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 The steel refining process is characterized by multi-stage, multi-equipment and multi-constraints, and there is the 

problem of uncertainty in the steel hit rate. The steel in the refining process in units of charge is often reworked due 

to low steel hit rate, so the mathematical model is difficult to describe accurately. Based on this feature, a Markov 

chain-based stochastic evolution mathematical model of the steel refining process was developed. In addition, based 

on the fact that an increase in the number of refineries in the steel refining process will lead to a huge increase in 

computational difficulty, and considering the requirements of the refining process for the efficiency of the scheduling 

optimization problem in an uncertain environment, we designed an algorithm solution framework based on heuristic 

simulation strategy and improved Q learning and conducted simulation experiments based on the data of a steel 

company to prove the effectiveness of the proposed scheme. 
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1. Introduction 

The steel industry is the foundation of the national economy. As 

the market's demand for steel continues to increase and the 

requirements for steel production efficiency continue to increase, the 

optimization of steel production technology has become a crucial 

issue. Earlier studies (Tan Y., et al., 2013) showed as the bottleneck 

of the entire steel production, the steelmaking-continuous casting 

process has a huge impact on the entire steel production. The refining 

link is the intermediate link between steelmaking and continuous 

casting. Due to the complex production equipment in the refining 

process, it is difficult to ensure the stability of the molten steel 

composition treatment in the production unit. The molten steel hit 

rate may not meet the standard (that is, from certain refining, the 

composition of molten steel based on heat from the process did not 

meet the established requirements), which led to the occurrence of re-

smelting, which seriously affected the normal production of 

subsequent heats, affected the efficiency of steel production, 

increased energy consumption, and increased the use of personnel 

costs. Therefore, it is important to propose a study on the uncertain 

scheduling method for steel hit rate in the refining production process 

to ensure the smooth running of steel production. 

2. Mathematical model 

2.1 Description of Refining production scheduling problem 

The refining process is a multi-equipment and multi-stage 

production process based on heat. Each process in each heat only 

occupies one refining equipment for production at the same time, and 

one production equipment can only process one at the same time. The 

molten steel of the heat is produced. There are multiple refining 

processes in the refining process, with multiple refining process paths 

and multiple possible refining production states, that is, the refining 

production state, initial processing time, The completion time and the 

quality of the completion (whether it needs to be re-smelted) are 

uncertain. The uncertainty of the refining process is only affected by 

the previous refining process produced with the same refining 

equipment. According to the characteristics of the refining process 

and the research on steelmaking-continuous casting production, 

mathematical equations are used to describe the two performance 

indicators of the refining production scheduling problem: (1) In the 

refining process, each heat is cast on the continuous casting machine. 

The deviation between the ideal pouring time and the actual pouring 
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time is similar. The deviation between the ideal pouring time and the 

actual pouring time is divided into two situations:  

① The actual pouring time of heat 𝑖  on the corresponding 

continuous casting machine is ahead of the ideal pouring time 𝑇𝑖 of 

the continuous casting machine. ②The actual pouring time of heat 

𝑖 on the corresponding continuous casting machine lags behind the 

ideal pouring time 𝑇𝑖 of the continuous casting machine, as shown 

in equation (1). (2) The sum of the waiting time of the heat in each 

process is the smallest, because this article only studies the refining 

process, so the refining production stage process number 𝑗′ =2,3,4. 

Equation (2) is listed, which means that the sum of waiting time for 

heat i in the refining production stage is the smallest. 

 𝑀𝑖𝑛 𝑓1 = ∑ ∑ |𝑇𝑖 − 𝑀𝑙𝑖|𝑙=1,2,3
𝐷
𝑖=1                  (1) 

In the equation, 𝑀𝑙𝑖 represents the starting time of the lth pouring 

and the 𝑙-th heat on the corresponding continuous casting machine, 

𝑖 ∈ {1, … , 𝐷} is a positive integer; 𝑇𝑖 represents the ideal pouring 

time of the heat 𝑖 on the corresponding continuous casting machine. 

𝑀𝑖𝑛 𝑓2 = ∑ ∑ 𝐶2𝑖(𝐹𝑖𝑗′+1 − 𝐹𝑖𝑗′ − 𝑊𝑖𝑗′)
𝑗′=2,3,4

𝐷

𝑖=1
 (2) 

In the equation, 𝐶2𝑖 represents the penalty coefficient of the unit 

waiting time of heat 𝑖 , 𝑖 ∈ {1, … , 𝐷}  is a positive integer; 𝐹𝑖𝑗′ 

represents the 𝑗′th refining process of the 𝑖 heat Production start 

time; 

Subject to:  

  𝐹𝑖𝑗+1 ≥ 𝐹𝑖𝑗.                (3) 

∑ 𝑥𝑖𝑗𝑜 ≤ 1
𝑗′

𝑗=1 , 𝑖 ∈ [1, 𝐷], 𝑗′ = [2,3,4],  𝑥𝑖𝑗𝑜 = 0 or 1          (4) 

  𝑡𝑖𝑗+1 − 𝑡𝑖𝑗 ≥ 0               (5) 

Equation (3) means that the next procedure can only start production 

after the previous procedure of the same heat is completed; equation 

(4) means that each procedure of each heat can only use one piece 

of equipment for production at the same time; equation (5) means the 

same on the refining equipment, the next refining process can only 

be produced after the previous refining process is completed. 

2.2 Description of Uncertain Scheduling Problem of Molten Steel Hit 

Rate 

Because the refining process is a multi-stage, multi-equipment 

production stage, there are multiple possible production completion 

methods and multiple refining process paths for each refining process. 

According to the production experience and historical production 

data of the steel plant, the approximate completion of each refining 

process can be obtained, and the completion method of each refining 

production is described by the refining production state, the initial 

processing time of the refining process and the quality of molten steel 

transfer. In the refining production situation of a certain heat refining 

process described in Figure 1, the three possible situations of the 

molten steel hit rate in the first refining process are (𝐴11,𝐵11,𝐸)，

( 𝐴12 ,𝐵12 ,𝐺2 )， (𝐴13 ,𝐵13 ,𝐺2 ), A represents the state of refining 

production, B represents the initial processing time of the refining 

process, E means the quality is good, and G means the quality is 

qualified. The relationship between adjacent refining steps is 

described by the transition probability matrix. Step 2 also has three 

molten steel hit rate states. Therefore, the size of the transition 

probability matrix connecting step 1 and step 2 is 3 × 3 , which 

means that under the premise that a certain refining processing 

method completes step 1, the refining process will change from a 

certain molten steel hit rate state in step 1 to a certain molten steel hit 

rate state in step 2. Because the refining process has the 

characteristics of multiple equipment and multiple processes, there 

must be multiple refining process paths for each heat. At the same 

time, the refining production system is uncertain because of various 

disturbance factors, which may lead to refining conditions during the 

refining process. If in the actual refining process, there is a situation 

of refining and refining, it will further expand the number of refining 

process paths for each heat. From the above description of the 

refining process, we can know that in the actual refining process, only 

one of the many refining process paths will be selected as the 

production process path of the actual refining production. The 

situation of refining is indirectly expanded. The selection range of the 

optimal refining process path. Here, the state of molten steel hit rate 

presented in the second process is derived from the state of molten 

steel hit rate presented in the first process and the refining equipment 

used in the first process. The relationship between them is an implicit 

functional relationship. 

Any heat needs to obtain a feasible scheduling plan through 

scientific dynamic scheduling methods before refining production, 

make full use of refining production equipment, and shorten the 

refining process as much as possible on the premise of ensuring that 

the refining production tasks are completed on time and the quality 

of molten steel is qualified. Increase the production time of steel and 

improve the efficiency of steel production. 

Figure 1 is a model diagram of uncertain molten steel hit rate 

parameters. 
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Fig. 1 Parameter model of uncertainty of molten steel hit rate 
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Suppose a steel refining process has 3 refining processes, as shown 

in Figure 1, the numbers of the processes are 1,2, and 3. The hit rate 

status of the molten steel produced by the first refining process is: 

𝑎, 𝑐, 𝑒; the hit rate status of the molten steel produced by the second 

refining process is: 𝑏, 𝑑, 𝑚; the output of the third refining process 

the state of the hit rate of molten steel is: 𝑠1, 𝑠2, 𝑠3. From Figure 1, 

we can see that each refining process has three possible molten steel 

hit rate states, and the state transition relationship of molten steel hit 

rate between adjacent steel refining steps of the same heat needs to 

be represented by a state transition probability matrix. For example, 

both refining stage 1 and refining stage 2 have three possible molten 

steel hit rate states, and the size of the state transition probability 

matrix used to describe the relationship between refining step 1(𝑤1) 

and refining step 2(𝑤2) is 3×3. 

Representing the probability of turning to a certain state of molten 

steel hit rate in refining step 2 under the premise of a certain state of 

molten steel hit rate in refining step 1, it is expressed by a 

mathematical equation as shown in equation (6): 

𝑝𝑤1𝑤2

𝑎 = E(𝑤2|𝑤1, 𝑎).                 (6) 

Where, 𝑝𝑤1𝑤2

𝑎 represents the transition probability of performing 

production action 𝑎 from the state of the hit rate of molten steel 

produced in refining process 1(𝑤1) to refining process 2(𝑤2), 𝑤1 

indicates the state of molten steel hit rate in refining process 1, 𝑤2 

represents the state of molten steel hit rate in process 2, 𝑎 represents 

the execution of refined production actions, E  represents the 

mathematical expectation of performing refining production action 

𝑎 from the state of the hit rate of molten steel produced in refining 

process 1(𝑤1)  to refining process 2(𝑤2). 

Using equation (6), the state transition probability of molten steel 

hit rate between all adjacent processes can be calculated, and the 

transition probability matrix 𝜋12(3×3) can be calculated, as shown in 

equation (7). The transition probability matrix is related to two 

adjacent refining processes. If the molten steel hit rate status of a 

certain refining process and the state transition matrix between two 

adjacent refining processes can be obtained, the molten steel hit rate 

status of any refining process can be obtained, and finally Obtain the 

molten steel hit rate status of the steel refining process in all refining 

processes.  

𝜋12(3×3) = [

𝑝𝑎𝑏 𝑝𝑎𝑑 𝑝𝑎𝑒

𝑝𝑐𝑏 𝑝𝑐𝑑 𝑝𝑐𝑚

𝑝𝑒𝑏 𝑝𝑒𝑑 𝑝𝑒𝑚

]               (7) 

Where 𝜋12(3×3)  represents the transition probability matrix from 

refining process 1 with a certain molten steel hit rate state of 𝑎、𝑐、

𝑒 to refining step 2 with a certain molten steel hit rate state of 𝑏、

𝑑、𝑚 , The dimension of the matrix is 3×3 . The core problem 

described by using the Markov chain is how to determine the 

transition probability matrix under the condition of uncertainty in the 

hit rate of molten steel, and use the Markov chain to derive the 

refining production state description function required for subsequent 

model construction, as shown in equation (8) Shown, as well as the 

refining process execution description function, as shown in equation 

(9). 

𝑉𝜋12(𝑥(𝑘)) = ∑ 𝑃(𝑢(𝑘)|𝑥(𝑘))𝑀𝑥(𝑘)
𝑢(𝑘)

𝑢(𝑘)∈𝑈

+ 

𝛾 ∑ 𝑃𝑥(𝑘)𝑥(𝑘+1)
𝑢(𝑘)

𝑣𝜋(𝑥(𝑘 + 1))𝑥(𝑘+1)∈𝑋           (8) 

Where, 𝑉𝜋12(𝑥(𝑘))  represents the refined production state 𝑥(𝑘) 

the refined production state description function, 𝑥(𝑘) represents 

the state of refined production, 𝑢(𝑘)  represents the state of 

execution of refined production, 𝑀𝑥(𝑘)
𝑢(𝑘)

 represents the production 

time of the refined production action 𝑢𝑘 in the refined production 

state 𝑥𝑘 , 𝛾 means discount factor, 0 ≤ 𝛾 ≤ 1, 𝑃𝑥(𝑘)𝑥(𝑘+1)
𝑢(𝑘)

 

represents the probability of transferring from the refined production 

state 𝑥𝑘 to the refined production state 𝑥(𝑘 + 1) from the refined 

production action 𝑢𝑘, 𝑣𝜋(𝑥(𝑘 + 1) represents the refined production 

state 𝑥(𝑘 + 1) the refined production state description function.  
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Where 𝑀𝑥(𝑘)
𝑢(𝑘)

represents the production time when the refining action 

𝑢𝑘  is executed in the refining production state 𝑥𝑘 , 𝛾  means 

discount factor, 0 ≤ 𝛾 ≤1, 𝑃𝑥(𝑘)𝑥(𝑘+1)
𝑢(𝑘)

 represents the probability of 

transferring from the refined production state  𝑥𝑘  to the refined 

production state 𝑥(𝑘 + 1) from the refined production action 𝑢𝑘 , 

𝜋(𝑢(𝑘 + 1)|𝑥(𝑘 + 1))  represents the probability of the refined 

production state 𝑥(𝑘 + 1) performing the refined production action 

𝑢(𝑘 + 1)(𝜋(𝑢(𝑘 + 1)|𝑥(𝑘 + 1)) = 𝑝{𝑥(𝑘 + 1)), [𝑢(𝑘 + 1)]} . The 

percentage of the total heats ( the hit rate of molten steel) produced 

by the molten steel produced by a refining process that meets the 

customer's product requirements may be expressed in mathematical 

equations as shown in equation (10). 

          𝑃𝑧(𝑗 + 1) = ∑ 𝜋𝑦𝑧𝑃𝑦(𝑗)
𝑆3
𝑧=𝑆1

            (10) 

Where 𝑃𝑧(𝑗 + 1)represents the probability that the 𝑗 + 1 th process 

turns to the molten steel hit rate state 𝑧  ( 𝑧 ∈ {𝑠1, 𝑠2, 𝑠3}) , 𝜋𝑦𝑧 

represents the probability matrix of transition from molten steel hit 

rate state 𝑦 to molten steel hit rate state 𝑧,  𝑃𝑦(𝑗) represents the 

probability that the 𝑗 th steel refining process turns to the molten 

steel hit rate state 𝑦 (𝑦 ∈ {𝑏, 𝑑, 𝑓}), and 𝑗 is a positive integer. 

2.3 Mathematical model construction 

Earlier studies (Sun L. L., et al., 2020) showed in the actual 

refining process, the transfer of the molten steel hit rate state from the 

current refining stage to the next refining stage is not only related to 

the previous refining stage, but also related to the molten steel hit rate 

state in the previous refining stage. 

This will cause the built-up molten steel hit rate transition model 

to be too complex and even difficult to model. Therefore, we need to 

simplify the state transition model of molten steel hit rate in different 

refining production stages. The simplification method used in this 

article is to assume that the state transition of the molten steel hit rate 

in different refining stages is Markovian, that is, it is assumed that the 

state transition of the molten steel hit rate depends only on the current 

state and the state of the next refining stage, which is different from 

the previous refining stage. Irrelevant.  
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  Markov chain is a model that describes the random process of a 

series of events. Earlier studies (Nishi T, et al., 2009) showed the 

probability of each event in this series depends only on the state 

achieved by the previous event. In the related fields of probability 

theory and mathematics After an in-depth study by the Russian 

mathematician Andrey Markov, the Markov process proposed is a 

random process with no memory and no aftereffect. The future state 

of the process has nothing to do with its past state. If a research 

process needs to use the current state to predict the state that may 

occur in the future, we say that the research process satisfies the 

Markov property, that is, it takes the current state of the research 

system as the condition, and its past and future states are independent. 

Markov chain is also a kind of Markov process. In a random process, 

each research unit has no influence on its subsequent research units. 

It is a random process with no memory and no aftereffect. Earlier 

studies (Nishi T, Inuiguchi M, 2007) showed in the known current 

state, the future state of the process has nothing to do with its past 

state. It has discrete state space or discrete index set, but the precise 

definition of Markov chain is different. Usually, Markov chain is 

defined as a discrete or continuous time Markov process with 

countable state space. In today’s world, there are many models 

established by Markov chain for process statistics. Earlier studies 

(Hoitomt D. J., et al, 1993; Meng J., et al., 1995) showed They are 

mainly used to study cruise control systems of motor vehicles, 

customer queues or lines arriving at airports, storage systems such as 

dams, and population growth of certain animal species. the study. 

Definition of parameters and symbols in the mathematical model: 

𝐷: The number of refining furnaces that the steel company under 

takes at the same time, 𝐷 is a positive integer. 

𝐸 : The number of types of refining equipment, 𝐸  is a positive 

integer. 

𝐽: the total number of processes, 𝐽 is a positive integer. 

𝑖: serial number, 𝑖 ∈ {1, … , 𝐷}, 𝑖 is a positive integer, 𝐷 is the total 

number of furnaces. 

𝑗: serial number, a set containing all processes, 1 ≤ 𝑗 ≤ 𝐽 , 𝑗 is a 

positive integer. 

𝑙 : serial number, which is a set containing pouring times, 𝑙  is a 

positive integer. 

𝐿𝑙𝑖: serial number, which is the serial number of the 𝑙 th heat of the 

𝑖 th pour. 

𝐵𝑗: indicates the number of equipment in the 𝑗 th refining process, 

𝐵𝑗 ≥ 1, 𝐵𝑗  is a positive integer. 

𝐻𝑘: the quantity of each type of refining production equipment, 𝑘 is 

the type of refining production equipment, and 𝑘  is a positive 

integer. 

𝑠𝑖: current processing status of heat 𝑖 𝑖 ∈ {1, … , 𝐷}), 𝑠𝑖is a positive 

integer. 

𝑞𝑖 : The number of the completion method of the refining process 

closest to the current moment in heat 𝑖 , 𝑞𝑖 ∈ {1, … , 𝐶𝑖𝑛}, 𝑞𝑖  is a 

positive integer. 

𝐶𝑖𝑛 : indicates the number of possible ways to complete the 𝑛 th 

refining process of the 𝑖 th heat, 𝐶𝑖𝑛 is an integer. 

𝑅𝑘 : The number of idle 𝑘 th refining equipment in the current 

refining production state, 𝑅𝑘 is an integer. 

𝑡: current moment. 

𝑡𝑖𝑗: the start processing time of heat 𝑖 in the jth refining process. 

𝑃𝑖𝑗: the production time of heat 𝑖 in the 𝑗 th refining process. 

𝑈: Define the execution status of a certain steel refining process in 

the heat. 

𝛽𝑖: the execution status of a certain steel refining process of the 𝑖 th 

heat, 𝛽𝑖=0 means that a certain refining process of the 𝑖 th heat is 

not executed, and 𝛽𝑖=1 means that the 𝑖  th heat is executed A 

refining process. 

𝑥(𝑘): refined production status. 

𝑢(𝑘): Refining production actions taken. 

𝑥′(𝑘 + 1): The current refining production state is 𝑥(𝑘), and the 

execution of refining production 𝑢(𝑘) is transferred to a temporary 

refining production state. 

𝑇𝑖: the ideal pouring time of the 𝑖 th heat. 

𝑇φ: the processing time of a certain heat in the refining stage. 

𝑇ω: the waiting time of a certain heat in the refining stage. 

Where we define the state of the refining process scheduling system 

as follows: 

𝑋 = [𝑠1, 𝑠2, … , 𝑠𝐷, 𝑞1, 𝑞2, … , 𝑞𝐷, 𝑅1, 𝑅2, … ,𝑅𝐸 , 𝑡]𝑇    (11) 

Where 𝑠𝑖  is a positive integer, representing the current refining 

production status of the 𝑖 th heat, 𝑖 ∈ {1, … , 𝐷}, 𝑞𝑖  is an integer, 

which means the number of ways to complete the production task in 

a refining process of the 𝑖 th heat, 𝑅𝑗 represents the number of 

refining and processing equipment of type 𝑗 that is not occupied at 

the current moment, and 𝑅𝑗 ∈ {0, … , 𝐻𝑗} is a positive integer, (𝑗 ∈

{1, … , 𝐸}, j is a positive integer). 

We define the execution status of the production process in the 

refining process as: 

𝑈 = [𝛽1 , 𝛽2 , … , 𝛽𝐷]𝑇                   (12) 

Where 𝑈 represents the production execution status of each heat in 

the refining process, 𝛽𝑖  represents the execution status of a certain 

production process in the 𝑖th heat, 𝛽𝑖 = 1 𝑜𝑟 0, (𝑖 ∈ {1, … , 𝐷}, 𝑖 is 

a positive integer), 𝛽𝑖 = 1 means that a certain process of the 𝑖 th 

heat is executed, 𝛽𝑖 = 0 means that a certain refining process of the 

𝑖 th heat will not be executed. 

𝑥(0) = [1, …,1, 0, … ,0, 𝑅1, … , 𝑅𝐸 , 0]𝑇          (13) 

Where 𝑥(0) represents the initial state of the refined production 

scheduling system, 1 indicates the status of the production scheduling 

system in which each heat is ready to execute the first refining 

process, 0 means the completion method of the first refining process 

for each heat, 𝑅𝑗 ∈ {0, … , 𝐻𝑗}, 𝑗 ∈ {1, … , 𝐸}, 𝑗 is a positive integer, 

𝑅𝑗
′ is a positive integer), Indicates the number of type j refining and 

processing equipment that is not occupied at the current moment. 
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𝑥(0) = [1, …,1,0, … ,0, 𝑅1, … , 𝑅𝐸 , 0]𝑇             (14)    

Establish the following mathematical objective function, 

𝑄(𝑥(𝑘), 𝑢(𝑘)) represents the start processing time when the refining 

production action 𝑢(𝑘) is executed in the refining production state 

𝑥(𝑘), where 𝑄(𝑥(𝑘 + 1), 𝑢(𝑘 + 1)) represents the start processing 

time of the set of all refining production actions that can be selected 

in the refining production state 𝑥(𝑘 + 1) , 𝑔(𝑥(𝑘), 𝑢(𝑘), 𝑥(𝑘 +

1)) is the steel refining production action 𝑢(𝑘) from the refining 

production state 𝑥(𝑘) to the steel refining production state 𝑥(𝑘 +

1) time: 

Min(𝑄𝑥(𝑘), 𝑢(𝑘)) = 𝛼Min𝑢(𝑘+1)∈𝑈𝑥(𝑘+1)E[𝑄(𝑥(𝑘 + 1), 𝑢(𝑘 +

1))](1 − 𝛾)𝑄(𝑥(𝑘), 𝑢(𝑘)) + 𝛾{[𝑔(𝑥(𝑘), 𝑢(𝑘), 𝑥(𝑘 + 1)} +

|𝑄(𝑥(𝑘), 𝑢(𝑘)) − 𝑇𝑖|                                 (15) 

Where Min𝑄(𝑥(𝑘), 𝑢(𝑘)) represents the minimum processing time 

for the refining production system to execute the refining production 

action 𝑢(𝑘) in the refining production state 

𝑥(𝑘), 𝑄(𝑥(𝑘), 𝑢(𝑘))represents the processing time for the current 

refining production system to execute the refining production action 

𝑢(𝑘) in the refining production state 𝑥(𝑘) , g(𝑥(𝑘), 𝑢(𝑘), 𝑥(𝑘 +

1)) means from the refined production state 𝑥(𝑘) to execute the 

refined production action 𝑢(𝑘) to the refined production state 

𝑥(𝑘 + 1) time, Min𝑢(𝑘+1)∈𝑈𝑥(𝑘+1)E[𝑄(𝑥(𝑘 + 1), 𝑢(𝑘 + 1))] means 

that it is in refining production state 𝑥(𝑘 + 1) the minimum value of 

the expected value of the mathematics of the processing time 

𝑢(𝑘 + 1) the execution of the refined production action, 𝛾 

represents the discount factor (𝛾 ∈ {0, … ,1}) , 𝛼  represents the 

learning coefficient (𝛼 ∈ {0, … ,1} ), |𝑄(𝑥(𝑘), 𝑢(𝑘)) − 𝑇𝑖| 

|Indicates that the refining production system executes the refining 

production action in the refining production state 𝑥(𝑘) 𝑢(𝑘) the 

difference between the ideal pouring time and the actual pouring time, 

𝑇𝑖  represents the ideal pouring time of heat 𝑖 (𝑘 ∈ {1, … , 𝐸}，𝑖 ∈

{1, … , 𝐷}, 𝑘  and 𝑖  are both positive integers), the ideal pouring 

time of heat 𝑖 needs Satisfy: 

𝑇𝑖 > 𝑇φ + 𝑇ω                             (16) 

𝑇φ represents the processing time of the heat on the refining 

equipment, 𝑇ω represents the sum of the waiting time for processing 

on the refining equipment for the adjacent processes of the heat. 

Further explain the relationship between pouring times and heats, and 

use calculation examples to briefly explain. A steel production 

enterprise undertakes the refining production tasks of 5 heats at the 

same time, and divides them into 2 pouring cycles to complete the 

production tasks of the subsequent continuous casting stage. An 

example table of the relationship between the number of heats and 

the number of castings in the production process of steelmaking-

refining-continuous casting is shown in Table 1. 

It is stipulated that the ideal pouring time of 𝐿11 is 8:00 and the 

processing time is 10 minutes; the ideal pouring time of 𝐿13 is 8:10 

and the processing time is 10 minutes; the ideal pouring time of 

𝐿15 is 8:20 and the processing time is 10 minutes; 𝐿21  The ideal 

pouring time is 9:00, and the processing time is 20 minutes; the ideal 

pouring time of 𝐿22 is 9:40, and the processing time is 20 minutes. 

According to the relationship between the heat and the pouring time, 

the ideal pouring time of each heat and the processing time on the 

continuous casting machine, draw a schematic diagram of the ideal 

pouring time of each heat, as shown in Figure 1 and Figure 2. 

Table 1 Example table for the relationship between cast and pouring times in the 

steelmaking-refining-continuous casting production process 

𝐿𝑙𝑖 1 2 3 4 5 

𝑙 1 2 1 2 1 

𝑖 1 2 3 4 5 

 

 

 

Pouring time7:00 7:308:008:30 9:00 9:30

L11 L13 L15

 

Fig 1 Schematic diagram of ideal opening time of each charge in pouring 

time 1 

Pouring time8:00 8:30 9:009:3010:0010:30

L21 L22

 

Fig 2 Schematic diagram of ideal opening time of each charge in pouring 

time 2 

Through the equation (15), the performance indicators "the sum of 

the waiting time for each process in the refining process" and "the 

difference between the ideal pouring time and the actual pouring time 

of each heat in the refining process" are transformed into the 

optimization goal. Next, another performance index "processing 

System 
status 

Way of 
completion 

Equipment 
usage 

time 



J. Peng et al. / IJAMCE 6 (2023) 82-92 

 

adjacent heats on the same refining equipment without operating 

conflicts at the same time" is transformed into a constraint by 

equation (17). 

𝑄(𝑥(𝑘 + 1), 𝑢(𝑘 + 1)) > 𝑄(𝑥(𝑘), 𝑢(𝑘)) + g(𝑥(𝑘), 𝑢(𝑘), 𝑥(𝑘 +

1))𝑘 ∈ {1, … , 𝐸}; 𝑖 ∈ {1, … , 𝐷}    (17) 

Where: g(𝑥(𝑘), 𝑢(𝑘), 𝑥(𝑘 + 1)) is the refining production action 

𝑢(𝑘) taken from the refined state 𝑥(𝑘) to the refined state 

𝑥(𝑘 + 1) Production time. 

3. Algorithm design 

3.1 Traditional Q learning algorithm 

The traditional Q learning algorithm is an off-policy reinforcement 

learning method. It is a reinforcement method proposed by Watkins 

to solve Markov decision problems with incomplete information. 

Calculate through the basic equation of the Q learning algorithm, and 

the obtained calculation result is greater than 0, then the Q value table 

is updated. When the Q value table is updated, the optimal value of 

the next state will be calculated, and the optimal value of the next 

state calculated according to this method will make corresponding 

actions. Earlier studies (Chen H., et al., 1998) showed it can be found 

that the action does not depend on the current solution strategy. At 

present, as the research on traditional Q learning algorithms has 

become more mature, traditional Q learning algorithms have been 

widely used in real life. For example: learning optimal operating 

procedures in factories, learning chess skills, controlling mobile 

robots, etc. The traditional Q learning algorithm is the expectation 

that 𝑄(𝑠, 𝑎) can obtain the optimal benefit by taking action 𝑎(𝑎 ∈ 𝐴) 

in the s state (𝑠 ∈ 𝑆) at a certain time. Earlier studies (Luh P. B., et 

al., 1998) showed the exploration environment gives the 

corresponding reward feedback according to the action taken by the 

agent, and uses the basic equation of the Q learning algorithm to 

obtain the corresponding reward (𝑟) through calculation. The core 

idea of the Q learning algorithm is first to make the agent explore the 

environment at every moment The state pairs composed of state 

(𝑠) and action (𝑎) are concentrated to form a state-action pair set, 

and a Q value table is constructed, Used to store the Q value obtained 

by iterative calculation through the basic equation of the Q learning 

method; Secondly, a new Q value table is reconstructed according to 

the obtained updated Q value; finally, the re-constructed Q value 

table is used to guide the agent's subsequent exploration route and 

obtain the optimal agent's exploration strategy. The traditional Q 

learning algorithm is mainly used in the production system in the 

Markov environment. It uses the action sequence experienced by the 

agent and selects the optimal action of the next state according to the 

Q value calculated by the basic equation of Q learning. The 

traditional Q A key assumption of the learning algorithm is to regard 

the interaction between the agent and the environment as a Markov 

decision process. The current state is only related to the next state and 

has nothing to do with other states, which simplifies the state 

transition model and improves computational efficiency. There are 

many applications in the scheduling of production lines and planning 

the optimal walking path of the agent. There are two reasons for the 

use: 

(1) Firstly, the traditional Q learning algorithm "does not have a 

model", which can directly estimate and predict the Q value of any 

action in each production state; Secondly, refer to the Q value 

obtained by iterative calculation using the basic equation of the Q 

learning algorithm. Finally, Earlier studies (Watkins C. J. C. H., 

Dayan P., 1992) showed the online decision method is used to decide 

the action that can obtain the highest Q value in the current state of 

the agent, and then update the Q value table. If the state-action pair 

can be accessed for an unlimited number of times during the running 

of the algorithm, then we can get the optimal function value of 

convergence. The traditional Q learning algorithm can directly 

predict and estimate the Q value of each action in the next state of the 

agent through its own basic algorithm equation, which improves the 

efficiency of the solution. 

(2) The traditional Q learning algorithm can make scheduling 

decisions and estimate the production time for any process in any 

production stage of the production process. According to the actual 

production situation, the corresponding scheduling strategy is 

adopted to select the next optimal production action. The traditional 

Q learning algorithm uses the random scheduling method to select 

the next optimal production action to ensure that the optimal action 

in the next production state can be selected to achieve "overall 

optimal" instead of "local optimal", ensuring the scheduling plan The 

optimization effect of. 

The traditional Q learning algorithm first needs to initialize the 

learning matrix Q; secondly, according to the scheduling 

environment, calculate the reward value of all the actions that the 

agent may take, and establish the reward matrix 𝑅; again, select an 

action according to the scheduling environment of the agent (𝑎) As 

the initial action, and use the basic equation of the Q learning 

algorithm: 

Q(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼{𝑅(𝑠, 𝑎) + 𝐺𝑎𝑚𝑚𝑎 ∗

Max[𝑄(𝑛𝑒𝑥𝑡 𝑠, 𝑛𝑒𝑥𝑡 𝑎) − 𝑄(𝑠, 𝑎)]}          (18) 

In the equation: 𝛼 is the learning coefficient. 

Calculate the Q value return corresponding to the optimal 

execution action of the next state, and update the learning matrix Q; 

finally, judge whether the learning matrix Q converges, and the 

algorithm ends when convergence, otherwise it returns to use the Q 

learning basic equation to continue the iterative calculation, Until the 

learning matrix Q converges. 

3.2 Improved Q learning algorithm 

Based on the traditional Q learning algorithm, this paper 

proposes a solution strategy based on the improved Q learning 

algorithm to solve the steel refining production scheduling 

optimization problem with uncertain molten steel hit rate. Through 

earlier studies (Jaakkola T., et al., 1994) showed the research on the 

basic principles of the traditional Q learning algorithm, the refining 

production scheduling optimization Comprehensive consideration of 

the various performance indicators of the problem can be obtained. 

In the initial stage of the traditional Q learning algorithm, the agent 

cannot accurately select the optimal action of the next state. Earlier 

studies (Zitzler E., 1999) showed pareto that can transform multiple 

performance indicators into optimization goals and constraints is 

introduced. (Pareto) solution set, and use the Pareto optimization 

solution idea to introduce the action selection probability P, use the 

basic equation of the action selection probability to calculate the 

action selection probability of all possible completion methods in the 

next system state, and select the action selection probability The 

largest completion method is used as the production method of the 

next system state. 
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Improving on the traditional Q learning algorithm and utilizing it 

for iterative calculation will save processing time in the refining 

production stage, improve the efficiency of refining production 

scheduling, and better cope with unexpected situations in the actual 

refining production scheduling process where the steel composition 

cannot meet production requirements and needs to be reheated. In 

response to the scheduling mathematical model built in this article, A 

method for solving the uncertain scheduling problem of molten steel 

hit rate in refining process using improved Q learning method has 

been proposed.  

The procedure of the improved Q learning algorithm are as follows: 

Step 1: Define the state space and action set of the improved Q 

learning algorithm; 

𝑅𝑛×𝑛 = [

𝑅[(1,1),1] ⋯ 𝑅[(1,𝑛),𝑛]

⋮ ⋱ ⋮
−1 ⋯ 𝑅[(𝑛,𝑛),𝑛]

].        (19) 

Step 2: Initialize the Q matrix, that is, set the Q matrix to a zero 

matrix, and set the learning coefficient 𝛼; 

Step3: Select a state action pair (𝑥(𝑘), 𝑢(𝑘)) from the learning 

matrix Q as the initial state of the agent; 

Step 4: Use the basic equation of the Q learning algorithm to 

calculate the Q values of all possible state action pairs that the agent 

transfers from the current state to the next state; 

Step 5: When the agent chooses the optimal action in the next state 

during the running of the algorithm, use the action transition 

probability calculation equation: 𝑃 (
𝑎𝑖

𝑆𝑡
) =

𝑄(𝑆𝑡, 𝑎𝑖) ∑ 𝑄(𝑆𝑡, 𝑎𝑗)𝑗⁄ ,  respectively calculate the selection 

probability of each state action pair that the agent may choose, 

compare the calculated action selection probabilities, and select the 

state action pair with the highest probability of performing action 

selection (𝑥(𝑘 + 1), 𝑢(𝑘 + 1)) continue to calculate; 

Step 6: Use the basic equation of the Q learning algorithm to 

calculate the Q value of the selected state action pair (𝑥(𝑘 +

1), 𝑢(𝑘 + 1)); 

Step 7: If 𝑄𝑘
(𝑟+1)

> 𝑇∗, where 𝑇∗ is the 𝑅  value of the state 

reward matrix, return to step 4 for calculation. If 𝑄𝑘
(𝑟+1)

< 𝑇∗ , 

update the learning matrix Q; 

𝑄 = [

𝑄[(1,1),1] ⋯ 𝑄[(1,𝑚),𝑚]

⋮ ⋱ ⋮
𝑄[(𝑛,1),1] ⋯ 𝑄[(𝑛,𝑚),𝑚]

]                 (20) 

Step 8: Judge whether the Q matrix converges, and the algorithm 

ends if convergence, otherwise, return to step 4 to continue the 

iterative calculation; 

Step 9: Online decision-making, refer to the convergence learning 

matrix Q obtained by the improved Q learning algorithm for online 

decision-making, using the equation 𝑢∗(𝑘) =

arg max
𝑢(𝑘)∈𝑈𝑥(𝑘)

𝑄(𝑥(𝑘), 𝑢(𝑘) compile production and processing 

strategies that meet the production requirements of subsequent 

processes. 

4. Experimental verification  

The improved Q learning algorithm solution proposed in this paper 

is used to solve and verify the refining production scheduling 

problem under the uncertain environment of molten steel hit rate. A 

convergent refining process learning matrix Q is obtained the time 

required for all processes in each heat to be processed in each refining 

production equipment is shown in Table 2. 

Analysis of Table 2 shows that, considering that one of the two 

heuristic simulation strategies in the solution strategy is "let the heat 

with the ideal pouring time earlier enter the refining equipment for 

production", the start processing time of the three heats is set and the 

ideal pouring time, through the setting of the start time of the refining 

process of the three heats and the ideal pouring time on the 

continuous casting machine for each heat. Analyzing Table 3, we can 

see that the implementation of the refining process of each heat is 

permuted and combined, and with reference to the transition 

probability between adjacent refining processes, the implementation 

of the refining process with the transition probability of different 

heats between adjacent processes is 0 Different simulation strategies 

can get the refinement production process removal with the same 

production end time. Through calculation, it can be concluded that 

the number of refining process paths of the three heats has 16, 16, and 

16 refining process paths respectively (a heat starts from the first 

refining process to the processing tasks of all refining processes 

Completion, including refining and refining, the implementation 

methods of the refining processes passed through are arranged and 

combined, which is called a refining process path), so the number of 

possible realization trajectories for the steel production enterprise to 

complete 3 heat production tasks is 16×16 ×16=4096 pieces. Table 3 

is the ideal pouring schedule of each heat, and Table 4 is the 

realization method of each heat production task and the probability 

transition matrix table. 

Table 2 Schedule of each charge processing in refining production equipment 

 

KIP equipment 

Refine 

LF equipment 

Refine 

Heat 1 20 30 

Heat 2 35 25 

Heat 3 30 35 

 

RH equipment 

refining 

 

Heat 1 20  

Heat 2 20  

Heat 3 20  

 

Furnace sequence 

number 

P
ro

cess 
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Table 3 Ideal start time of casting for each charge 

Furnace sequence 

number 

Refining production start 

time 
Ideal pouring time 

Heat 1 10：00 11：47 

Heat 2 10：00 12：00 

Heat 3 10：26 12：36 

 

Table 4 Implementation mode and probability transfer matrix of production tasks for each charge 

Heat 1 

RH refining KIP refining Remelting 1 LF refining 

Coefficient matrix 1 Coefficient matrix 2 Coefficient matrix 3 Coefficient matrix 4 

[
(1,1) 800 𝐸
(1,1) 760 𝐺

] [

(1,2) 1450 𝐸
(1,2) 2410 𝐺1

(1,2) 2590 𝐹
] [

(1,3) 3000 𝐸
(1,3) 3100 𝐺1

(1,3) 3200 𝐺2

] [
(1,4) 4070 𝐺1

(1,4) 4010 𝐺2
] 

Transition probability 

Matrix 1 

Transition probability 

Matrix 2 

Transition probability 

Matrix 3 

Transition probability 

Matrix 4 

[
0.32
0.68

] [
0.39 0.40
0.39 0.11
0.22 0.49

] [
0.41 0.2 0.17
0.3 0.4 0.40

0.29 0.4 0.43
] [

0.2 0.19 0.3
0.8 0.81 0.7

] 

Heat 2 

RH refining KIP refining Remelting 2 LF refining 

Coefficient matrix 1 Coefficient matrix 2 Coefficient matrix 3 Coefficient matrix 4 

[
(2,1) 1600 𝐸
(2,1) 1700 𝐺

] [

(2,2) 2030 𝐸
(2,2) 2041 𝐺
(2,2) 2081 𝐹

] [

(2,3) 3073 𝐸
(2,3) 3094 𝐺1

(2,3) 3104 𝐺2

] [
(2,4) 4000 𝐺1

(2,4) 3940 𝐺2
] 

Transition probability 

Matrix 1 

Transition probability 

Matrix 2 

Transition probability 

Matrix 3 

Transition probability 

Matrix 4 

[
0.2
0.8

] [
0.62 0.31
0.34 0.45
0.04 0.24

] [
0.52 0.21 0.07
0.44 0.55 0.50
0.04 0.24 0.43

] [
0.34 0.45 0.57
0.66 0.55 0.43

] 

 

Heat 3 

RH refining KIP refining Remelting 3 LF refining 

Coefficient matrix 1 Coefficient matrix 2 Coefficient matrix 3 Coefficient matrix 4 

[
(3,1) 5228 𝐸
(3,1) 5310 𝐺1

] [

(3,2) 6033 𝐸
(3,2) 6091 𝐺
(3,3) 7004 𝐹

] [

(3,3) 7090 𝐸
(3,3) 7145 𝐺1

(3,3) 7245 𝐺2

] [
(3,4) 8004 𝐺1

3,4) 8540 𝐺2
] 

Transition probability 

Matrix 1 

Transition probability 

Matrix 2 

Transition probability 

Matrix 3 

Transition probability 

Matrix 4 

[
0.43
0.57

] [
0.39 0.40 0.17
0.31 0.31 0.34
0.3 0.29 0.49

] [
0.62 0.31 0.07
0.34 0.45 0.60
0.04 0.24 0.33

] [
0.34 0.45 0.67
0.66 0.55 0.33

] 

 

Using heuristic strategy simulation to study two heuristic 

simulation strategies suitable for this subject, namely the refining 

process, the heat in the refining process has a small sum of waiting 

time in each process, the production process first enters the refining 

production equipment for production and pouring The earlier furnace 

processes are first entered into the refining production equipment for 

production, and each simulation is performed 1000 times, and 2000 

refining process paths can be obtained. Figure 4 and Figure 5 show 

the results of different heuristic simulation strategies. 

In Figure 4, simulation strategy 1, that is, the refining process 

enters the refining equipment for production with a small sum of 

waiting time for each process in the refining process, and the 
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simulation results are concentrated around the average production 

time of the refining process path. In the simulation process, the 

average production time of the refined production process path is 7.1 

hours ahead of the simulation strategy 2 in Fig. 5. 

According to the simulation results of the two heuristic strategies, 

the Gantt chart with the shortest production time of the refining 

process path corresponding to the simulation results is drawn, as 

shown in Figure 6 and Figure 7. By comparing the processing 

completion time of the refining production stage and the deviation 

between the ideal pouring time and the actual pouring time by 

comparing Figure 6 and Figure 7, it is known that the heuristic 

simulation strategy 1 completes the refining production task before 

the heuristic simulation strategy 2 and makes full use of the refining 

production equipment. So simulation strategy 1 is better than 

simulation strategy 2. 

 

Fig. 4 Simulation results of heuristic simulation strategy 1 

 

Fig. 5 Simulation results of heuristic simulation strategy 2 

1KIP

2RH

1RH

10:00

2KIP

1LF

2LF

10:00

10:24 11:16
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11:5011:30

11:55

10:00 10:30 11:00 11:30 12:00 12:30

11:50

12:35

10:24 10:44

10:24 10:59

10:46 11:14

11:02 11:22

11:23 11:53

11:47 12:36

 

Fig 6 Gantt chart of refining process path based on simulation strategy 1 
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Fig 7 Gantt chart of refining process path based on simulation strategy 2 

 

The simulation result of each heuristic strategy is a set of state 

action pairs for each heat in the refining stage. Combining the sets of 

state-action pairs of refining process obtained by two heuristic 

simulation strategies, 1776 non-redundant state-action pairs and the 

next state subset of each refining process state-action pair are 

obtained. By improving the Q learning algorithm iterative calculation 

19 times, the convergent learning matrix Q of refined production 

process is obtained. Finally, the convergent refining process learning 

matrix Q is used to make online decisions on the actual refining 

process. 

𝑢∗(𝑘) = arg max
𝑢(𝑘)∈𝑈𝑥(𝑘)

𝑄(𝑥(𝑘), 𝑢(𝑘))           (21) 

Dispatch the uncertainty scheduling optimization problem of the 

molten steel hit rate in the refining process of the same process path, 

and obtain the scheduling results of each heat suitable for the refining 

process of the same process path, or when the molten steel 

composition is different in the actual refining process. When meeting 

the production requirements and requiring refining, the entire 

refining process needs to be rescheduled. Using the improved Q 

learning algorithm iteratively obtained the convergent refinement 

production process learning matrix Q for decision-making, the 

average decision-making time is only 0.13s.  
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5. Summary 

This essay discusses the significance and importance of the molten 

steel impact rate uncertainty problem, which frequently arises 

throughout the actual refining process. The molten steel hit rate of the 

refining process is enhanced by the optimization of uncertainty 

parameter technique, modeling method, and optimization solution 

method. The uncertain scheduling optimization problem's state of 

study is introduced. Analyze the scheduling optimization problem of 

the molten steel hit rate with uncertainty in the refining process in 

detail, specify the decision variables and model parameters from the 

viewpoint of the refining process, state the problem hypothesis, and 

use the Markov chain to analyze the molten steel hit rate uncertainty. 

The difference between the ideal pouring time and the actual pouring 

time of each heat in the refining process, as well as the total waiting 

time of the heat in each process, are the smallest for three steel 

refining production performance indicators, including adjacent 

processes in the same refining equipment. Heat conflicts won't be 

taken into account if the minimal value is met and nearby heats are 

processed simultaneously on the same refining equipment, according 

to a mathematical model. The Pareto solution set optimization 

solution concept and the introduction of action selection probability 

improve the traditional Q learning algorithm. The molten steel hit rate 

uncertainty in the refining process is used to build the matrix, and the 

Q learning is used to solve the molten steel hit rate uncertainty in the 

scheduling problem iteratively. The approach of enhancing the Q 

learning algorithm to resolve the molten steel hit rate uncertainty 

scheduling problem in the steelmaking production process is 

examined in this research. On the basis of data verification 

experiments, the effectiveness of the proposed algorithm and its high 

utilization value in actual steel production are further verified. 
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