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 In response to issues such as the limited sample size of images for subsurface salt discharge pipes in saline-alkali 

land and the lack of an assessment mechanism for internal anomalies, this paper proposes a hierarchical 

classification method for subsurface pipes image based on ResNet18 transfer learning. This method adopts the 

strategy of data layering to label the dataset in a hierarchical manner, allowing for a more detailed classification of 

subsurface pipe images. It enables accurate assessments of the severity of subsurface pipe issues in saline-alkali 

lands based on the accumulation of sediments and salt crystals. Additionally, leveraging pre-trained networks with 

transfer learning significantly reduces the requirement for sample quantities during network training and enhances 

the model performance in recognizing features in subsurface pipe images. To validate the effectiveness of the 

proposed method, comparative experiments were conducted with transfer-learning-based pre-trained models, 

including AlexNet, MobileNet_V3, and ShuffleNet_V2. The experimental results indicate that the classification 

accuracy of the deep learning transfer model based on ResNet18 is 90.52%. The precision, recall, and F1 score are 

90.70%, 90.69%, and 90.69%, respectively. Compared to other pre-trained models, this method not only attains 

higher recognition accuracy but also showcases superior stability. Comprehensive experiments and reliability 

analysis indicate that the proposed classification method exhibits good robustness and generalization performance. 

It can be employed for the rapid and intelligent identification of underground salt discharge pipe images. 
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1. Introduction 

Soil salinization is a significant global issue, impacting both the 

environment and livelihoods (Zhang et al., 2022). Soil improvement 

methods for saline-alkali land (Cui et al., 2023; Chen and Cao et al., 

2022) include various measures such as agronomic practices, 

chemical agents, biological improvement, and hydraulic engineering. 

Among these, subsurface drainage for salt discharge is an effective 

hydraulic method for ameliorating saline-alkali land (Liu et al., 2021; 

Yang et al., 2022). Its principle is based on the hydro-salt movement 

rule of "salt comes with water, salt goes with water." By burying 

subsurface pipes with small holes at a depth of 1 to 2 meters below 

the ground surface and combining it with irrigation and leaching, it 

dissolves and drains the salt in the topsoil. However, for subsurface 

pipes in deeply buried saline-alkali land, monitoring, cleaning, and 

maintenance pose considerable challenges (Piciarelli et al., 2018; Xu 

et al., 2022). Over time, issues such as sediment accumulation and 

salt crystal deposition are prone to occur in these subsurface pipes. 

Once a section of the subsurface pipe system experiences severe soil 

accumulation and salt crystal precipitation, it may adversely impact 

the normal operation of the entire subsurface pipe system. Therefore, 

real-time detection of abnormal conditions within the subsurface 

pipes is an important link in ensuring the normal operation of the 

subsurface pipe system and preventing potential safety hazards. This 

real-time detection can quickly identify abnormalities within the 

subsurface pipes, allowing timely implementation of corresponding 

measures to ensure the stable operation of the subsurface pipe system 

(Huang et al., 2023). 

Subsurface pipe detection is typically performed by using 

intelligent pipeline inspection tools for real-time monitoring. It 

identifies, locates, and quantifies defects and damage in the pipeline 

during normal operation, providing a foundation for scientific 

pipeline safety management. Through a thorough analysis of the 

inspection results, operators can gain detailed insights into the 

conditions of pipe wall corrosion, cracks, blockages, deformations, 

and other defects. Based on the examination findings, they can assess 

the integrity of the pipeline. In recent years, with the development of 
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the combination of pipeline inspection and machine vision, many 

researchers have attempted to utilize automated image recognition 

technology to identify and classify pipeline issues in the abundant 

image and video data generated after inspections (Yang et al., 2019; 

Liu et al., 2020). Image recognition typically refers to the use of 

computer processing and analysis of images to achieve understanding 

and discrimination of different image categories. Its principle is based 

on some measurement method, criterion, or metric to categorize the 

image to be recognized into a predefined pattern class (Kuznetsova 

et al., 2020). In general, the image recognition process involves 

image acquisition, image preprocessing, feature extraction, and 

classifier design. As research progresses, intelligent learning and 

analysis methods have begun to be applied to pipeline image 

recognition. Technologies such as image processing and neural 

networks are employed to automatically extract features related to 

pipeline blockages, deformations, etc., which are then fed into a 

classifier for training, enabling the automatic identification of 

pipeline images. For example, Lang and others proposed a method 

based on multi-level feature fusion and multi-scale GhostNet. By 

employing the Adaptive Spatial Feature Fusion method to integrate 

various features and utilizing the Multi-Level Feature Fusion Multi-

Scale GhostNet method, the accuracy of pipeline corrosion defect 

recognition in Magnetic Flux Leakage images is improved (Lang and 

Han, 2022). Zhang and others, by combining computer vision 

technology with traditional image processing techniques, have 

developed a wall-climbing robot with weld seam tracking 

functionality. Utilizing algorithms for weld seam recognition and 

centerline extraction, this robot can perform rapid non-destructive 

testing of the surface weld seams inside pressure pipelines (Zhang et 

al., 2023). Suyama and others propose a non-destructive testing 

method supporting radiographic images, aimed at detecting weld 

joints in petroleum pipelines. The proposed method extracts pixel 

windows from the pipeline area in the radiographic images and 

applies a deep neural network model to identify windows 

corresponding to weld joints (Suyama et al., 2019). Xu and others 

propose a deep learning object detection framework based on 

YOLOv5 and CNN models. This framework initially employs 

YOLOv5 for the classification of targets in Magnetic Flux Leakage 

(MFL) images of pipelines. Subsequently, based on the classification 

results, features containing defects are input into a CNN-based 

regression model, enabling the simultaneous identification of targets 

in MFL pseudo-color images and the depth of metal loss (Xu and Liu 

et al., 2023). Despite the numerous studies and analyses conducted 

on various types of pipeline images, the proposed algorithms are 

limited to specific image categories due to significant differences 

among different types of pipeline images. Issues such as low database 

generality and poor model transferability exist. Additionally, there is 

relatively limited research on the recognition and classification of 

subsurface pipe images in saline-alkali land. Training a network from 

scratch requires a large dataset, and the training process is 

challenging. On the other hand, although existing methods for 

pipeline image classification have achieved certain results in 

identifying various types of pipeline issues, they generally lack a 

mechanism for fine-grained assessment of the severity of pipeline 

problems. This undoubtedly restricts the practical applicability and 

effectiveness of these methods. Therefore, how to overcome the 

difficulty of network training and develop new methods capable of 

fine-grained assessment of the severity of pipeline issues remains a 

crucial research challenge we are currently facing. 

Addressing the aforementioned issues, this paper investigates and 

proposes a hierarchical classification method for subsurface pipe 

images in saline-alkali land based on ResNet18 transfer learning. By 

introducing transfer learning strategies (Ding et al., 2018), the 

complexity of network training has been significantly reduced, 

leading to an enhanced performance of the model in recognizing 

features of subsurface pipe images. Additionally, this paper employs 

a hierarchical classification approach for a more refined 

categorization of subsurface pipe images. Specifically, this 

classification method allows for a more accurate and detailed 

assessment of the severity of subsurface pipe issues based on the 

extent of soil and salt crystal accumulation. This approach not only 

enhances our understanding of subsurface pipe issues but also 

provides crucial technical support and reference for subsequent 

subsurface pipe management and maintenance. 

2. Materials and methods 

2.1 Data acquisition and processing 

2.1.1 Data acquisition 

The subsurface pipe image dataset in this paper comprises three 

categories of images: normal pipe images, sediment accumulation 

images, and salt crystal accumulation images. Normal pipe images 

were collected under the condition of ensuring no blockage or 

damage in the drainage pipes, showing no anomalies in the internal 

space of the pipes. Due to the presence of numerous hydrophobic 

holes on saline-alkali land drainage pipes, fine sand and soil may 

inevitably enter the drainage pipes under the action of water flow. 

Additionally, as water flows through saline-alkali land, it absorbs a 

large amount of salt from the soil. After settling in the pipeline for a 

period, this can lead to the precipitation of salt crystals. Sediment and 

salt crystals adhere to the inner walls of the pipes, potentially causing 

blockages. Images of these locations where sediment accumulates 

and salt crystals precipitate were captured using specialized 

equipment, resulting in sediment accumulation images and salt 

crystal accumulation images. After image collection, the images of 

sediment and salt crystal accumulation were classified into three 

severity levels, as shown in Figure 1. This more detailed level of 

classification assists in a more accurate assessment of the severity of 

pipeline issues, enabling the implementation of more effective 

measures for governance and maintenance. It enhances the precision 

and efficiency of problem resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Typical examples of the subsurface pipe image dataset. 
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2.1.2 Data enhancement 

Subsurface pipes in saline-alkali land are typically located 

underground, and the internal environment is complex and variable. 

Collecting images of various subsurface pipe issues involves 

significant economic costs. Therefore, the sample size of the 

subsurface pipe image dataset is relatively small, making it 

challenging to meet the requirements of the network model. 

Additionally, as the image capture devices periodically take pictures 

and most areas of subsurface pipes in saline-alkali land do not have 

accumulation issues, the number of normal pipe images far exceeds 

that of other types, resulting in an imbalance in the dataset. In 

addressing the aforementioned issues, this study employed a data 

augmentation strategy to enhance the robustness of the model by 

expanding the sample size, aiming to achieve a more superior 

generalization effect. 

The dataset was augmented using techniques such as width offset, 

height offset, horizontal and vertical flipping, cropping, and scaling. 

The augmented dataset comprises a total of 4711 images. The 

augmentation not only increases the diversity of the dataset but also 

contributes to enhancing the model's robustness, suppressing reliance 

on irrelevant features, and achieving better generalization. The 

augmented subsurface pipe image data was randomly selected in a 

7:3 ratio for training and testing purposes. Specifically, the training 

set consists of 3298 images, and the testing set consists of 1413 

images. The classification and quantity of the training and testing sets 

are detailed in Table 1. normal pipe images, sediment accumulation 

images, and salt crystal accumulation images 

Tab. 1. The augmented dataset of dark tube images after data augmentation. 

 
Severity 

level 

Image 

count 

Training set 

count 

Testing set 

count 

Normal pipe 

images 
 736 515 221 

Sediment 

accumulation 

images 

Slight 628 440 188 

Moderate 652 456 196 

Heavy 663 464 199 

Salt crystal 

accumulation 

images 

Slight 700 490 210 

Moderate 688 482 206 

Heavy 644 451 193 

 

2.2 Model architecture 

2.2.1 ResNet18 network 

ResNet18 is a deep convolutional neural network (Topaloglu et al., 

2023; Chen et al., 2022), and its efficiency stems from the design of 

its residual block structure. From Figure 2, it can be seen that the 

block introduces skip connections, allowing the network to more 

easily learn residuals. In a flat network, information can only be 

transmitted through layers, whereas in a residual network, skip 

connections enable information to pass directly between different 

layers, effectively addressing issues such as gradient vanishing and 

exploding. Each block consists of a series of convolutional layers, 

which perform operations such as convolution, batch normalization, 

and activation functions (such as ReLU) on the input data to capture 

more advanced feature representations. 

The ResNet network adds the input and output vectors of a block 

using a residual connection, and activates them using the ReLU 

function to obtain the feature value output of that block (Zhu et al., 

2020; Ren and Mosavat et al., 2021). The calculation of this feature 

value output is given by Equation (1). This design ensures that as the 

network deepens, it does not introduce additional parameters or 

computational complexity. 

 
 ( ), i sy F Wx W x= +

                
(1) 

where x and y represent the input and output vectors of a block in the 

ResNet network, respectively; F(x, {Wi}) represents a fully 

connected network, i.e., the residual mapping that the block aims to 

fit; Ws represents the linear mapping when matching the dimensions 

of the input and output vectors of that block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison between planar networks and residual networks. 

 

2.2.1 Transfer learning 

Deep Convolutional Neural Networks (DCNNs) typically require 

large annotated image datasets to reach the upper limit of 

classification accuracy. However, acquiring and annotating 

subsurface pipe image datasets for saline-alkali land is time-

consuming and labor-intensive. In such cases, transfer learning can 

be employed using pre-trained classical DCNN models. Transfer 

learning, as an optimization technique, allows the beneficial 

information, such as the learned model structure and parameter 

weights of a convolutional neural network in one task, to be 

transferred to the pipeline detection task (Minoofam et al., 2021). 

This significantly accelerates the model construction process, 

reduces the complexity of network training, and effectively addresses 

the challenges arising from limited internal image data within the 

pipeline. This not only effectively utilizes the learning outcomes from 

the previous task during model transfer but also provides an efficient 

approach to handle relatively small-scale internal pipeline image data. 

Figure 3 depicts the overall process of transfer learning on the 

subsurface pipe images. Before applying the pre-trained deep 

learning model to the subsurface pipe image dataset, modifications to 

the network architecture are necessary to adapt to the specific features 

of this dataset. After adjusting the network architecture, the obtained 

deep learning model is trained to optimize its performance on the 

subsurface pipe image task. The model training process is illustrated 

by equations (2) and (3): 
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                (2)  
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bS) represents the knowledge acquired by the network model on the 

source domain dataset, DS is the source domain sample, and DT is the 

target domain sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Deep learning network transfer learning flowchart. 

During the training process, the model parameters are optimized 

using gradient descent to enhance its generalization ability on the 

target task. Gradient descent method generally updates parameters 

along the opposite direction of the gradient to fine tune the network 

model and reduce the loss function. Gradient descent and the loss 

function are represented as Equation (4) and Equation (5), 

respectively: 

1

1 21 1
/m v

w w l
t t

 
 

 
+ = − 

− −
         (4) 

( , ) log( )H y y y y− −= −            (5) 

where wt represents the parameters at time t, mt is the first-order 

moment, vt is the second-order moment, β1 and β2 are the optimizer's 

parameters, y− is the actual label of the sample, y is the model's 

predicted probability distribution, and H represents the cross-entropy 

loss. The cross-entropy loss penalizes the model for incorrect 

predictions of the true class by comparing the model's output with the 

ground truth. 

 

2.2.3 Hierarchical classification method for subsurface pipes image 

based on ResNet18 transfer learning 

This paper proposes a hierarchical classification method for 

subsurface pipe image based on ResNet18 transfer learning, aiming 

to enhance the accuracy and generalization capability of image 

classification. The introduction of transfer learning strategies 

significantly streamlines the network training process and enhances 

the model's ability to recognize features in subsurface pipe images. 

Simultaneously, employing a hierarchical classification approach for 

subsurface pipe images allows for a more precise assessment of the 

severity of saline-alkali land subsurface pipe issues based on the 

degree of soil and salt crystal accumulation. The approach proposed 

in this paper is illustrated in Figure 4 and mainly consists of three 

parts: image preprocessing, modify network architecture, and 

training and testing the network. 

1) Image preprocessing: In the image preprocessing stage, various 

image augmentation methods such as horizontal flipping, vertical 

flipping, random rotation, size adjustment, and random brightness are 

employed to increase the number of samples in the dataset. 

Subsequently, the dataset is divided into a training set and a test set, 

with 70% of the images from each category used for training the 

network and 30% for testing the network. Meanwhile, automatic 

image annotation is performed based on the naming of the folders 

containing the subsurface pipe images. Additionally, image sizes are 

adjusted to meet the input requirements of the neural network. 

2) Modify network architecture: To adapt to the characteristics of 

the subsurface pipe image dataset in saline-alkali land, adjustments 

were made to the network architecture of the pre-trained ResNet18 

model. The original structure of ResNet18 employs a Global Average 

Pooling Layer in the last layer, followed by a fully connected layer 

with 1000 nodes to accommodate the 1000 categories of the 

ImageNet dataset. In this approach, the existing structure replaces the 

fully connected layer connected to the Global Average Pooling Layer 

with a new fully connected layer. The new fully connected layer 

consists of 7 nodes, corresponding to the image categories in the 

subsurface pipe image dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flowchart of the hierarchical classification method for subsurface pipe image based on ResNet18 transfer learning. 
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3) Training and testing the network: During the network training 

phase, we adjusted hyperparameters such as epochs, batch size, 

learning rate, optimizer, and loss function based on server 

performance and network structure. Through gradient descent 

operations, the network gradually optimized weights on the training 

set to adapt to the characteristics of subsurface pipe images in saline-

alkali land. In the testing phase, we applied the trained model to the 

test dataset, evaluating the model's performance on the test set, 

including metrics such as loss function value and accuracy. 

3. Experimental Results and Analysis 

To validate the effectiveness of the hierarchical classification 

method for subsurface pipe image based on ResNet18 transfer 

learning, this section compares the method with transfer learning 

using pre-trained models of AlexNet (Zhang et al., 2023), 

MobileNet_V3 (Liu et al., 2023), and ShuffleNet_V2 (Chen et al., 

2022). The dataset used in this study comprises 4711 subsurface pipe 

images, primarily consisting of three categories of images, all 

captured in JPG format. The experimental environment includes an 

Intel Core (TM) i5—11300H CPU with a maximum frequency of 

3.10GHz, 16GB of RAM, Windows 11 operating system, and 

PyCharm as the development environment. 

 

3.1 Evaluation metrics for the model 

To assess the results of subsurface pipe image recognition, a 

reliability analysis was conducted on the transfer learning model for 

subsurface pipe images. Common metrics used in the field of 

machine learning, especially in statistical classification problems, 

were employed to evaluate the performance of the model. Four 

evaluation metrics, including accuracy (ACC), precision (P), recall 

(R), and F1 score, were selected to measure the overall accuracy of 

the model. The confusion matrix was used to reflect the accuracy of 

each subsurface pipe image classification. 

The accuracy (ACC) provides an intuitive representation of the 

proportion of correctly classified results for subsurface pipe images 

in the overall test set by the classification model. 

TP TN
ACC

TP TN FP FN

+
=

+ + +
            (6) 

Precision (P) represents the weighted average of precision rates (Pi) 

for different types of subsurface pipe images, where Pi indicates the 

proportion of correctly predicted instances in a particular type of 

subsurface pipe image out of all instances predicted as that type. 

Precision measures the model's ability to distinguish negative 

samples, with higher precision indicating stronger discrimination 

ability against negative samples. 

i
i

i i
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P

TP FP
=

+

                  (7) 
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P w
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L

=

 
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Recall (R) represents the weighted average of recall rates (Ri) for 

different types of subsurface pipe images, where Ri indicates the 

proportion of correctly predicted instances in a particular type of 

subsurface pipe image out of the total instances of that type. Recall 

measures the model's ability to distinguish positive samples, with 

higher recall indicating stronger discrimination ability against 

positive samples. 

i
i

i i
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R

TP FN
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+
                  (9) 
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| |
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i i
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R w
R

L

=
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=                   (10) 

where i represents a specific type of subsurface pipe image, L 

indicates the total number of categories of subsurface pipe images, i 

∈ [1, L], w represents the weight of a specific type of subsurface 

pipe image in the overall dataset. 

F1 is the weighted average of precision (P) and recall (R), 

considering both precision and recall. Its values range from 0 to 1, 

where 1 represents the best model output, and 0 represents the worst 

model output. 

1

2P R
F

P R


=

+
                  (11) 

After classifying subsurface pipe images, using a Confusion 

Matrix provides a clear and intuitive way to distinguish how the 

model predicts and classifies different types of subsurface pipe 

images. As shown in Table 2, each column of the confusion matrix 

represents instances in a predicted class, and each row represents 

instances in an actual class. The four fundamental indicators are TP 

(True Positive), FP (False Positive), FN (False Negative), and TN 

(True Negative). TP represents the number of instances of a specific 

type of subsurface pipe image that are correctly predicted, FP 

represents the number of instances of other types of subsurface pipe 

images predicted as a specific type, FN represents the number of 

instances of a specific type of subsurface pipe image incorrectly 

predicted as other types, and TN represents the number of instances 

of other types of subsurface pipe images predicted correctly as other 

types. 

Tab. 2. Confusion matrix. 

Confusion matrix 
Predictive value 

Positive Negative 

True value 
True TP FN 

False FP TN 

 

3.2 Comparison of model training results 

In Figure 5, we present the accuracy performance of four different 

pre-trained models in the subsurface pipe image recognition task. The 

data in the graph indicates that the deep learning transfer model based 

on ResNet18 outperforms other models in terms of accuracy (ACC), 

achieving a classification accuracy of 90.52%. In comparison, the 

accuracy of other deep learning transfer models is below this level, 

with values of 88.39%, 88.8%, and 58.67%, respectively. These data 

suggest that the deep learning transfer model based on ResNet18 

exhibits higher precision and reliability in classifying subsurface pipe 

images. 

The accuracy curve and training loss curve of the deep learning 

transfer model based on ResNet18 on the training set are shown in 

Figure 6. From the graph, it can be observed that the model's accuracy 

and training loss converge rapidly. This is attributed to the fact that 

the deep learning transfer model based on ResNet18 is pretrained on 

the source domain, inheriting the parameters of the feature extraction 

part of ResNet18. As a result, it achieves high accuracy in a relatively 

small number of iterations and tends to stabilize. 



Z. Deng et al. / IJAMCE 6 (2023) 117-123 

 

 

Fig. 5. Comparison of accuracy in classification and recognition of dark tube 

images. 

 

Fig. 6. Training process of deep learning transfer model based on ResNet18. 

By employing precision (P), recall (R), and F1 score, we further 

compared the performance of the deep learning transfer model based 

on the ResNet18 network with other deep learning transfer models 

on the overall dataset. The deep learning transfer model based on 

ResNet18 network performs well in terms of accuracy, reaching 

90.70%. In contrast, the precision of other deep learning transfer 

models was lower, ranging from a maximum of 90.42% to a 

minimum of 65.05%. This indicates that the deep learning transfer 

model based on the ResNet18 network can more accurately identify 

true positive samples when classifying subsurface pipe images. 

In terms of recall, the deep learning transfer model based on the 

ResNet18 network also performed exceptionally well, reaching 

90.69%. The recall of other deep learning transfer models was lower, 

ranging from a maximum of 90.41% to a minimum of 59.65%. This 

indicates that the deep learning transfer model based on the ResNet18 

network can more comprehensively identify true positive samples. 

Finally, a comprehensive evaluation of the classifier's performance 

was conducted using the F1 score, which is the harmonic mean of 

precision and recall. The deep learning transfer model based on the 

ResNet18 network achieved an F1 score of 90.69%. The F1 scores of 

other deep learning transfer models were lower, ranging from a 

maximum of 90.41% to a minimum of 55.19%. This indicates that 

the deep learning transfer model based on the ResNet18 network has 

overall better classification performance. 

In summary, the deep learning transfer model based on the 

ResNet18 network outperforms other deep learning transfer models 

in terms of precision, recall, and F1 score. This indicates that the 

model has a higher true positive rate, a higher positive predictive 

value, and overall superior classification performance. 

Tab. 3. Comparison of precision, recall, and F1 indicators. 

Classification model P/% R/% F1/% 

ResNet18 90.70 90.69 90.69 

AlexNet 88.47 88.42 88.43 

MobileNet_V3 90.42 90.41 90.41 

ShuffleNet_V2 65.05 59.65 55.19 

 

In Figure 7(a), it can be observed that the deep learning transfer 

model based on ResNet18 correctly identifies 186 images in the 

classification of images with moderate salt crystal accumulation, 182 

images in the classification of images with moderate sediment 

accumulation, and 190 images in the classification of images with 

severe sediment accumulation. 

However, in Figures 7(b) and (c), when using the deep learning 

transfer models based on AlexNet and MobileNet_V3, the 

classification accuracy for images with moderate salt crystal 

accumulation, moderate sediment accumulation, and severe sediment 

accumulation is lower compared to the transfer model based on 

ResNet18. On the other hand, in Figure 7(d), the deep learning 

transfer model based on ShuffleNet_V2 exhibits significantly lower 

accuracy in the classification of subsurface pipe images, except for 

normal pipe images and images with severe salt crystal accumulation, 

when compared to the model based on ResNet18. 

In summary, the deep learning transfer model based on ResNet18 

demonstrates higher stability in classifying subsurface pipe images. 

 

(a) Confusion Matrix Based on 

ResNet18 

 

(b) Confusion Matrix Based on 

AlexNet 

 

(c) Confusion Matrix Based on 

MobileNet_V3 

 

(d) Confusion Matrix Based on 

ShuffleNet_V2 

Fig. 7. Comparison of confusion matrix images in deep learning transfer models 

for subsurface pipe images. NI(normal pipeline image), SAIOSC(slight 

accumulation image of salt crystals), MAIOSC(moderate accumulation image of 

salt crystals), HAIOSC(heavy accumulation image of salt crystals), SAIOS(slight 

accumulation image of sediment), MAIOS(moderate accumulation image of 

sediment), HAIOS(heavy accumulation image of sediment) 

4. Summary 

The hierarchical classification method for subsurface pipe image 

based on ResNet18 transfer learning, proposed in this paper, has 

achieved significant success in addressing challenges such as 

difficulties in collecting subsurface pipe images in saline-alkali land, 

limited sample size, and the lack of a fine evaluation mechanism. 

Through transfer learning, we successfully reduced the sample size 

requirement for network training and improved the model's 

performance in recognizing subsurface pipe image features. 

Additionally, the adoption of hierarchical classification allows for a 

more refined categorization of subsurface pipe images, effectively 

evaluating the degree of sediment and salt crystal accumulation. 

Compared to other models, this approach not only demonstrates 
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superior recognition accuracy but also exhibits higher stability across 

various types of subsurface pipe images. This method provides an 

effective solution for the rapid and intelligent recognition of 

underground salt discharge pipe images. Future research directions 

may include further optimizing model performance and exploring its 

applicability in other geological environments. 
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