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 There is a major contradiction between the market demand of steel enterprises for multi-variety, small batch and 

just-in-time delivery, and the internal large-scale production of steel enterprises. Steelmaking-continuous casting 

batch planning can effectively solve this contradiction. Tundish batch planning is one of the important links of batch 

planning, so the optimization of tundish batch planning is of great significance for iron and steel enterprises to 

achieve batch production, cost reduction and efficiency increase. However, in the actual steelmaking-continuous 

casting process, the size of the data portfolio increases exponentially with the increase of the number of charges, 

which makes it difficult to prepare a high-quality cast planning within the time limit of production requirements. In 

order to solve the problems, the optimization of steelmaking - continuous casting tundish batch planning is studied 

in this paper. A mixed integer programming model is established to minimize the attribute difference between 

charges and minimize the remaining service life of tundish. A Surrogate Subgradient Lagrangian Relaxation model 

framework based on heuristic rules is proposed to optimize the solution. In the framework of this model, the 

approximate optimization can be obtained without solving all subproblems only if the optimal conditions of the 

Surrogate are satisfied. Therefore, the optimization efficiency is improved. Finally, the experiment verifies that the 

algorithm can efficiently compile a group of tundish batch planning with better quality. 
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1. Introduction 

Typical integrated manufacturing system for steel production 

mainly consists of three continuous stages: ironmaking, steelmaking-

continuous casting (SCC), rolling. Among them, SCC plays a 

connecting role in the process of steel manufacturing, which is an 

important stage and a short plate link in iron and steel production 

(Tang et al., 2011). It coordinates the supply of raw materials at the 

ironmaking stage on the upper side and supplies the required 

specification materials at the rolling stage on the lower side. Fig. 1. 

is a schematic diagram of SCC production process. 

SCC process decision can be divided into batch planning and 

scheduling. Batch planning is a bridge between Enterprise Resource 

Planning (ERP) and Manufacturing Execution System (MES). ERP 

efficiently uses the resource allocation manufacturing by optimizing 

the batch planning so that production can be carried out in an orderly 

manner. Steelmaking-continuous casting batch planning include 

charge batch planning, tundish batch planning, and cast batch 

planning. The problem of optimization of the tundish batch planning 

is mainly to study how to make a reasonable combination of multiple 

varieties and small batch charges on the premise of considering the 

characteristics of the same tundish production process. And the 

combined tundish is provided to the subsequent cast batch planning 

Therefore, it can be seen that the tundish batch planning is the bridge 

for the optimization of the charge batch planning and the cast batch 

planning, and it is one of the important parts of the steelmaking-

continuous cast batch planning. Reasonable preparation of tundish 

batch planning is of great significance to improve production 

efficiency and reduce production cost. Therefore, how to make 

efficient and high-quality compilation tundish batch planning is the 

main problem in this article. 

There are the following difficulties in steelmaking-continuous 

casting tundish batch planning. The first difficulty is the optimization 

objectives need to be fully considered to meet the actual production 

process. The process of steelmaking is accompanied by chemical and 

physical changes of high temperature and high pressure, and it is 

carried out in the mode of assembly line, which also means that the 

production process is accompanied by huge energy changes. In the 
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optimization process of steelmaking-continuous casting tundish 

batch planning, it is necessary to consider the limitation of customer 

demand, the limitation of production process execution rules and the 

limitation of machine capacity, so as to make the "flow" of steel 

production process proceed dynamically and orderly, so as to make 

efficient use of energy and increase production efficiency. However, 

the complexity of mathematical optimization model is also increased. 

The second difficulty is the scale of the problem increases 

exponentially as orders increase. Due to the large number of orders 

to prepare the charge batch planning, The charge is planned to be 

redistributed in tundish for processing, each charge also includes the 

steel grade, width, composition, delivery time and many other 

factors. Therefore, in the process of reorganizing the diverse charge 

data of multi-variety and small-batch customers into large-scale 

production batches, the scale of the problem increases exponentially 

with the increase of the number of charges, which makes it difficult 

to optimize and solve the problem efficiently. 

 

Fig. 1. schematic diagram of SCC production process. 

Dong et al., (2009) have established a mathematical model with 

the minimum number of tundishes, the minimum additional process 

cost and the capacity balance of each flow direction as optimization 

objectives, and dealt with multi-objective optimization problems 

based on the strategy and weighted sum method. Yi et al., (2012a) 

have considered the utilization rate of tundish as the optimization 

objective and adopted heuristic and DNA evolution algorithm to 

solve the model. Zhu et al., (2021) have established a mathematical 

model to minimize the number of unselected charges, minimize the 

remaining service life of tundish and the unoptimized target of 

downstream productivity balance, and solved it based on 

mathematical programming method. In the above literature, the 

differences of charge components assigned to the same tundish are 

not considered, so it is difficult to meet the actual production demand. 

Tang et al., (2008) have summarized tundish planning as a vehicle 

routing problem, established a mixed integer programming model 

with minimum number of tundishes, minimum charge penalties not 

incorporated into tundish and downstream production processes as 

optimization objectives, and solved the problem based on tabu search 

and heuristic method. Yi et al., (2012b) have established a multi-

travel salesman problem model with the optimization objectives of 

minimizing the total number of tundishes, minimizing the total 

number of adjustment width and the total number of times of different 

types of steel transfer, and proposed a hybrid optimization algorithm 

combining the heuristic k-opt neighborhood search and estimation of 

distribution algorithms (EDA) evolution. Dong et al., (2014) have 

established a mathematical model to minimize the number of 

tundishes, minimize the difference of tundish attributes and 

downstream processes, and solved the problem based on the 

improved variable neighborhood search algorithm. Ma et al., (2015) 

have decomposed the solving model into two sub-models in the 

process of establishing a mathematical model, and designed iterated 

local search (ILS) and variable neighborhood search (VNS) 

combined with the two-layer hybrid algorithm. The above literature 

studies consider the attribute difference between charges in the 

modeling process, but the optimization method based on 

neighborhood search is easy to lead to incomplete or inconsistent 

knowledge reserve of decision-making system in the engineering 

background of solving complex linkage relations, and it is difficult to 

efficiently respond to the production needs of practical problems. 

On the basis of the existing optimization of tundish planning this 

paper establishes the weighted objective function to minimize the 

service life of tundish and the minimum difference of the charge 

components in the same tundish. At the same time, the service life 

capacity constraint, charge distribution constraint and downstream 

capacity balance constraint are considered. The mixed integer 

programming model is established. Firstly, by introducing a set of 

optimal solution adjustment coefficients, the complex coupling 

condition tundish service life capacity constraint was relaxed into the 

objective function, and the Surrogate Subgradient Lagrangian 

Relaxation (SSLR) model framework was constructed. In the 

framework of this model, the approximate optimization of 

subproblems can be obtained without solving all subproblems only if 

the optimal conditions of the Surrogate are satisfied. Compared with 

the Subgradient Lagrangian Relaxation (SLR) method, SSLR is less 

computational because it does not need to solve all the subproblems. 

Secondly, the original problem is decoupled into subproblems 

representing the optimal target value of each tundish, and solved 

based on backward dynamic programming algorithm. Finally, a two-

stage heuristic optimization method is designed to adjust the feasible 

solutions that do not satisfy the relaxed coupling constraints and 

replace the non-optimal clustering centers to obtain the optimal target 

value of the original problem. The actual data of a large steel mill in 

China show that this method can guarantee the optimization 

efficiency and quality. 

The rest of this paper is organized as follows. Section 2 provides 

the mathematical formulation of tundish batch planning. In Section 3 

introduces the SSLR approach for tundish batch planning, solution 

methods for the subproblems and the construction method of feasible 

solution, etc. In section 4 demonstrates the computational 

experiments and the comparisons for SSLR and SLR. In Section 5 

concludes our study.  

2. Mathematical Formulation 

2.1 Problem Description 

Tundish is a vessel used to hold molten steel in a continuous 

casting machine. Each tundish has a certain service life, and the 

different composition of molten steel will have a certain impact on 

the service life of tundish. The inside of each tundish contains a high 

temperature resistant layer, and whether it reaches its service life or 

not, it needs to be maintained, and the maintenance cost is high. 

Therefore, the optimization process is to minimize the remaining 

service life of the tundish as an objective function. Therefore, in the 

combination process, it is necessary to consider the production 

process restriction of the same tundish. These limitations include 

whether the difference of composition, width and delivery time of the 

same tundish charge is similar, and whether the sum of processing 

time of the same tundish charge exceeds the tundish life. The number 
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of charges, the number of refining charges, the weight of ironing 

roller and the total weight of the downstream production line should 

be considered in the process of determining the number of charges 

and ranking.  

The following requirements should be taken into account in the 

optimization process of tundish planning charges decision allocation 

(Sun, et al., 2018): 

(1) The charges in the same tundish must be continuously cast. 

(2) The total number of charges in the same tundish should not 

exceed the service life of tundish, which is usually 4-6 

charges according to the different composition of molten 

steel. 

(3) The width adjustment range of adjacent charge in the same 

tundish shall not exceed 100mm, and shall not exceed 2 times 

of each tundish. 

(4) Because of the production process constraints of continuous 

casting machine, and each charge has steel grade properties. 

Therefore, in the same tundish processing charge steel must 

be similar or the same. 

(5) Due to the production process constraints of continuous 

casting machine, the slab thickness carried by the charge 

processing in the same tundish must be the same. 

(6) Balance the flow of each downstream production line. 

2.2 Parameters 

In order to better meet the actual optimization process of 

steelmaking and continuous casting tundish batch planning, four 

optimization objectives are designed in this paper, which are to 

minimize the composition difference between charges, minimize the 

delivery time difference, minimize the width difference between 

charges and minimize the remaining service life of tundish. The 

weight objectives are designed respectively, and the four 

optimization objectives are weighted and optimized. The constraints 

of charge distribution, tundish service life and downstream 

production process capacity balance were considered. 

Constant: In the process of tundish batch planning, set the charges 

set as {𝑛|𝑛 = 1,2, … , 𝑁  ，The index number of the charges are 

𝑖, 𝑗(∀𝑖, 𝑗 ∈ [1, 𝑁]). The number set of tundishes is {𝑘|𝑘 = 1,2, … , 𝑀 . 

𝐺𝑖 , 𝐺𝑗   are the component of charges 𝑖  and 𝑗 . 𝑊𝑖 , 𝑊𝑗   are the 

width of charges 𝑖 and 𝑗. 𝐷𝑖, 𝐷𝑗 are the delivery time of charges 𝑖 

and 𝑗. 𝑝𝑖𝑗
𝐶𝐷 is the penalty caused by different components of charges 

𝑖 and 𝑗. 𝑝𝑖𝑗
𝑊𝐷 is the penalty caused by different widths of charges 𝑖 

and 𝑗 . 𝑝𝑖𝑗
𝐷𝐷  is the penalty caused by different delivery time of 

charges 𝑖  and 𝑗 . 𝑝𝑘
𝑇𝐿  is the penalty for the tundish 𝑚  not being 

fully utilized. 𝑇𝐿 is the tundish service life. 𝐿𝑐ℎ𝑟 and 𝐻𝑐ℎ𝑟 are the 

minimum and maximum values of the number of charges production 

requirements. 𝐿𝑟ℎ and 𝐻𝑟ℎ are the minimum and maximum values 

of the refining number of charges production requirements. 𝐿𝑝𝑟𝑒 

and 𝐻𝑝𝑟𝑒 are the minimum and maximum values of the weight of 

hot roll materials production requirements. 𝐿𝑓  and 𝐻𝑓  are the 

minimum and maximum values of the weight requirements for 

downstream processes. 𝑄𝑟ℎ−𝑖  is the refining mark of charge 𝑖 . 

𝑄𝑝𝑟𝑒−𝑖 is the weight of hot roll materials in charge 𝑖. 𝑄𝑓−𝑖 is the 

slab weight required by the downstream production process f in 

charge 𝑖.  𝐹 is the total number of downstream processes, 𝑓 is the 
downstream process index and 𝑓 ∈ 𝐹 . 𝜑1, 𝜑2, 𝜑3, 𝜑4  respectively 

optimize the weight coefficients, 𝜑1, 𝜑2, 𝜑3, 𝜑4 ∈ [0,1]  and 𝜑1 +
𝜑2 + 𝜑3 + 𝜑4 = 1. 

Variable: 𝑦𝑖𝑗𝑘  0/1  decision variable. If the charge 𝑖  and 𝑗  in 

production in the tundish 𝑘 , 𝑦𝑖𝑗𝑘 = 1 . Otherwise, 𝑦𝑖𝑗𝑘 = 0 . 𝑦𝑘𝑘 

0/1 auxiliary variable. If the serial number for 𝑘 tundish is selected 

as the optimization object, 𝑦𝑘𝑘 = 1. Otherwise, 𝑦𝑘𝑘 = 0. 𝑦𝑖𝑘 0/1 
auxiliary variable. If charge 𝑖 is produced in tundish 𝑘. 

2.3 Mathematical model 

Objective function 

(1) Minimize the difference in charge composition within the same 

tundish. 

𝑂𝑆𝐺 = ∑ ∑ ∑|𝐺𝑖 − 𝐺𝑗| ∙ 𝑝𝑖𝑗
𝑆𝐺 ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑗=2

𝑁

𝑖=1

𝑀

𝑘=1

(1) 

(2) Minimize the difference in width between charges assigned to 

the same tundish. 

𝑂𝑊𝐷 = ∑ ∑ ∑|𝑊𝑖 − 𝑊𝑗| ∙ 𝑝𝑖𝑗
𝑊𝐷 ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

𝑀

𝑘=1

(2) 

(3) Minimize the difference in delivery time between charges 

assigned to the same tundish. 

𝑂𝐷𝐷 = ∑ ∑ ∑|𝐷𝑖 − 𝐷𝑗| ∙ 𝑝𝑖𝑗
𝐷𝐷 ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

𝑀

𝑘=1

(3) 

(4) Minimize the remaining service life of the tundish. 

𝑂𝑇𝐿 = ∑ 𝑝𝑘
𝑇𝐿 (𝑇𝐿 ∙ 𝑦𝑘𝑘 − ∑ ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

)

𝑀

𝑘=1

(4) 

The objective function is weighted and constraints are added to get 

the following form： 

𝑚𝑖𝑛 𝑍  

𝑤𝑖𝑡ℎ 𝑍 = 𝜑1𝑂𝑆𝐺 + 𝜑2𝑂𝑊𝐷 + 𝜑3𝑂𝐷𝐷 + 𝜑4𝑂𝑇𝐿 

Subject to: 

∑ ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

≤ 𝑇𝐿 ∙ 𝑦𝑘𝑘 (5) 

∑ 𝑦𝑖𝑘

𝑀

𝑘=1

≤ 1 (6) 

𝐿𝑐ℎ𝑟 ≤ ∑ ∑ 𝑦𝑖𝑘

𝑁

𝑖=1

𝑀

𝑘=1

≤ 𝐻𝑐ℎ𝑟 (7) 

𝐿𝑟ℎ ≤ ∑ ∑ 𝑄𝑟ℎ−𝑖 ∙ 𝑦𝑖𝑘

𝑁

𝑖=1

𝑀

𝑘=1

≤ 𝐻𝑟ℎ (8) 

𝐿𝑝𝑟𝑒 ≤ ∑ ∑ 𝑄𝑝𝑟𝑒−𝑖 ∙ 𝑦𝑖𝑘

𝑁

𝑖=1

𝑀

𝑘=1

≤ 𝐻𝑝𝑟𝑒 (9) 

𝐿𝑓 ≤ ∑ ∑ 𝑄𝑓−𝑖 ∙ 𝑦𝑖𝑘

𝑁

𝑖=1

𝑀

𝑘=1

≤ 𝐻𝑓 (10) 

Constraint (5) tundish capacity constraint which means that the 

number of charges processing on tundish cannot exceed the tundish 

service life. Constraint (6) is the charge allocation constraint which 

means that each charge can only be allocated to one tundish for 

production. Constraint (7) is the capacity constraint means that the 

actual number of charges processed is within the upper and lower 
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limits specified in the production. Constraint (8) indicates that the 

actual refining charges should be within the upper and lower limits 

of the refining number required by production. Constraint (9) means 

that the total weight of hot roll materials actually processed should 

be within the upper and lower limits of production requirements. 

Constraint (10) means that the total flow weight of slab in each charge 

must be within the upper and lower limits specified in the production. 

3. Solution Methodology 

3.1 Lagrangian Relaxation Frame 

By introducing the optimal solution adjustment coefficient 𝑢𝑖, the 

constraint condition of “tundish service life constraints”. The 

mathematical model can be expressed in the following form: 

𝑚𝑖𝑛 𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) 

𝑤𝑖𝑡ℎ 𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) = 𝑍 + ∑ 𝑢𝑖(𝑇𝐿 ∙ 𝑦𝑘𝑘 − ∑ ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

)

𝑁

𝑖=1

 

= ∑ ∑ ∑ 𝑃𝑖𝑗 ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑗=2

𝑁

𝑖=1

𝑀

𝑘=1

+ 𝜑4 ∑ 𝑝𝑘
𝑇𝐿 (𝑇𝐿 ∙ 𝑦𝑘𝑘 − ∑ ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

)

𝑀

𝑘=1

+ ∑ 𝑢𝑖(∑ ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑗=1

𝑁

𝑖=1

− 𝑇𝐿 ∙ 𝑦𝑘𝑘)

𝑁

𝑖=1

 

𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 = 1, 2, … , 𝑀. (11) 

𝑃𝑖𝑗 = 𝜑1|𝐺𝑖 − 𝐺𝑗| ∙ 𝑝𝑖𝑗
𝑆𝐺 + 𝜑2|𝑊𝑖 − 𝑊𝑗| ∙ 𝑝𝑖𝑗

𝑊𝐷 + 𝜑3|𝐷𝑖 − 𝐷𝑗| ∙ 𝑝𝑖𝑗
𝐷𝐷 

𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. (12) 

The constraints are (6) - (10). 𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 =

1, 2, … , 𝑀. 

3.2 Lagrangian Dual Problem 

Since the constraint (5) is relaxed, the optimal solution generated 

by the SSLR problem is not the optimal solution to the original 

problem. In order to be able to get closer to the optimal solution to 

the original problem, the solution to the relaxation problem is 

replaced by the maximum value of the dual problem. Lagrangian dual 

problem can be expressed as: 

𝑚𝑎𝑥 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) 

𝑤𝑖𝑡ℎ 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) = 𝑚𝑖𝑛 𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) 

𝑤𝑖𝑡ℎ 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) = ∑ ∑ ∑(𝑃𝑖𝑗 − 𝜑4𝑝𝑘

𝑇𝐿 + 𝑢𝑖) ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑗=2

𝑁

𝑖=1

𝑀

𝑘=1

 

+𝑇𝐿 ∙ 𝑦𝑘𝑘(𝜑4 ∑ 𝑝𝑘
𝑇𝐿

𝑀

𝑘=1

− ∑ 𝑢𝑖

𝑁

𝑖=1

) 

𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 = 1, 2, … , 𝑀. (13) 

The constraints are (6) - (10). 𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 =

1, 2, … , 𝑀. The relationship between the original problem, the 

relaxation problem and the dual problem (Han, et al., 2016) is that 

𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) ≤ 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) ≤ 𝑍. 

3.3 Backward Dynamic Programming Solves Subproblems 

Based on formula (13), the capacity constraint of the device can be 

decoupled into a structure that takes the optimization objective of a 

single tundish as a subproblem for solving. To facilitate the 

calculation of this problem, let 𝑀 = 𝑁  and 𝑦𝑘𝑘 = 1 , 𝑘 =

1, 2, … , 𝑁.  By optimizing each charge as a clustering center of a 

tundish, formula (13) can be converted to the following form: 

𝑚𝑎𝑥 ∙ 𝑚𝑖𝑛 𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) 

𝑤𝑖𝑡ℎ 𝑍𝑆𝑆𝐿𝑅(𝑢𝑖) = ∑ 𝑡𝑗(𝑦𝑖𝑗𝑘)

𝑁

𝑗=1,𝑘=1

+ 𝑇𝐿 ∙ 𝑦𝑘𝑘(∑ 𝑝𝑘
𝑇𝐿

𝑀

𝑘=1

− ∑ 𝑢𝑖

𝑁

𝑖=1

) 

𝑗 = 1, 2, … , 𝑁. (14) 

The constraints are (6) - (10). 𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 =

1, 2, … , 𝑀. 

𝑚𝑖𝑛 𝑡𝑗(𝑦𝑖𝑗𝑘) 

𝑤𝑖𝑡ℎ 𝑡𝑗(𝑦𝑖𝑗𝑘) = ∑(𝑃𝑖𝑗 − 𝜑4𝑝𝑘
𝑇𝐿 + 𝑢𝑖) ∙ 𝑦𝑖𝑗𝑘

𝑁

𝑖=1

(15) 

The constraints are (6) - (10). 𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 =

1, 2, … , 𝑀. 

Formula (15) satisfies constraint conditions (6) - (10), which can 

be expressed as a 0-1 knapsack problem and solved based on 

backward dynamic programming method (Li et al., 2019). 

Each tundish is optimized as a backpack. The penalty value 

generated by the combination of the charges and the cluster center 

due to the difference in its physical properties is considered as the 

value of the item. Charge 𝑖  is assigned to the cluster center for 

processing 𝑦𝑖𝑗𝑘 = 1 , while the charge 𝑖  is not assigned to the 

cluster center for processing 𝑦𝑖𝑗𝑘 = 0 . The problem can be 

abstracted as follows: under the premise that the service life of 

tundish is certain, the decision set can maximize the utilization rate 

of tundish (the tundish life can be fully utilized) and at the same time 

make the target optimization value of the tundish best. 

Let 𝛿 = 𝑃𝑖𝑗 − 𝜑4𝑝𝑘
𝑇𝐿 + 𝑢𝑖. The tundish service life is divided into 

𝑇𝐿𝐵  intervals, 𝑇𝐿𝑏  is the index of the interval, and 𝑇𝐿𝑏 ∈ 𝑇𝐿𝐵 . 

𝛿[𝑖, 𝑇𝐿𝑏] is the optimal value for the first 𝑖 cycles in 𝑇𝐿𝑏, 𝑇𝐿(𝑖) is 

the tundish life occupied by secondary 𝑖 in this interval. 𝛿[𝑖] is 

the penalty value generated by the combination of charge 𝑖  and 

clustering center. 

The state transition formula of tundish batch planning 0-1 decision 

problem is as follows: 

𝛿[𝑖, 𝑇𝐿𝑏] = min{𝛿[𝑖 − 1, 𝑇𝐿𝑏 − 𝑇𝐿(𝑖)] + 𝛿[𝑖];  𝛿[𝑖 − 1, 𝑇𝐿𝑏]} (16) 

This algorithm means that each backward state is optimized based 

on the previous state in order to judge the current charge is selected 

or not under the tundish lifetime constraint.  

3.4 SSLR Method is Used to Solve the Dual Problem 

In order to calculate the formula conveniently, the quantity 

unrelated to the decision variable in formula (13) is temporarily 

excluded from the calculation process and converted into the 

following form: 

𝑚𝑎𝑥 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) 

𝑤𝑖𝑡ℎ 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) = ∑ ∑ ∑(𝑃𝑖𝑗 − 𝜑4𝑝𝑘

𝑇𝐿 + 𝑢𝑖)𝑦𝑖𝑗𝑘

𝑁

𝑗=2

𝑁

𝑖=1

𝑀

𝑘=1

− 𝑦𝑘𝑘𝑇𝐿 ∑ 𝑢𝑖

𝑁

𝑖=1
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𝑖 = 1, 2, … , 𝑁. 𝑗 = 1, 2, … , 𝑁. 𝑘 = 1, 2, … , 𝑀. (17) 

 The Lagrangian surrogate subgradient method does not need to 

solve all the subproblems and can greatly improve the solving 

efficiency (Zhao et al., 1999; Cui et al., 2017; Pang et al., 2017). And 

can get a proper subgradient direction, with less computation to solve 

large-scale problems, is a good optimization method. In this paper, a 

surrogate subgradient optimization method based on heuristic rules 

is designed. For formula (17), the optimization steps are as follows： 

Step 1: Initialization:  

𝑚 = 1. 𝜀1 > 0, 𝜀2 > 0 . 𝑢𝑖
(0)

= 0, (𝑖 = 1,2, … , 𝑁) . 𝑦𝑖𝑗𝑘
(0) =

0, (𝑖 = 1,2, … , 𝑁. 𝑗 = 1,2, … , 𝑁). 

Step 2: It is judged whether or not 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖) ≤ 𝑍 , if so, a 

subgradient direction of the dual problem is obtained. 

Step 3: The subproblem is solved based on the adjustment 

coefficient 𝑢𝑖 of the given optimal solution: 

𝑦𝑖𝑗𝑘
(𝑚)(𝑢𝑖

(𝑚)) = 𝑎𝑟𝑔 𝑚𝑖𝑛 (𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖

(𝑚))) , 𝑖 = 1, 2, … , 𝑁. 𝑗

= 1, 2, … , 𝑁. 

Step 4: Set the direction of the subgradient required for updating 

the optimal solution adjustment coefficient: 

�̃�(𝑢𝑖
(𝑚)) = 𝐴𝑦𝑖𝑗𝑘(𝑢𝑖

(𝑚)) − 𝑏 = ∑ 𝑎𝑖

𝑁

𝑖=1

𝑦𝑖𝑗𝑘
(𝑚)(𝑢𝑖

(𝑚)) − 𝑏 

Step 5: Calculate the gradient step size required for updating the 

Lagrangian multiplier:  

Step size 𝑑(𝑚) satisfied the following equation: 

0 < 𝑑(𝑚) < (𝑍  − 𝑍𝑆𝑆𝐿𝑅
𝐷 (𝑢𝑖

(𝑚)))/‖�̃�(𝑚)‖2 

Where �̃�(𝑚) = �̃�(𝑦𝑖𝑗𝑘
(𝑚))  is 𝑍𝐿𝑅

𝐷 (𝑢𝑖
 )  in 𝑢𝑖

(𝑚)  position 

gradient. 

Step 6: Based on the gradient direction and step size, the 

Lagrangian multiplier is updated: 

𝑢𝑖
(𝑚+1) = [𝑢𝑖

(𝑚) + �̃�(𝑢𝑖
(𝑚))𝑑(𝑚)]+ 

Step 7: Perform approximate optimization: 

According to 𝑢𝑖
(𝑚+1), approximate optimization is performed to 

obtain 𝑦𝑖𝑗𝑘
(𝑚) so that 𝑦𝑖𝑗𝑘

(𝑚) is satisfied: 

𝑍𝑆𝑆𝐿𝑅
𝐷(𝑚+1)

(𝑢𝑖
(𝑚+1), 𝑦𝑖𝑗𝑘

(𝑚+1)) < 𝑍𝑆𝑆𝐿𝑅
𝐷(𝑚+1)

(𝑢𝑖
(𝑚+1), 𝑦𝑖𝑗𝑘

(𝑚)) 

𝑍𝑆𝑆𝐿𝑅
𝐷(𝑚+1)

(𝑢𝑖
(𝑚+1), 𝑦𝑖𝑗𝑘

(𝑚)) 

= ∑ 𝑍 

𝑁

𝑖=1

(𝑦𝑖𝑗𝑘) + (𝑢𝑖
(𝑚+1))𝑇(𝐴𝑦𝑖𝑗𝑘

(𝑚) − 𝑏) 

If 𝑦𝑖𝑗𝑘
(𝑚+1) cannot be obtained, let 𝑦𝑖𝑗𝑘

(𝑚+1)=𝑦𝑖𝑗𝑘
(𝑚). 

Step 8: Check whether the stop criteria are met: 

If the stop criteria are met, the multiplier update will be stopped. 

Otherwise, the next multiplier iteration update will be performed by 

turning to step 2. 

∥ 𝑢𝑖
(𝑚+1) − 𝑢𝑖

(𝑚) ∥< 𝜀1 or ∥ 𝑦𝑖𝑗𝑘
(𝑚+1) − 𝑦𝑖𝑗𝑘

(𝑚) ∥< 𝜀2. 

Where 𝑚  is the number of iterations, 𝜀1 , 𝜀2  are infinitesimal 

natural numbers. In Step 4, this term of ∑ 𝑎𝑖
𝑁
𝑖=1 𝑦𝑖𝑗𝑘

(𝑚)(𝑢𝑖
(𝑚)) − 𝑏 

is the coupling constraint relaxed by the SSLR problem, and 

∑ 𝑎𝑖
𝑁
𝑖=1 𝑦𝑖𝑗𝑘

(𝑚)(𝑢𝑖
(𝑚)) − 𝑏 ≤ 0. SSLR does not need to solve all the 

optimal values of subproblems in the optimization process, which is 

reflected in Step 7. As long as the inequalities mentioned in Step 7 

are satisfied, the optimal agent condition is satisfied. The stopping 

criteria in Step 8 stop the iteration as long as one of them is met. Fig. 

2 shows the flow chart of the proposed algorithm. 

 

Fig. 2. Algorithm flow chart. 

3.5 Construct feasible solution of original problem 

In order to solve the tundish batch planning optimization problem, 

the service life capacity constraint of tundish is relaxed, resulting in 

the approximate optimal solution is not satisfied with the feasible 

solution of the original problem. Two stage heuristic rules are 

designed to adjust the approximate optimal solution, so that the 

adjusted decision charge allocation satisfies the tundish lifetime 

capacity constraint and the objective function value is more ideal. 

The first stage: decoupling constraints. Determine whether each 

charge 𝑖 meets the constraint condition of being relaxed. If so, enter 

the second stage. If not, it will be compared with the charge 

sequences with conflicting constraints, and the clustering center 

selected by the optimal solution will be regarded as the standard 

solution to optimize the second stage. The second stage: Adjust the 

clustering center. The selection of the clustering center to obtain each 

group of feasible solutions is related to the quality of the optimization 

of the objective function value. Each charge of each group of 

solutions is respectively used as the clustering center for optimization, 

and the other penalty values are replaced with more ideal penalty 

values. At the same time, the clustering center is replaced as the better 

one. 

4. Results 

4.1 Parameters 

The method was implemented by using MATLAB，the experiment 

was carried out on an Intel Core i5 5200 CPU 4GB Windows 11/64 

bit operating system PC. Through the simulation of the actual 
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production data in China, the following simulation cases and results 

are obtained. In Example 1, the service life utilization of tundish rate 

of SSLR and SLR in the optimization process was compared through 

the tundish batch planning optimization experiment of 20 charges. In 

Example 2, the CPU times and duality gap of 100 charges are 

compared based on SSLR and SLR. In Example 3, the control 

variable method optimizes 100 sets of data based on SSLR and SLR, 

each set of 50 charges. First, the optimization time of SSLR and SLR 

under the same duality gap is compared. Then, the duality gap of 

SSLR and SLR are compared under the same CPU time. 

Example 1. Optimize 20 charges based on SSLR and SLR, and the 

utilization rate of tundish service life are compared. 

Tab. 1. shows the optimization results based on the tundish service 

life. It can be seen that the total number of tundishes generated by 

SLR optimization method is 6, and the average utilization rate of 

tundish service life is 66.67%. The total number of tundishes 

generated by SSLR optimization method is 5, and the average usage 

of tundishes reaches 80.00%. In conclusion, the SSLR algorithm 

based tundish batch planning optimization method has better 

production resource utilization effect in the production process.  

Tab. 1. 20 charges are optimized based on SSLR and SLR, and the service life consumption of tundish is compared 

SLR SSLR 

Tundish Charges 𝑇𝐿 Consumption  
Utilization Rate  

of TL (%) 
Tundish Charges TL Consumption 

Utilization Rate 

 of TL (%) 

1 2,7,11 3 60 1 1,9,5,16 4 80 

2 15,14,17 3 60 2 3,18,7,2,19 5 100 

3 4,12,1,5 4 80 3 13,10,12,11 4 80 

4 20,6,16 3 60 4 15,17,6,14 4 80 

5 3,18,9 3 60 5 8,4,20 3 60 

6 8,10,13,19 4 80 6 — — — 

Average Value 66.67 Average Value 80.00 

In Example 2. In the optimization process of 100 charges, the 

CPU time and duality gap of SSLR and SLR algorithms were 

compared. 

In Tab. 2. The convergence time and duality gap of SSLR and SLR 

Cases 

Number 

of 

tundish 

CPU Time 

(seconds) 

Duality Gap 

(%) 

SSLR SLR SSLR SLR 

1 5 15.73 18.92 3.38 4.01 

2 10 39.21 54.86 2.14 2.23 

3 15 56.13 67.45 2.35 2.84 

4 20 76.98 89.43 1.89 2.07 

5 25 95.22 129.47 1.36 1.51 

In Tab. 2, the CPU time and duality gap of two optimization 

algorithms SSLR and SLR were recorded when 100 charges were 

optimized to 5, 10, 15, 20 and 25 tundishes, and it can be seen that 

SSLR has better effect. 

In Fig. 3, 100 charges were optimized, and the stopping condition 

was set when the dual gap was equal to 10%. It can be seen from the 

experimental results that when the number of charges is less than 30, 

the running time used by the two algorithms is not much different. 

When the number of problems reaches a certain scale, the 

optimization time of SSLR algorithm is significantly less than the 

running time of SLR algorithm. As can be seen from the box graph, 

with the increase of data scale, the advantage of SSLR algorithm in 

optimization time becomes more obvious. 

In Fig. 4, 100 charges are optimized, and adjustment coefficient of 

optimal solution is set to iterate until no more changes is the stop 

condition. It can be seen from the experimental results that the dual 

gap of SSLR algorithm optimization problem is smaller than that of 

SLR algorithm optimization problem. As can be seen from the box 

graph, with the increase of data scale, SSLR algorithm has more 

obvious advantages in optimizing quality. 

Fig. 3. Comparison of CPU Times 

 

Fig. 4. Comparison of Duality Gaps 
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Example 3. Based on the control variable method, the CPU time 

under the same duality gap is compared, and the duality gap under 

the same CPU time is compared. 

 

Fig. 5. Setting the Same Duality Gap (0.83%), Comparison of CPU Times 

 

Fig. 6. Setting the Same CPU Time (230 Seconds), Comparison of Duality 

Gaps 

In Fig. 5, the same duality gap (0.83%) is set to stop conditions, 

and the two algorithms optimize 100 sets of data (50 charges in each 

group of data). Compare the CPU time used. From the histogram, it 

can be seen that the SSLR algorithm is 100% completed 300 seconds 

ago, while the SLR completion is only 20%; the SLR completes 8% 

in the 400 to 500 seconds, and the remaining 72% will be completed 

after 590 seconds. It can be seen that when a large number of 

optimization charges batch planning, the SSLR algorithm 

optimization efficiency is higher than SLR algorithm. 

In Fig. 6, the same optimization time (230 seconds) is set to stop 

conditions, and two algorithms optimize 100 sets of data (50 charges 

in each group). Compare the two algorithms to the duality gap. From 

the histogram, it can be seen that the SSLR algorithm can control 

100% of the data to below 0.3% within 450 seconds; while the LR 

algorithm controls the gap between 1.35%-1.7% at the same time. It 

can be seen that when a large number of optimization charges batch 

planning, the SSLR algorithm optimization results are better. 

2. Summary 

In this paper, a heuristic Surrogate Subgradient Lagrangian 

Relaxation (SSLR) algorithm is proposed to optimize the problem of 

steelmaking - continuous casting tundish batch planning, and the 

capacity constraint of tundish service life is relaxed by a set of 

optimal solution adjustment coefficients. The relaxation problem is 

decoupled into the subproblems aiming at the optimal value of a 

single tundish, and backward dynamic programming method is used 

to solve some subproblems satisfying the agent optimization based 

on the state transition equation. Finally, a two - stage heuristic method 

is designed to adjust the relaxed constraints. Experimental results 

show that the proposed method is effective. 
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