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 Trajectory planning has been widely applied for autonomous quadrotors navigation in unstructured environments. 

However, when faced with unexplored environments, trajectory replanning is difficult to ensure the safety of 

quadrotors fast flight since the limitations of kinodynamic feasibility. In this paper, a safety mechanism-based local 

trajectory optimization (SMLTO) is proposed to replan a safe and kinodynamic feasible trajectory in real-time, by 

adjusting the position of local control points for occlusion effect. Expansion radius of the obstacle is calculated by 

extracting the center of point clouds of obstacle, which is utilized to predict the distances between control points 

and obstructive surface. When the distance fails to reach the set safety threshold, the gradient descent method will 

be used to calculate the adjustment direction of control points. The distance from adjusted control points to the 

obstacle surface is not less than safety threshold. Each control point can be adjusted to conservative position with 

safety distance through the proposed SMLTO method, even if quadrotor will face some unforeseeable obstacles. 

The proposed method is validated extensively through benchmark comparisons in multifold challenging simulation 

environments. 
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1. Introduction 

Quadrotor is playing an increasingly important role in 

contemporary society, and is increasingly used in a wide variety of 

fields, including terrain survey and cargo delivery. The quadrotor has 

the ability to recognize surrounding obstacles and generate reliable 

collision-free trajectory is a fundamental guarantee to accomplish the 

autonomous tasks. Although a lot of work has been performed on 

trajectory generation and autonomous navigation of quadrotor in 

unknown environments, however, many problems still exist.  

First of all, the quadrotor will not fly exactly according to the pre-

planned trajectory due to external factors, which will lead to a 

collision between the quadrotor and the obstacle when the quadrotor 

passes the obstacle at a certain moment. On the other hand, the fast 

flight speed of the quadrotor makes it difficult to re-path planning 

timely to avoid obstacles when the quadrotor suddenly encounters 

obstacle during flight (e.g. obstacles obscured by walls and dynamic 

obstacles, etc.), which eventually leads to the failure of quadrotor 

trajectory planning and navigation or even crashing. 

In this paper, we propose a trajectory control point adjustment 

algorithm to obtain a safer flight trajectory. The algorithm calculates 

the distance between the initial trajectory control point and the 

corresponding obstacle, and adjusts the initial trajectory control point 

according to the distance size, so that the planned trajectory can keep 

relatively farther distance away from the obstacle. 

A novel objective function is introduced in this algorithm to limit 

the minimum distance between the trajectory control point and the 

obstacle, and the gradient descent algorithm is adopted to adjust the 

trajectory control point to the most suitable position, i.e., the distance 

between the trajectory control point and the obstacle needs to satisfy 

the given safety threshold as much as possible. The trajectory 

adjusted by the algorithm eliminates potential risks and the quadrotor 

is able to maintain a relatively safe distance from the obstacle when 

it encounters obstacle. The relatively large distance gives the 

quadrotor more time to re-trajectory planning when encountering 

obscured obstacles and dynamic obstacles, which makes the 

quadrotor fast flight process gets better safety assurance. 

 

Compared to the already existing work, our proposed method is 
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able to generate safer and more stable trajectory in various complex 

environments. We have tested the robustness and security of our 

proposed algorithm in many simulation environments with 

satisfactory results. 

2. Related works 

2.1 Hierarchical Motion Planning 

The implement of flight corridors to limit the range of generated 

trajectory has been extensively researched in the field of trajectory 

planning. Continuous large overlapping grids are taken in unknown 

space as free space and feasible trajectory is found in a series of 

connected three-dimensional cubical grids[1]. The set of convex 

overlapping polyhedra is defined as a flight corridor, and then 

polynomial trajectory is generated in the flight corridor using a 

quadratic programming approach[2]. Some methods construct flight 

corridors directly on point cloud data as free space and employ 

quadratically constrained quadratic programming methods[3] to 

generate collision-free trajectories, as well as trajectories being 

represented as piecewise Bézier curves[4] to satisfy the dynamic 

feasibility of the trajectory. A k-order function of time is used to 

express the trajectory, which then is optimized by solving a quadratic 

programming problem to generate the optimal trajectory[5]. The 

existing polynomial trajectory generation method is extended to 

guarantee trajectory safety by adding intermediate path points[6], 

however, this method increases the computational effort and lacks the 

guarantee of a globally optimal trajectory. Topological path algorithm 

is proposed in [7] to explore the three-dimensional space more 

completely and finds the relatively optimal initial path. The algorithm 

mentioned above relies heavily on the time allocation, and an 

improper time allocation may significantly degrade the quality of the 

trajectory. In order to achieve a better time allocation, a ESDF-

induced velocity field is utilized to search for trajectory directly[8]. 

2.2 Kinodynamic Motion Planning 

Finding a dynamically feasible initial trajectory and adjusting local 

control points is also quite effective in the trajectory planning process. 

A b-spline curve is utilized to represent the initial trajectory to 

resolve the dynamic infeasibility caused by non-static motion, and an 

elastic optimization method is presented to optimize the trajectory 

discretization[9]. The shortest trajectory search algorithm is 

converted to a dynamic trajectory search algorithm that a more 

reasonable initial trajectory is generated, and an elastic optimization 

algorithm is adopted to address trajectory dispersion[10]. A b-spline-

based trajectory search algorithm (BNUK) is proposed to generate 

dynamically feasible initial trajectory, and then the trajectory is 

refined by utilizing the proposed control point optimization method 

to improve the smoothness of the trajectory[11]. An initial path in 3D 

space based on a non-uniform b-spline curve representation can be 

generated by using the kinodynamic path searching method[12], and 

an iterative time-adjustment algorithm is adopted for time allocation 

of paths to improve the feasibility of dynamic trajectory.  

Methods based on searching and sampling are often employed to 

search for dynamically feasible trajectories. A search-based planning 

method is proposed to compute dynamically feasible trajectories for 

a quadrotor flying in an obstacle-cluttered environment by exploiting 

the explicit solution of a linear quadratic minimum time problem[13]. 

A set of short-time motion primitives is utilized to explore the 

unknown to find smooth as well as least time-consuming 

trajectory[14]. The algorithms PRM* and RRT* proposed in [15] 

guarantee asymptotic optimality and less computational complexity 

than the traditional sampling-based path search algorithms PRM and 

RRT. The kinodynamic RRT* algorithm proposed in [16] has been 

extended with work on RRT*, which guarantees the asymptotic 

optimality of the algorithm for any controllable linear system with 

minimal computational overhead. 

Some methods add collisionality and smoothness of the trajectory 

to the cost function and optimize the trajectory by adopting gradient 

optimization method. 

The CHOMP algorithm is proposed to optimize the generated 

trajectory using the covariance gradient technique[17], but which 

tends to get stuck with local minima. The cost function is optimized 

during the iterative process to avoid local minima[18], but the 

computational effort is relatively larger. A sampling method is 

adopted to search for a collision-free initial safe trajectory[19], and 

then refines the trajectory with the gradient information of the 

smoothness of the trajectory to obtain a dynamically feasible 

trajectory. An ESDF-free gradient-based planning algorithm is 

proposed, which reduces computation time in planning the collision-

free trajectory, and lengthens the time allocation for dynamical 

feasibility[20].  

The hierarchical motion planning approach cannot meet the 

dynamics of quadrotor flight in some cases and places great 

importance on the time allocation of the second stage. The trajectory 

searched by using kinodynamic motion can meet the dynamic 

feasibility, however the computation is relatively large, and the 

gradient-based optimization method for local trajectory is easy to get 

stuck with local minima.  

3. Problem Description 

When flying fast in an unexplored or partially unexplored 

environment, the quadrotor cannot see the obscured space in advance 

since the camera has no vision of the back of the obstacle. So there is 

a significant safety risk, if quadrotor follows the initial reference 

trajectory quickly by treating all unknown space as free. To avoid the 

newly found obstacles, quadrotor needs plan local trajectories in real-

time. EGO-Planner[20] is an efficient and robust local trajectory 

planning algorithm which adjusts the collision trajectory to free space 

and reduces computation time significantly. However, EGO-Planner 

cannot handle dynamic obstacles and leaves less safety margin for 

unknown views, and the quadrotor failed to detect new obstacles in 

time under the current sensor field of view. When quadrotor enters an 

unknown space and detects a new obstacle, the original planned 

trajectory collides with obstacles (the blue trajectory as in Fig.1). And 

under EGO-Planner, the replanned trajectory is dynamically 

infeasible due to too large a change in yaw angle rate, making it more 

risky for the quadrotor to follow the replanned trajectory (the red 

curve replanned in Fig.1(a)), resulting in a greater risk of collision 

with sudden obstacle. The brown trajectory in Fig.1(b) is 

intentionally kept away from obstacles, which allows the quadrotor 

to reach the yellow control point on the brown trajectory with a 

greater safety margin for the unknown environment, and results in a 

low rate of change in yaw angle for the replanned trajectory, which 

ensures dynamic feasibility(the green curve replanned in Fig.1(b)). 
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Fig. 1. (a) Quadrotor generates real-time trajectories based on EGO-Planner 

algorithm. (b) Quadrotor generates real-time trajectories based on our algorithm. 

The blue curve is the initial trajectory, the shaded part is the blind area of sensor 

field of view.  

4. Safety Mechanism-Based Local Trajectory 

Optimization 

4.1 SMLTO Overview 

The Safety mechanism-based local trajectory optimization 

algorithm is proposed to improve the local trajectory generated by 

EGO-Planner[20]. When a quadrotor flies fast in an unknown 

environment, a large potential risk exists if there is no relative safety 

margin between the planned trajectory and the obstacles. The idea of 

proposed algorithm is to adjust the quadrotor trajectory control point 

to a certain threshold distance away from the surface of the obstacle 

to guarantee the safety of the fast flight process, as shown in 

Algorithm 1. 

 

The algorithm begins with the reception of a set of control points 

 1 2, , , npt pt pt pt= . 

And then the distance di between each control point pti of the 

trajectory and the surrounding obstacles obsi is calculated and the 

distance dimin between each control point and its nearest obstacle is 

figured out. The distances between a set of control points and their 

corresponding nearest obstacles are stored into the container dmin. 

And the di in dmin is traversed to judge the size relationship between 

di and the distance threshold set in advance. If the closest distance 

between the control point and the surface of the obstacle is greater 

than or equal to the given threshold, the relevant trajectory control 

point is directly pushed into the adjusted container adjust_point. 

Conversely, the gradient /cost    of the objective function cost 

with respect to the coordinates of the control points is calculated 

respectively. And formula (1) is adopted to adjust and optimize the 

coordinates of control points. 
 /cost   = −      (1) 

where  , ,x y z   . The algorithm does not terminate until the 

unsafe trajectory control point is adjusted to the appropriate position. 

4.2 Obstacle Center Extraction Method and Obstacle Expansion 

Radius 

It is crucial to obtain the obstacle center coordinates for our 

proposed algorithm, and we adopt the strategy of fitting the irregular 

obstacle information into a regular cube to obtain the obstacle center 

coordinates and the expansion radius. The depth camera on the 

quadrotor can obtain the obstacle information directly in the real 

environment. We utilize PCL standard library to cluster the point 

cloud information obtained by the depth camera, and traverse each 

clustered point cloud cluster to find the maximum X,Y,Z value and 

the minimum X,Y,Z value in the point cloud coordinates respectively, 

and we adopt the difference between the minimum coordinate value 

and the maximum coordinate value as the length, width and height of 

the obstacle to be fitted to form a cubic obstacle, and then obtain the 

center coordinates of the obstacle and the expansion radius obs_r. 

However, if the length, width and height of the fitted obstacle are 

large, as in Fig.2(a), using the geometric center of the fitted rectangle 

to calculate the distance to the trajectory control point (red line 

segment in Fig.2(a)), the gap with the actual distance (green line 

segment in Fig.2(a)) will be large, resulting in inaccurate judgment 

with respect to the safety threshold. Therefore, we propose a method 

where we will split larger obstacles into smaller ones to obtain more 

geometric centers, and the calculated distance between the trajectory 

control point and the obstacles is very close to the real distance, 

which makes the judgment relationship between the calculated 

distance and the safety threshold more accurate, such as the green and 

red line segments in Fig.2(b). The blue dashed circle in Fig.2(c) 

represents the obstacle expansion area. 

 
Fig. 2. (a) The error between the Euclidean distance calculated by the huge obstacle 

and the actual distance is large. (b)The huge obstacle is divided into small obstacles. 

(c) The obstacles are expanded into a sphere. 

4.3 Calculating the Distances Between Trajectory Control Points and 

Obstacles 

(a) (b)
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First, the distance between the initial control point and the obstacle 

surface should be calculated to determine whether the corresponding 

control point needs to be adjusted. For a safer fast flight, we adopt 

the strategy of drawing a sphere that can wrap the obstacle as the 

actual obstacle range(blue dashed circles as in Fig. 2(c)) to ensure 

that the distance from the control point to the surface of the obstacle 

is greater than the given safety threshold regardless of the relative 

position of the control point and the obstacle. The distance between 

the control point and the center of the obstacle is defined as d_cal and 

is calculated as in (2). 

 2 2 2_ ( ) ( ) ( )obs cpt obs cpt obs cptd cal x x y y z z= − + − + −  (2) 

where xobs, yobs, zobs and xcpt, ycpt, zcpt represent the 3D coordinates 

of the obstacle and the trajectory control point, respectively. And the 

actual distance dfct between the control point and the obstacle surface 

is calculated according to Equation (3), which is used to determine 

the relationship with the safety threshold. 

 _ _fctd d cal obs r= −  (3) 

where obs_r indicates the radius of the obstacle sphere and control 

points need to be adjusted only in the case of its corresponding dfct is 

less than the safety threshold. 

On the other hand, during the process of distance adjustment 

between the control point and the obstacle, it is necessary to obtain 

the actual distance between the control point being adjusted and the 

obstacle. When the Euclidean distance adjusted between the control 

point and the obstacle is equal to the safe threshold, the distance from 

the control point on the local trajectory in orange to the obstacle 

surface does not reach the safety threshold(d1 and d2 in Fig.3(a)). In 

order to avoid such situations, an algorithm is proposed to calculate 

the actual distance and the main thought of the algorithm is shown in 

Fig.3(b). 

The algorithm defines a triangle with two trajectory control points 

and an obstacle point, fixes the obstacle point as well as the previous 

trajectory control point, adjusts the latter trajectory control point so 

that the distance between the latter trajectory control point and the 

surface of the obstacle satisfies the given condition. 

  

Fig. 3. (a) Define the Euclidean distance between the control point and the surface 

of the obstacle as the actual distance. (b) Define the distance between the obstacle 

and the straight line determined by the two control points as the actual distance. 

 

Based on the relationship between the lengths of the three sides, 

the interior angle (the angle between dbw and dft) in the triangle of 

Fig.3(b) is calculated using the cosine theorem as in (4). 

 

2 2 2

arccos( )
2

bw ft bk

bw ft

d d d

d d


+ −
=

 
 (4) 

where   represents the quadrotor flight direction, and the angle 

will gradually increase during the real-time adjustment process, 

which allows the quadrotor to adjust the flight direction in real-time 

during the fast flight and obtain more information about the unknown 

environment in advance.  

The algorithm guarantees that the distance between each point on 

the actual trajectory and the surface of obstacle is greater than the 

safety threshold. We employ the strategy that the direction of the 

connecting line of two adjacent trajectory control points is the 

velocity direction, as the grey arrow in Fig.3(b). In the vertical line 

of velocity direction crossing the obstacle center, the distance from 

the surface of the obstacle to the connecting line is defined as the 

actual distance dfct (the red line segment in Fig.3(b)), the calculation 

formula is shown as (5). Adopting this strategy can effectively 

guarantee that the minimum distance between the straight line formed 

by the two control points and the surface of the obstacle is larger than 

the given safety threshold. 

 sin _fct ftd d obs r=  −  (5) 

4.4 Objective Function Design 

The objective function we designed as follows: 

 

21
( )

( ) 2

0

fct thres fct thres

fct

fct thres

d d d d
cost d

d d


− 

= 
 

 (6) 

where dfct represents the actual distance between the trajectory 

control point and the obstacle, and dthres represents the given safety 

threshold.  

A relatively large gradient is obtained when the actual distance 

differs significantly from the safety threshold, a larger value of 

gradient enables the inappropriate control points to iterate quickly 

close to the optimal control point position. The gradient is decreasing 

during the adjustment process, and the smaller gradient can prevent 

the control point from oscillating near the optimal control point, 

which makes the trajectory control point better for iterating and 

gaining the optimal solution. This function does not have a local 

optimum and enables the control points to converge to the global 

optimum solution quickly and satisfy real-time performance. 

5. Experimental Details 

5.1  Simulation experiment setup 

The trajectory control point adjustment algorithm proposed in this 

paper is implemented based on C++11 standard, and in each group of 

comparison experiments, the parameters of the adjusted algorithm are 

kept consistent with all parameters of the original algorithm, 

including map resolution, obstacle expansion coefficient, quadrotor 

flight speed and acceleration. Various simulation conditions are also 

kept the same, including initial takeoff position, given target point 

position, camera internal parameters and quadrotor controller, etc. 

We adopt the physical simulation platform (Gazebo) as the 

simulation environment, and the robot operating system (ROS) is 

utilized for communication between the components during the 

simulation. The simulation quadrotor uses the official open source 

firmware provided by PX4. All simulations and algorithms are run on 

a laptop with an octa-core 2.3GHz i7-10875H processor and 

RTX2060 graphics card. In the next section, we will set up different 
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simulation environments for verifying the security of our proposed 

algorithms. 

5.2  Simulation experiments 

In scene one, a 1×1×5m rectangular obstacle is placed behind the 

corner of the wall. Our algorithm allows the quadrotor to reach the 

red dot in Fig.4(a) at a greater distance from the obstacle in the corner. 

When the quadrotor encounters the obstacle behind the wall corner, 

the longer safety distance enables the quadrotor to obtain more 

reaction time which guarantees the success rate of trajectory 

replanning in high-speed flight situations. In the original algorithm, 

when the quadrotor reaches the red dot in Fig.4(b), the distance to the 

obstacle behind the corner is close and due to the inertia of the high-

speed flying quadrotor, the quadrotor collides with the obstacle, 

resulting in planning failure. Compared with Fig.4(d), the trajectory 

planned by our algorithm (Fig.4(c)) will leave more safety margin for 

the unknown area. 

 

 

Fig. 4. The actual flight trajectory of the quadrotor in scene 1. (a) Flight trajectory 

under our proposed algorithm. (b) Flight trajectory under the EGO-Planner. (c) The 

local trajectory replanned by our algorithm. (d) The local trajectory replanned by 

the EGO-Planner. 

In scene two, we simulated the situation of a real corridor, and the 

distance between corridors is set to 3 meters. When flying in the 

simulation corridor under our proposed algorithm, if the distance 

from the quadrotor to obstacles on both sides cannot meet the given 

safety threshold, our algorithm will plan the trajectory in the middle 

of the corridor, such as the yellow elliptical curve circle in Fig.5(c). 

Flying in the middle of the two obstacles, so that the quadrotor can 

ensure more reliable flight during the flight in a narrow environment, 

and there will not be a situation where the planning trajectory cannot 

be accurately executed due to the influence of external factors leading 

to collision with obstacles, such as the quadrotor in Fig.5(b), the 

quadrotor is close to the corner of the wall and collides with the red 

obstacle. On the other hand, flying between two obstacles, the 

quadrotor is able to find the obstacles behind the corners altogether 

easily, ensuring a safer flight, as in Fig.5(a). The trajectory planned 

by the original algorithm lacks spatial optimality, as Fig.5(d). 

 

 

Fig. 5. The actual flight trajectory of the quadrotor in scene 2. (a),(c) Flight 

trajectory under our proposed algorithm. (b),(d) Flight trajectory under the EGO-

Planner. (e) The local trajectory replanned by our algorithm. (f) The local trajectory 

replanned by the EGO-Planner. 

 

 

Fig. 6. The actual flight trajectory of the quadrotor in scene 3. (a) Flight trajectory 

under our proposed algorithm. (b) Flight trajectory under the EGO-Planner. (c) The 

local trajectory replanned by our algorithm. (d) The local trajectory replanned by 

the EGO-Planner. 

The scene three is shown in Fig.6, the quadrotor will initially fly 

between two walls, and when new obstacles appear in front of the 

flight and the flight corridor becomes narrower (i.e., the horizontal 
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distance between the green cylinder and the right wall in Fig.6(a)), 

the quadrotor will automatically fly at the safest position according 

to the distance from the obstacles on both sides, as the red dashed 

circle in Fig.6(a). After passing the narrow corridor, due to the risk of 

unknown obstacles behind the corner of the wall, the quadrotor will 

take the initiative to move away from the corner so that it can get a 

larger field of view as well as a longer braking distance during the 

turn, and can discover the obstacles behind the corner in advance to 

ensure the safe flight. On the contrary, if the distance from the corner 

is too small when turning, which will lead to the quadrotor collide 

with the obstacles in the unknown field of view, as in Fig.6(b). The 

actual planned trajectory of the two algorithms are shown in 

Fig.6(c)(d), and the trajectory planned by our algorithm (Fig.6(c)) is 

safety conscious for the unknown environment compared to the 

original algorithm (Fig.6(d)). 

6. Conclusion 

In this paper, we propose a safety mechanism-based local 

trajectory optimization (SMLTO) method for quadrotor autonomous 

navigation. The method plans a conservative and safe trajectory with 

fast inference speed. We adopt EGO-Planner to find an initial 

trajectory and calculate the expansion radius of the obstacle by 

extracting the center of point clouds with vision sensor. The distances 

between trajectory points and obstructive surface will be estimated. 

To avoid these distances are less than the desired safety threshold, 

local trajectory is further adjusted by a gradient-based optimization. 

Finally, all trajectory points of quadrotor will be conservative with 

safety distance, even if quadrotor immediately enters an unknown 

space. The proposed method is validated through benchmark 

comparisons in various complex environments and the simulation. 
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