
International Journal of Applied Mathematics in Control Engineering 6 (2023) 44-50

* Corresponding author.

E-mail addresses: songxg@swjtu.edu.cn (Xingguo Song*)

doi:123456

 Contents lists available at YXpublications

 International Journal of Applied Mathematics in

Control Engineering

 Journal homepage: http://www.ijamce.com

Safety Mechanism-based Local Trajectory Optimization in Real-time for Quadrotor Fast

Flight

Jie Tang, Xingguo Song*, Qiu Hou, Lulu Gong, Yue Zan

Mechanical Engineering School, Southwest Jiaotong University, Chengdu 610031, China

A R T I C L E I N F O

A B S T R A C T

Article history:

Received 20 January 2023

Accepted 25 February 2023

Available online 2 March 2023

 Trajectory planning has been widely applied for autonomous quadrotors navigation in unstructured environments.

However, when faced with unexplored environments, trajectory replanning is difficult to ensure the safety of

quadrotors fast flight since the limitations of kinodynamic feasibility. In this paper, a safety mechanism-based local

trajectory optimization (SMLTO) is proposed to replan a safe and kinodynamic feasible trajectory in real-time, by

adjusting the position of local control points for occlusion effect. Expansion radius of the obstacle is calculated by

extracting the center of point clouds of obstacle, which is utilized to predict the distances between control points

and obstructive surface. When the distance fails to reach the set safety threshold, the gradient descent method will

be used to calculate the adjustment direction of control points. The distance from adjusted control points to the

obstacle surface is not less than safety threshold. Each control point can be adjusted to conservative position with

safety distance through the proposed SMLTO method, even if quadrotor will face some unforeseeable obstacles.

The proposed method is validated extensively through benchmark comparisons in multifold challenging simulation

environments.

Published by Y.X.Union. All rights reserved.

Keywords：

Safety mechanism

Trajectory optimization

Gradient descent

Quadrotor navigation

1. Introduction

Quadrotor is playing an increasingly important role in

contemporary society, and is increasingly used in a wide variety of

fields, including terrain survey and cargo delivery. The quadrotor has

the ability to recognize surrounding obstacles and generate reliable

collision-free trajectory is a fundamental guarantee to accomplish the

autonomous tasks. Although a lot of work has been performed on

trajectory generation and autonomous navigation of quadrotor in

unknown environments, however, many problems still exist.

First of all, the quadrotor will not fly exactly according to the pre-

planned trajectory due to external factors, which will lead to a

collision between the quadrotor and the obstacle when the quadrotor

passes the obstacle at a certain moment. On the other hand, the fast

flight speed of the quadrotor makes it difficult to re-path planning

timely to avoid obstacles when the quadrotor suddenly encounters

obstacle during flight (e.g. obstacles obscured by walls and dynamic

obstacles, etc.), which eventually leads to the failure of quadrotor

trajectory planning and navigation or even crashing.

In this paper, we propose a trajectory control point adjustment

algorithm to obtain a safer flight trajectory. The algorithm calculates

the distance between the initial trajectory control point and the

corresponding obstacle, and adjusts the initial trajectory control point

according to the distance size, so that the planned trajectory can keep

relatively farther distance away from the obstacle.

A novel objective function is introduced in this algorithm to limit

the minimum distance between the trajectory control point and the

obstacle, and the gradient descent algorithm is adopted to adjust the

trajectory control point to the most suitable position, i.e., the distance

between the trajectory control point and the obstacle needs to satisfy

the given safety threshold as much as possible. The trajectory

adjusted by the algorithm eliminates potential risks and the quadrotor

is able to maintain a relatively safe distance from the obstacle when

it encounters obstacle. The relatively large distance gives the

quadrotor more time to re-trajectory planning when encountering

obscured obstacles and dynamic obstacles, which makes the

quadrotor fast flight process gets better safety assurance.

Compared to the already existing work, our proposed method is

http://www.ijamce.com/

J. Tang et al. / IJAMCE 6 (2023) 44-50

able to generate safer and more stable trajectory in various complex

environments. We have tested the robustness and security of our

proposed algorithm in many simulation environments with

satisfactory results.

2. Related works

2.1 Hierarchical Motion Planning

The implement of flight corridors to limit the range of generated

trajectory has been extensively researched in the field of trajectory

planning. Continuous large overlapping grids are taken in unknown

space as free space and feasible trajectory is found in a series of

connected three-dimensional cubical grids[1]. The set of convex

overlapping polyhedra is defined as a flight corridor, and then

polynomial trajectory is generated in the flight corridor using a

quadratic programming approach[2]. Some methods construct flight

corridors directly on point cloud data as free space and employ

quadratically constrained quadratic programming methods[3] to

generate collision-free trajectories, as well as trajectories being

represented as piecewise Bézier curves[4] to satisfy the dynamic

feasibility of the trajectory. A k-order function of time is used to

express the trajectory, which then is optimized by solving a quadratic

programming problem to generate the optimal trajectory[5]. The

existing polynomial trajectory generation method is extended to

guarantee trajectory safety by adding intermediate path points[6],

however, this method increases the computational effort and lacks the

guarantee of a globally optimal trajectory. Topological path algorithm

is proposed in [7] to explore the three-dimensional space more

completely and finds the relatively optimal initial path. The algorithm

mentioned above relies heavily on the time allocation, and an

improper time allocation may significantly degrade the quality of the

trajectory. In order to achieve a better time allocation, a ESDF-

induced velocity field is utilized to search for trajectory directly[8].

2.2 Kinodynamic Motion Planning

Finding a dynamically feasible initial trajectory and adjusting local

control points is also quite effective in the trajectory planning process.

A b-spline curve is utilized to represent the initial trajectory to

resolve the dynamic infeasibility caused by non-static motion, and an

elastic optimization method is presented to optimize the trajectory

discretization[9]. The shortest trajectory search algorithm is

converted to a dynamic trajectory search algorithm that a more

reasonable initial trajectory is generated, and an elastic optimization

algorithm is adopted to address trajectory dispersion[10]. A b-spline-

based trajectory search algorithm (BNUK) is proposed to generate

dynamically feasible initial trajectory, and then the trajectory is

refined by utilizing the proposed control point optimization method

to improve the smoothness of the trajectory[11]. An initial path in 3D

space based on a non-uniform b-spline curve representation can be

generated by using the kinodynamic path searching method[12], and

an iterative time-adjustment algorithm is adopted for time allocation

of paths to improve the feasibility of dynamic trajectory.

Methods based on searching and sampling are often employed to

search for dynamically feasible trajectories. A search-based planning

method is proposed to compute dynamically feasible trajectories for

a quadrotor flying in an obstacle-cluttered environment by exploiting

the explicit solution of a linear quadratic minimum time problem[13].

A set of short-time motion primitives is utilized to explore the

unknown to find smooth as well as least time-consuming

trajectory[14]. The algorithms PRM* and RRT* proposed in [15]

guarantee asymptotic optimality and less computational complexity

than the traditional sampling-based path search algorithms PRM and

RRT. The kinodynamic RRT* algorithm proposed in [16] has been

extended with work on RRT*, which guarantees the asymptotic

optimality of the algorithm for any controllable linear system with

minimal computational overhead.

Some methods add collisionality and smoothness of the trajectory

to the cost function and optimize the trajectory by adopting gradient

optimization method.

The CHOMP algorithm is proposed to optimize the generated

trajectory using the covariance gradient technique[17], but which

tends to get stuck with local minima. The cost function is optimized

during the iterative process to avoid local minima[18], but the

computational effort is relatively larger. A sampling method is

adopted to search for a collision-free initial safe trajectory[19], and

then refines the trajectory with the gradient information of the

smoothness of the trajectory to obtain a dynamically feasible

trajectory. An ESDF-free gradient-based planning algorithm is

proposed, which reduces computation time in planning the collision-

free trajectory, and lengthens the time allocation for dynamical

feasibility[20].

The hierarchical motion planning approach cannot meet the

dynamics of quadrotor flight in some cases and places great

importance on the time allocation of the second stage. The trajectory

searched by using kinodynamic motion can meet the dynamic

feasibility, however the computation is relatively large, and the

gradient-based optimization method for local trajectory is easy to get

stuck with local minima.

3. Problem Description

When flying fast in an unexplored or partially unexplored

environment, the quadrotor cannot see the obscured space in advance

since the camera has no vision of the back of the obstacle. So there is

a significant safety risk, if quadrotor follows the initial reference

trajectory quickly by treating all unknown space as free. To avoid the

newly found obstacles, quadrotor needs plan local trajectories in real-

time. EGO-Planner[20] is an efficient and robust local trajectory

planning algorithm which adjusts the collision trajectory to free space

and reduces computation time significantly. However, EGO-Planner

cannot handle dynamic obstacles and leaves less safety margin for

unknown views, and the quadrotor failed to detect new obstacles in

time under the current sensor field of view. When quadrotor enters an

unknown space and detects a new obstacle, the original planned

trajectory collides with obstacles (the blue trajectory as in Fig.1). And

under EGO-Planner, the replanned trajectory is dynamically

infeasible due to too large a change in yaw angle rate, making it more

risky for the quadrotor to follow the replanned trajectory (the red

curve replanned in Fig.1(a)), resulting in a greater risk of collision

with sudden obstacle. The brown trajectory in Fig.1(b) is

intentionally kept away from obstacles, which allows the quadrotor

to reach the yellow control point on the brown trajectory with a

greater safety margin for the unknown environment, and results in a

low rate of change in yaw angle for the replanned trajectory, which

ensures dynamic feasibility(the green curve replanned in Fig.1(b)).

J. Tang et al. / IJAMCE 6 (2023) 44-50

Fig. 1. (a) Quadrotor generates real-time trajectories based on EGO-Planner

algorithm. (b) Quadrotor generates real-time trajectories based on our algorithm.

The blue curve is the initial trajectory, the shaded part is the blind area of sensor

field of view.

4. Safety Mechanism-Based Local Trajectory

Optimization

4.1 SMLTO Overview

The Safety mechanism-based local trajectory optimization

algorithm is proposed to improve the local trajectory generated by

EGO-Planner[20]. When a quadrotor flies fast in an unknown

environment, a large potential risk exists if there is no relative safety

margin between the planned trajectory and the obstacles. The idea of

proposed algorithm is to adjust the quadrotor trajectory control point

to a certain threshold distance away from the surface of the obstacle

to guarantee the safety of the fast flight process, as shown in

Algorithm 1.

The algorithm begins with the reception of a set of control points

 1 2, , , npt pt pt pt= .

And then the distance di between each control point pti of the

trajectory and the surrounding obstacles obsi is calculated and the

distance dimin between each control point and its nearest obstacle is

figured out. The distances between a set of control points and their

corresponding nearest obstacles are stored into the container dmin.

And the di in dmin is traversed to judge the size relationship between

di and the distance threshold set in advance. If the closest distance

between the control point and the surface of the obstacle is greater

than or equal to the given threshold, the relevant trajectory control

point is directly pushed into the adjusted container adjust_point.

Conversely, the gradient /cost   of the objective function cost

with respect to the coordinates of the control points is calculated

respectively. And formula (1) is adopted to adjust and optimize the

coordinates of control points.
 /cost   = −    (1)

where  , ,x y z  . The algorithm does not terminate until the

unsafe trajectory control point is adjusted to the appropriate position.

4.2 Obstacle Center Extraction Method and Obstacle Expansion

Radius

It is crucial to obtain the obstacle center coordinates for our

proposed algorithm, and we adopt the strategy of fitting the irregular

obstacle information into a regular cube to obtain the obstacle center

coordinates and the expansion radius. The depth camera on the

quadrotor can obtain the obstacle information directly in the real

environment. We utilize PCL standard library to cluster the point

cloud information obtained by the depth camera, and traverse each

clustered point cloud cluster to find the maximum X,Y,Z value and

the minimum X,Y,Z value in the point cloud coordinates respectively,

and we adopt the difference between the minimum coordinate value

and the maximum coordinate value as the length, width and height of

the obstacle to be fitted to form a cubic obstacle, and then obtain the

center coordinates of the obstacle and the expansion radius obs_r.

However, if the length, width and height of the fitted obstacle are

large, as in Fig.2(a), using the geometric center of the fitted rectangle

to calculate the distance to the trajectory control point (red line

segment in Fig.2(a)), the gap with the actual distance (green line

segment in Fig.2(a)) will be large, resulting in inaccurate judgment

with respect to the safety threshold. Therefore, we propose a method

where we will split larger obstacles into smaller ones to obtain more

geometric centers, and the calculated distance between the trajectory

control point and the obstacles is very close to the real distance,

which makes the judgment relationship between the calculated

distance and the safety threshold more accurate, such as the green and

red line segments in Fig.2(b). The blue dashed circle in Fig.2(c)

represents the obstacle expansion area.

Fig. 2. (a) The error between the Euclidean distance calculated by the huge obstacle

and the actual distance is large. (b)The huge obstacle is divided into small obstacles.

(c) The obstacles are expanded into a sphere.

4.3 Calculating the Distances Between Trajectory Control Points and

Obstacles

(a) (b)

J. Tang et al. / IJAMCE 6 (2023) 44-50

First, the distance between the initial control point and the obstacle

surface should be calculated to determine whether the corresponding

control point needs to be adjusted. For a safer fast flight, we adopt

the strategy of drawing a sphere that can wrap the obstacle as the

actual obstacle range(blue dashed circles as in Fig. 2(c)) to ensure

that the distance from the control point to the surface of the obstacle

is greater than the given safety threshold regardless of the relative

position of the control point and the obstacle. The distance between

the control point and the center of the obstacle is defined as d_cal and

is calculated as in (2).

 2 2 2_ () () ()obs cpt obs cpt obs cptd cal x x y y z z= − + − + − (2)

where xobs, yobs, zobs and xcpt, ycpt, zcpt represent the 3D coordinates

of the obstacle and the trajectory control point, respectively. And the

actual distance dfct between the control point and the obstacle surface

is calculated according to Equation (3), which is used to determine

the relationship with the safety threshold.

 _ _fctd d cal obs r= − (3)

where obs_r indicates the radius of the obstacle sphere and control

points need to be adjusted only in the case of its corresponding dfct is

less than the safety threshold.

On the other hand, during the process of distance adjustment

between the control point and the obstacle, it is necessary to obtain

the actual distance between the control point being adjusted and the

obstacle. When the Euclidean distance adjusted between the control

point and the obstacle is equal to the safe threshold, the distance from

the control point on the local trajectory in orange to the obstacle

surface does not reach the safety threshold(d1 and d2 in Fig.3(a)). In

order to avoid such situations, an algorithm is proposed to calculate

the actual distance and the main thought of the algorithm is shown in

Fig.3(b).

The algorithm defines a triangle with two trajectory control points

and an obstacle point, fixes the obstacle point as well as the previous

trajectory control point, adjusts the latter trajectory control point so

that the distance between the latter trajectory control point and the

surface of the obstacle satisfies the given condition.

Fig. 3. (a) Define the Euclidean distance between the control point and the surface

of the obstacle as the actual distance. (b) Define the distance between the obstacle

and the straight line determined by the two control points as the actual distance.

Based on the relationship between the lengths of the three sides,

the interior angle (the angle between dbw and dft) in the triangle of

Fig.3(b) is calculated using the cosine theorem as in (4).

2 2 2

arccos()
2

bw ft bk

bw ft

d d d

d d


+ −
=

 
 (4)

where  represents the quadrotor flight direction, and the angle

will gradually increase during the real-time adjustment process,

which allows the quadrotor to adjust the flight direction in real-time

during the fast flight and obtain more information about the unknown

environment in advance.

The algorithm guarantees that the distance between each point on

the actual trajectory and the surface of obstacle is greater than the

safety threshold. We employ the strategy that the direction of the

connecting line of two adjacent trajectory control points is the

velocity direction, as the grey arrow in Fig.3(b). In the vertical line

of velocity direction crossing the obstacle center, the distance from

the surface of the obstacle to the connecting line is defined as the

actual distance dfct (the red line segment in Fig.3(b)), the calculation

formula is shown as (5). Adopting this strategy can effectively

guarantee that the minimum distance between the straight line formed

by the two control points and the surface of the obstacle is larger than

the given safety threshold.

 sin _fct ftd d obs r=  − (5)

4.4 Objective Function Design

The objective function we designed as follows:

21
()

() 2

0

fct thres fct thres

fct

fct thres

d d d d
cost d

d d


− 

= 
 

 (6)

where dfct represents the actual distance between the trajectory

control point and the obstacle, and dthres represents the given safety

threshold.

A relatively large gradient is obtained when the actual distance

differs significantly from the safety threshold, a larger value of

gradient enables the inappropriate control points to iterate quickly

close to the optimal control point position. The gradient is decreasing

during the adjustment process, and the smaller gradient can prevent

the control point from oscillating near the optimal control point,

which makes the trajectory control point better for iterating and

gaining the optimal solution. This function does not have a local

optimum and enables the control points to converge to the global

optimum solution quickly and satisfy real-time performance.

5. Experimental Details

5.1 Simulation experiment setup

The trajectory control point adjustment algorithm proposed in this

paper is implemented based on C++11 standard, and in each group of

comparison experiments, the parameters of the adjusted algorithm are

kept consistent with all parameters of the original algorithm,

including map resolution, obstacle expansion coefficient, quadrotor

flight speed and acceleration. Various simulation conditions are also

kept the same, including initial takeoff position, given target point

position, camera internal parameters and quadrotor controller, etc.

We adopt the physical simulation platform (Gazebo) as the

simulation environment, and the robot operating system (ROS) is

utilized for communication between the components during the

simulation. The simulation quadrotor uses the official open source

firmware provided by PX4. All simulations and algorithms are run on

a laptop with an octa-core 2.3GHz i7-10875H processor and

RTX2060 graphics card. In the next section, we will set up different

J. Tang et al. / IJAMCE 6 (2023) 44-50

simulation environments for verifying the security of our proposed

algorithms.

5.2 Simulation experiments

In scene one, a 1×1×5m rectangular obstacle is placed behind the

corner of the wall. Our algorithm allows the quadrotor to reach the

red dot in Fig.4(a) at a greater distance from the obstacle in the corner.

When the quadrotor encounters the obstacle behind the wall corner,

the longer safety distance enables the quadrotor to obtain more

reaction time which guarantees the success rate of trajectory

replanning in high-speed flight situations. In the original algorithm,

when the quadrotor reaches the red dot in Fig.4(b), the distance to the

obstacle behind the corner is close and due to the inertia of the high-

speed flying quadrotor, the quadrotor collides with the obstacle,

resulting in planning failure. Compared with Fig.4(d), the trajectory

planned by our algorithm (Fig.4(c)) will leave more safety margin for

the unknown area.

Fig. 4. The actual flight trajectory of the quadrotor in scene 1. (a) Flight trajectory

under our proposed algorithm. (b) Flight trajectory under the EGO-Planner. (c) The

local trajectory replanned by our algorithm. (d) The local trajectory replanned by

the EGO-Planner.

In scene two, we simulated the situation of a real corridor, and the

distance between corridors is set to 3 meters. When flying in the

simulation corridor under our proposed algorithm, if the distance

from the quadrotor to obstacles on both sides cannot meet the given

safety threshold, our algorithm will plan the trajectory in the middle

of the corridor, such as the yellow elliptical curve circle in Fig.5(c).

Flying in the middle of the two obstacles, so that the quadrotor can

ensure more reliable flight during the flight in a narrow environment,

and there will not be a situation where the planning trajectory cannot

be accurately executed due to the influence of external factors leading

to collision with obstacles, such as the quadrotor in Fig.5(b), the

quadrotor is close to the corner of the wall and collides with the red

obstacle. On the other hand, flying between two obstacles, the

quadrotor is able to find the obstacles behind the corners altogether

easily, ensuring a safer flight, as in Fig.5(a). The trajectory planned

by the original algorithm lacks spatial optimality, as Fig.5(d).

Fig. 5. The actual flight trajectory of the quadrotor in scene 2. (a),(c) Flight

trajectory under our proposed algorithm. (b),(d) Flight trajectory under the EGO-

Planner. (e) The local trajectory replanned by our algorithm. (f) The local trajectory

replanned by the EGO-Planner.

Fig. 6. The actual flight trajectory of the quadrotor in scene 3. (a) Flight trajectory

under our proposed algorithm. (b) Flight trajectory under the EGO-Planner. (c) The

local trajectory replanned by our algorithm. (d) The local trajectory replanned by

the EGO-Planner.

The scene three is shown in Fig.6, the quadrotor will initially fly

between two walls, and when new obstacles appear in front of the

flight and the flight corridor becomes narrower (i.e., the horizontal

J. Tang et al. / IJAMCE 6 (2023) 44-50

distance between the green cylinder and the right wall in Fig.6(a)),

the quadrotor will automatically fly at the safest position according

to the distance from the obstacles on both sides, as the red dashed

circle in Fig.6(a). After passing the narrow corridor, due to the risk of

unknown obstacles behind the corner of the wall, the quadrotor will

take the initiative to move away from the corner so that it can get a

larger field of view as well as a longer braking distance during the

turn, and can discover the obstacles behind the corner in advance to

ensure the safe flight. On the contrary, if the distance from the corner

is too small when turning, which will lead to the quadrotor collide

with the obstacles in the unknown field of view, as in Fig.6(b). The

actual planned trajectory of the two algorithms are shown in

Fig.6(c)(d), and the trajectory planned by our algorithm (Fig.6(c)) is

safety conscious for the unknown environment compared to the

original algorithm (Fig.6(d)).

6. Conclusion

In this paper, we propose a safety mechanism-based local

trajectory optimization (SMLTO) method for quadrotor autonomous

navigation. The method plans a conservative and safe trajectory with

fast inference speed. We adopt EGO-Planner to find an initial

trajectory and calculate the expansion radius of the obstacle by

extracting the center of point clouds with vision sensor. The distances

between trajectory points and obstructive surface will be estimated.

To avoid these distances are less than the desired safety threshold,

local trajectory is further adjusted by a gradient-based optimization.

Finally, all trajectory points of quadrotor will be conservative with

safety distance, even if quadrotor immediately enters an unknown

space. The proposed method is validated through benchmark

comparisons in various complex environments and the simulation.

References

[1] Chen J, Liu T, Shen S. Online generation of collision-free trajectories for

quadrotor flight in unknown cluttered environments[C]//2016 IEEE

international conference on robotics and automation (ICRA). IEEE, 2016:

1476-1483.

[2] Liu S, Watterson M, Mohta K, et al. Planning dynamically feasible

trajectories for quadrotors using safe flight corridors in 3-d complex

environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-

1695.

[3] Gao F, Shen S. Online quadrotor trajectory generation and autonomous

navigation on point clouds[C]//2016 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR). IEEE, 2016: 139-146.

[4] Gao F, Wu W, Gao W, et al. Flying on point clouds: Online trajectory

generation and autonomous navigation for quadrotors in cluttered

environments[J]. Journal of Field Robotics, 2019, 36(4): 710-733.

[5] Mellinger D, Kumar V. Minimum snap trajectory generation and control for

quadrotors[C]//2011 IEEE international conference on robotics and

automation. IEEE, 2011: 2520-2525.

[6] Richter C, Bry A, Roy N. Polynomial trajectory planning for aggressive

quadrotor flight in dense indoor environments[M]//Robotics research.

Springer, Cham, 2016: 649-666.

[7] Zhou B, Gao F, Pan J, et al. Robust real-time uav replanning using guided

gradient-based optimization and topological paths[C]//2020 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2020:

1208-1214.

[8] Gao F, Wu W, Lin Y, et al. Online safe trajectory generation for quadrotors

using fast marching method and bernstein basis polynomial[C]//2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2018:

344-351.

[9] Ding W, Gao W, Wang K, et al. An efficient b-spline-based kinodynamic

replanning framework for quadrotors[J]. IEEE Transactions on Robotics,

2019, 35(6): 1287-1306.

[10] Ding W, Gao W, Wang K, et al. Trajectory replanning for quadrotors using

kinodynamic search and elastic optimization[C]//2018 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2018: 7595-7602.

[11] Tang L, Wang H, Liu Z, et al. A real-time quadrotor trajectory planning

framework based on B‐spline and nonuniform kinodynamic search[J].

Journal of Field Robotics, 2021, 38(3): 452-475.

[12] Zhou B, Gao F, Wang L, et al. Robust and efficient quadrotor trajectory

generation for fast autonomous flight[J]. IEEE Robotics and Automation

Letters, 2019, 4(4): 3529-3536.

[13] Liu S, Atanasov N, Mohta K, et al. Search-based motion planning for

quadrotors using linear quadratic minimum time control[C]//2017

IEEE/RSJ international conference on intelligent robots and systems (IROS).

IEEE, 2017: 2872-2879.

[14] Mueller M W, Hehn M, D'Andrea R. A computationally efficient motion

primitive for quadrocopter trajectory generation[J]. IEEE transactions on

robotics, 2015, 31(6): 1294-1310.

[15] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion

planning[J]. The international journal of robotics research, 2011, 30(7): 846-

894.

[16] Webb D J, Van Den Berg J. Kinodynamic RRT*: Asymptotically optimal

motion planning for robots with linear dynamics[C]//2013 IEEE

international conference on robotics and automation. IEEE, 2013: 5054-

5061.

[17] Ratliff N, Zucker M, Bagnell J A, et al. CHOMP: Gradient optimization

techniques for efficient motion planning[C]//2009 IEEE International

Conference on Robotics and Automation. IEEE, 2009: 489-494.

[18] Kalakrishnan M, Chitta S, Theodorou E, et al. STOMP: Stochastic trajectory

optimization for motion planning[C]//2011 IEEE international conference

on robotics and automation. IEEE, 2011: 4569-4574.

[19] Gao F, Lin Y, Shen S. Gradient-based online safe trajectory generation for

quadrotor flight in complex environments[C]//2017 IEEE/RSJ international

conference on intelligent robots and systems (IROS). IEEE, 2017: 3681-

3688.

[20] Zhou X, Wang Z, Ye H, et al. Ego-planner: An esdf-free gradient-based

local planner for quadrotors[J]. IEEE Robotics and Automation Letters,

2020, 6(2): 478-485.

Xingguo Song, Ph.D., graduated from Harbin
Institute of Technology, School of Mechanical
and Electrical Engineering, majoring in
Mechanical Design and Theory, is a visiting
scholar at Rice University and a postdoctoral
fellow at Johns Hopkins University, USA. His
main research interests are intelligent robotics,
UAV path planning, bionic robotics, and
computer vision.

Jie Tang is currently a graduate student in the
School of Mechanical Engineering at
Southwest Jiaotong University and his
research interests are in UAV control and UAV
path planning.

J. Tang et al. / IJAMCE 6 (2023) 44-50

Qiu Hou is currently studying in the School
of Mechanical Engineering at Southwest
Jiaotong University, and his main research
interests are autonomous exploration and
map building of UAV in unknown
environments.

Lulu Gong is currently studying at the
School of Mechanical Engineering at
Southwest Jiaotong University, and his
research interest is autonomous UAV
landing technology.

Yue Zan is a master student and currently
studying in the School of Mechanical
Engineering, Southwest Jiaotong University,
with research interests in the design and
multimodal control of variable structure
quadrotor UAV.

