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 Back Propagation Neuron Network (BPNN) is a common method for milling cutter wear prediction. However, due 

to the random selection of its initial weight threshold, the traditional BPNN has the problems of slow convergence 

speed, low prediction accuracy and easy to fall into local optimal solution in the training process. An atom search 

algorithm (ASO) is proposed to optimize the prediction method of the initial weight threshold of the error back 

propagation neural network. Firstly, the time-domain and frequency-domain feature extraction of the cutting force, 

vibration and acoustic emission signals of the milling cutter is carried out, and then the wavelet packet analysis 

(WPA) is used for the time-frequency domain feature extraction. Secondly, the prediction model of ASO-BP neural 

network is constructed to predict the milling cutter wear. The experimental results show that compared with the 

traditional BP neural network, the ASO-BP neural network model proposed in this paper has faster convergence 

speed and higher prediction accuracy in the prediction process of milling cutter wear. 

 

 

 

Published by Y.X.Union. All rights reserved. 

Keywords： 

Prediction of milling cutter wear  

Atomic search algorithm 

Back propagation neural network 

Forecasting model 

 

 

1. Introduction 

In the cutting process, the milling cutter directly contacts the 

machined workpiece, and its wear degree plays a decisive role in the 

machining quality of the workpiece. Because of the importance of 

milling cutter wear to milling cutter cutting process, the study of 

milling cutter wear prediction has been concerned by the majority of 

scholars(e.g., Zhang C et al.,2013). The prediction of tool wear in 

traditional milling process usually adopts manual experience. 

However, due to the low prediction accuracy of manual experience, 

the milling cutter will be replaced before and after reaching the blunt 

value(e.g., Tzab C et al.,2021). If the milling cutter is replaced before 

reaching the blunt standard of the milling cutter, it will cause waste 

of resources and increase production costs. If the milling cutter is 

replaced after reaching the blunt standard of the milling cutter, the 

wear value exceeds the expected wear, which will lead to poor quality 

of the workpiece that cannot meet the accuracy requirements and 

even lead to greater economic losses due to machine tool failure 

shutdown. Therefore, it is of great significance to achieve accurate 

prediction of milling cutter wear(e.g., Jian B L et al.,2020). 

Milling tool wear prediction problem is mainly divided into two 

parts: signal extraction process and model prediction process. During 

the signal extraction process, Ghasempoor A demonstrated the 

correlation between real-time changes in cutting forces and milling 

cutter wear, Hesser D F successfully predicted milling cutter wear 

using velocity sensor signals(e.g., Ghasempoor A et al.,1999), and 

Wang C proposed a milling cutter wear prediction method using 

acoustic emission sensors(e.g., Hesser, D. F et al.,2019). In the 

process of model prediction, Kaya B proves the feasibility of neural 

network to predict the wear of milling cutter(e.g., Kaya B et al.,2011). 

Gomes M C successfully predicts the wear of milling cutter through 

support vector machine model(e.g., Gomes M C et al.,2021). 

Chungchoo C uses fuzzy neural network to predict. The prediction 

results show that the model can accurately estimate the maximum 

wear depth of milling cutter(e.g., Chungchoo C et al.,2002). The 

experimental results of Li W prove that the hidden Markov model has 

strong versatility for milling cutter wear(e.g., Li W et al.,2019). 

In this paper, a tool wear prediction model based on atom search 

optimization-back propagation neural network (ASO-BP) is 

proposed and simulated by using the excellent nonlinear mapping 
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ability of error back propagation neural network (BP) and the strong 

clustering search ability of atom search optimization (ASO). 

2. Feature extraction and fusion 

2.1 Principle of Wavelet Packet Analysis 

Wavelet packet transform is a more comprehensive signal 

processing technology evolved on the basis of wavelet transform. It 

improves the disadvantage of poor frequency resolution of wavelet 

analysis in a signal in the middle and high frequency bands, and 

divides the high frequency and low frequency parts at the same time. 

Fig. 1 shows the three-layer decomposition structure diagram of 

wavelet packet. S is the original signal. A and D represent the low-

frequency and high-frequency components, respectively. The number 

is the decomposition layer (e.g., Li C B,2007). 

S

A1 D1

AA2 DA2 AD2 DD2

AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3  

Fig. 1. Wavelet Packet Three - Layer Decomposition Structure Diagram 

The expression of wavelet packet decomposition is expressed as: 
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The expression of wavelet packet reconstruction is expressed as: 

1, ,2 ,2 1

2 2

j n j n j n

l l k k l k k

k

d h d g d+ +

− −
 = +       (3) 

In the formula, j  represents the number of decomposition layers  

d   represents the wavelet coefficient  g   and h   represent high 

and low pass filters respectively. 

2.2 feature extraction 

This paper uses the public data of PHM2010 data challenge(e.g., 

Li X et al.,2009), and the experimental platform diagram is shown in 

Figure 2.  

 

Fig. 2. schematic of experimental platform 

  The wear data of C1, C4 and C6 milling cutters were obtained, and 

the data of each milling cutter included 315 times of walking cutter 

data of three-dimensional cutting force signal, three-dimensional 

vibration signal and one acoustic emission signal. 

A total of 168 features were obtained from the time domain, 

frequency domain feature extraction and three-layer wavelet packet 

analysis of 7 sensor signals in each milling cutter wear data, and 

Pearson correlation analysis was carried out between these features 

and the real wear value. As shown in Fig. 3, 17 feature values with 

high correlation were taken as the input of the neural network. 

The calculation formula of Pearson correlation coefficient is: 
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In the formula, X is the signal eigenvalue Y is milling cutter wear 

value. 

F
x
-r

e
t8

F
z-

re
t3

1

0.9

0

F
x
-r

e
t3

F
x
-r

e
t5

F
x
-r

e
t6

F
z-

re
t7

F
y
-r

e
t5

F
z-

re
t4

F
z-

re
t7

F
z-

re
t8

A
z-

A
b

so
lu

te
 

m
e
a
n

F
z-

re
t2

F
z-

re
t6

F
x
-R

o
o

t 
a
m

p
li
tu

d
e

F
z-

re
t5

p
e

a
rs

o
n

's
 c

o
rr

e
la

ti
o

n
 

co
e
f-

 f
ic

ie
n

t

A
z-

p
e

a
k

 
v
a

lu
e

A
z-

ro
o

t 
m

e
a
n

 
sq

u
a
re

 v
a
lu

e

 

Fig. 3. Eigenvalues with high correlation 

3. Principle of ASO-BP Neural Network Model 

3.1 Principle of Wavelet Packet Analysis 

BP neural network is a multilayer feedforward network trained by 

error back propagation algorithm. The weight threshold of the 

network is adjusted by reverse propagation to minimize the network 

error. BP neural network model includes input layer, hidden layer and 

output layer. The data are input from the input layer, and enter the 

hidden layer through the calculation of weights. When the threshold 

is reached in the hidden layer, the output of the hidden layer is 

obtained through the activation function, and then the output of the 

network is obtained through the calculation of the same principle in 

the output layer. This process is the forward propagation process of 

the network. The output results of the network are compared with the 

expected results, and the error generated by the comparison is used 

to reversely adjust the weight threshold in the neural network. This 

process is the error back propagation process of the neural network. 

Fig. 4 shows the BP neural network model(e.g.,Lv et al.,2011). 
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Fig. 4. BP neural network model diagram 
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The output of the hidden layer is: 
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In the formula: ( )g x is sigmoid activation function ij is the weight 

from the input layer to the hidden layer ix for network input ja is the 

threshold of hidden layer.  

The output of the output layer is: 
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In the formula: jk  is the weight of the hidden layer to the output 

layer  kb is the threshold for the output layer. 

The error is: 
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3.1 ASO-BP Neural Network Model 

The traditional BP neural network model is easy to fall into local 

optimum in training because of the random definition of its initial 

weight threshold. In order to solve this problem, ASO is introduced 

to optimize the BP neural network model, which can effectively 

improve the accuracy of model prediction. The flow chart of ASO-

BP neural network model is Fig.5. 
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Fig. 5. Flow chart of ASO-BP neural network model 

The steps of ASO-BP neural network model are: 

Step 1 determines the number of hidden layers of BP neural 

network, the number of neurons in each layer, the initial weight 

threshold, the size of the atomic group, the position and speed of each 

atom in the initial group. 

Step 2 determines the fitness function. The fitness function of ASO 

algorithm is set as: 
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In the formula: p

q for the p training sample, the j output layer output 

neuron point of the real value, p

qO  is the predicted value  n is the 

total number of training samples  m is the number of nodes in the 

output layer   ( )d

ix t  is the ith atom in d-dimensional space in the tth 

iteration of the ASO algorithm. 

Step 3 Calculate the mass of each atom: 
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In the formula: ( )d

im t  is the quality of the ith atom in the d-

dimensional space at the tth iteration, and the quality of the atom can 

be calculated by its function fitness. The better the function fitness is, 

the greater the atomic quality is  ( )if t  is the fitness of the i th 

atom at the t th iteration, ( )maxf t   and ( )minf t   represent the 

values of the maximum fitness and the minimum fitness atom at the 

tth iteration, respectively. 

Step 4 calculates the acceleration of each atom: 
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In the formula: ( )d

iF t   is the interaction force between the other 

atoms in the d-dimensional space at the tth iteration ( )d

iG t  is the 

binding force of the atomic system at the tth iteration. 

Step 5 Update atomic velocity and position: 

( ) ( ) ( )1d d d d

i i i iv t rand v t a t+ = +       (12) 

( ) ( ) ( )1 1d d d

i i iX t X t v t+ = + +         (13) 

In the formula: d

jrand  is the random number in  0,1 . 

Step 6 Repeat steps 2-6 to update the optimal atomic position until 

the termination condition is satisfied to output the optimal initial 

weight threshold. 

4. Prediction examples and analysis 

4.1 prediction model building 

Since the input sample dimension is not high and there is no need 

to select too many hidden layers to reduce the network scale, the 

three-layer network topology is selected, and the input layer nodes 

are 17 eigenvalues with high correlation. The number of nodes in the 

output layer is one corresponding to the wear value of the milling 

cutter. The number of nodes in the hidden layer is usually selected 

according to the empirical formula. The formula is: 

l m n a= + +                  (14) 

In the formula: m is the number of nodes in the input layer  n is the 

number of nodes in the output layer  a is a constant between 1 and 10. 

According to the formula, the interval of determining the number 

of nodes in the hidden layer can be set at  5,14 . The number of nodes 

in the interval is brought into the BP neural network for training, and 
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the relationship between the mean square error of the training results 

of the number of nodes in each hidden layer and the number of nodes 

is shown in Fig.6. Therefore, the number of hidden layer nodes is 

finally set as 11 with the smallest mean square error. 
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Fig. 6. Relationship between the number of hidden layer nodes and mean 

square error 

The hidden layer node activation function is Sigmoid, and the 

expression is: 

( )
1

1 x
y

e−
=

+
                    (15) 

In the formula: x, y represent the input and output of the node, 

respectively. 

The output layer node activation function is Identity, expressed as: 
y x=

                        (16) 

The training objective of neural network is 10-5, and BP neural 

network is optimized by atomic search algorithm. In the atomic 

search algorithm, the initial population size is 30, the maximum 

number of iterations is 50, the individual range is  3.1,3.1−  , the 

depth weight is 50, and the multiplier weight is 0.2. 

4.2 results and analysis of precision 

In the experiment, all the data in C4 are used as training set to train 

the neural network and select the optimal model. Using the trained 

neural network model, C1 and C6 are used as test sets. 
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Fig. 7. Comparison of prediction error between BP and ASO-BP on tool c1 

In the simulation experiment, by comparing the prediction results, 

it can be found that the prediction accuracy of ASO-BP neural 

network is significantly higher than that of the traditional BP neural 

network. Fig. 7 and Fig.8 shows the prediction results on the data set 

C1, where the average absolute percentage error MAPE of the BP 

neural network prediction results is 12.5 % and the average absolute 

error MAE is 14, and the average absolute percentage error MAPE 

of the ASO-BP prediction results is 5.1 % and the average absolute 

error MAE is 5.4. 
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Fig. 8. Prediction results of BP and ASO-BP on tool c1 
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Fig. 9. Comparison of prediction error between BP and ASO-BP on tool c6 
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Fig. 10. Prediction results of BP and ASO-BP on tool c6 

Fig. 9 and Fig.10 shows the prediction results on the data set C6, 

where the average absolute percentage error MAPE of the BP neural 

network prediction results is 17.3 % and the average absolute error 

MAE is 24.1, and the average absolute percentage error MAPE of the 
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ASO-BP prediction results is 5.6 % and the average absolute error 

MAE is 6.6. It can be seen that the scheme in this paper significantly 

improves the prediction accuracy. 

5. Results 

In view of the shortcomings of the traditional BP neural network 

that often falls into local optimal solution and slow convergence, this 

paper uses ASO-BP neural network to establish the prediction model 

of tool wear. A tool wear prediction model based on ASO-BP neural 

network is proposed. The interaction force and constraint force of 

atomic motion in nature are simulated by atomic search algorithm, 

and the initial weights and thresholds of BP neural network are 

defined to improve the state estimation accuracy of the model. The 

simulation results show that the prediction accuracy of ASO-BP 

neural network is significantly improved compared with the 

traditional BP neural network. 
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