )P t is 

the position of the current wolf at tht iteration, A and C are two 

random coefficients that determine the movement of the gray wolf 

which are calculated as follows, 

1

2

2

2

A ar a

C r

= −

=
     (16) 

where 1 2,r r are random numbers from 0 to 1, a is a coefficient that 

decreases linearly from 2 to 0 during iteration t which can be 

calculated as 2( ) /max maxa t t t= − , maxt is the maximum iterations. 

Step3: Hunting 

Beside the leader wolf (  wolf),  wolf and  wolf are also 

involved in hunting command. And the positions of the  wolf,   

wolf and  wolf always represent the three best current positions 

of the grey wolf pack in hunting. In the actual optimization process, 

the position of the prey is always unknown in advance. Therefore, 

the positions of the  wolf,  wolf and  wolf are used to update 

the positions of other wolves. The position update process is as 

follows, 

1

2

3
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D C P t P t

D C P t P t

D C P t P t
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1 2 3
( ) ( ) ( )

( 1)
3

P t P t P t
P t

+ +
+ =               (19) 

Fig. 7 illustrates the position updating of the  wolf according to 

equations (17) ~ (19), 

 

Fig. 7. Position updating of wolf according to equations (17) ∼ (19) 

Step4: Attacking prey 

When the grey wolves attack the prey, the hunting behavior ends. 
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And the attacking behavior is mathematically described by the 

coefficient a, which linearly decreases from 2 to 0 during iteration. 

According to equation (15), the random number A can also describe 

the attacking behavior. A is a random number in the interval 

[ , ]a a− . In GWO algorithm, wolves attack the prey when the 

1A  . 

Step5: Searching for prey 

The grey wolves search the prey based on the positions of the 

wolf,  wolf and  wolf. In step 4, when 1A  the wolves 

attack the prey; in this step, when 1A  the wolves move away 

from each other in search of the prey. The coefficient C is a random 

number which makes the searching behavior more random and 

enables the algorithm to avoid local optimal solutions (Mirjalili, S. 

et al., 2014). 

There are two important parameters in GWO required to be 

initialized: the number of wolves in grey wolf group (populations) 

and the number of iterations. These two parameters vary in different 

optimization problems. The pseudocode of GWO algorithm is 

presented in Fig.8. 

 

Fig. 8. Pseudocode of GWO algorithm 

5. Simulation Results 

In this paper, the parameters need to be tuned include: 

, , ; , , ; , ,P I D P I D P I Dk k k k k k k k k         . The parameter 1.5s = , s decides 

the convergence rate of boundary in equation (4).  

The upper limit [30,10,10,10,1,3,10,1,3]bu = , the lower limit 

[10,0,0,0,0,0,0,0,0]bl = . The weight 0.05 = . The prescribed 

performance functions of pitch, yaw and roll channels are shown in 

Tab. 1. The parameters of helicopter plant are shown in Tab. 2. 

 
Tab. 1. Performance functions 

Channels Performance functions 

Pitch 
1.5

(0.8 0.04) 0.04
t

e
−

− +  

Yaw 
1.5

(0.3 0.04) 0.04
t

e
−

− +  

Roll 
1.5

(0.4 0.04) 0.04
t

e
−

− +  

Tab. 2. The parameters used in the helicopter modeling 

Symbols Values Explanations 

c
M  2.2kg  Mass of counterweight 

h
M  2.5kg  Mass of motor and roll axis 

c
l  0.4m  Distance from counterweight to yaw axis 

h
l  0.6m  Distance from roll axis to yaw axis 

r
l  0.2m  Distance from roll axis to motor 

x
J  2

0.05kgm  Inertia of roll channel 

y
J  2

1.25kgm  Inertia of pitch channel 

z
J  2

1.25kgm  Inertia of yaw channel 

g  
2

9.8m/s  Gravity acceleration 

 

Two other optimization algorithms: Sparrow Search Algorithm 

(SSA) (Xue, J. and Shen, B., 2020), Artificial Bee Colony (ABC) 

algorithm (Karaboga, D. and Basturk, B., 2008) are also used to 

optimize the parameters of PPC to compare to GWO. According to 

references, SSA and ABC are also excellent optimization algorithms 

in parameters tuning. The parameters of the three algorithms are 

shown in Tab. 3. All three algorithms are stochastic, each algorithm 

was run 20 times and the best result were selected. The tuning 

results are presented in Tab. 4. The GWO has the minimum 

parameters and highest operational efficiency (minimum running 

time). The objective function value of GWO, ABC and SSA are 

compared in Fig. 9.  From Fig. 9, we can see that the GWO 

converges faster and gets the minimum objective function value in 

the PPC parameter tuning. This suggests that better overall 

performance can be obtained by using GWO. 

 

Tab. 3. Parameters of three metaheuristic algorithms 

Algorithms Parameters Explanation 

GWO Search Agent =12 Population of grey wolves 

ABC Colony Size = 16 

no = 8 

ne = 8 

ns = 1 

Limit = 20 

Population of artificial bees 

Onlooker bees 

Employed bees 

Scout bee 

Control parameter 

SSA n = 20 

PD = 0.2 

SD = 0.2 

R2 = 0.8 

The number of sparrows 

Number of producers 

Early warning sparrows 

The alarm value 

 

 

Fig. 9. Comparison of 100 iterations: GWO, SSA, AB 

Tab. 4. Tuning result 

Algorithms Results 

GWO 24.11, 10.00, 5.66
P I D

k k k
  
= = =  

3.71, 0.06, 1.39
P D D

k k k
  
= = =  

0.77, 0.07, 1.88
P I D

k k k
  
= = =  

Running time = 121.59 s 

ABC 19.06, 5.63, 4.24
P I D

k k k
  
= = =  

4.66, 0.10, 1.73
P I D

k k k
  
= = =  

0.80, 0.36, 1.47
P I D

k k k
  
= = =  

Running time = 139.88 s 

SSA 19.61, 1.29, 3.18
P I D

k k k
  
= = =  
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1.83, 0.65, 1.25
P D D

k k k
  
= = =  

5.25, 0.52, 2.07
P I D

k k k
  
= = =  

Running time = 154.59 s 

 
Fig. 10. Time response of the pitch channel 

 
Fig. 11. Time response of the yaw channel 

 

Fig. 12. Tracking error of the pitch channel 

 

Fig. 13. Tracking error of the yaw channel 

 

Fig. 14. The lifting force of left motor 

 

 
Fig. 15. The lifting force of right motor 

 

Fig. 10 and Fig. 11 show the time response of the pitch channel 

and the yaw channel. It can be seen that the GWO-tuned system has 

the faster convergence rate and smaller steady-state tracking error in 

both pitch response and yaw response. From Fig. 11, it can be seen 

that the GWO-tuned system only has slight overshoot, while 

ABC-tuned system and SSA-tuned system have obvious maximum 

overshoot. That means by selecting a suitable weight  in equation 

(13) the GWO algorithm effectively reduces the maximum 

overshoot. Fig. 12 and Fig. 13 show the tracking error of the pitch 

channel and the yaw channel. It can be seen that all three tuned 

systems have a undershoot at about 1s. The SSA-tuned system is 

closest to prescribed performance boundaries which means it has 

the risk of crossing the boundary. The GWO-tuned system is closest 

to the ideal curve, which proves the effectiveness and robustness of 

GWO. Fig. 14 and Fig. 15 show the lifting force of left motor and 

right motor. It can be seen that the GWO-tuned system’s lifting 

force curve is under the ABC-tuned system’s and the SSA-tuned 

system’s. It means the GWO-tuned system can obtain better control 

performance with less power in PPC parameters tuning. 

6. Summary 

The three nature-inspired optimization algorithms GWO, ABC 

and SSA are used to tune the prescribed performance controller. 

Although ABC and SSA are excellent optimization algorithms in 

many engineering cases. The results show that the GWO can 

provide competitive results compared to SSA and ABC. GWO has 

the minimum number of parameters and the simplest optimization 

format. Due to the complexity of the 3-DOF helicopter plant control 

system which has 9 parameters to be tuned, GWO is more time 

efficient. Moreover, GWO can avoid local minima and converges 



Y. Li et al. / IJAMCE 5 (2022) 53-59 

 

faster, GWO-tuned system has smaller overshoot and faster 

convergence rate. GWO is also expected to be applied to other 

complex controller optimization problems. 
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