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 Gas source localization (GSL) is an important task in environmental monitoring and industrial safety. In recent 

years, UAVs are versatile and autonomous mobile agents that can carry payloads, making them ideal for a wide 

range of inspection tasks. This paper proposes a gas source localization algorithm for UAVs based on Olfactory-

Visual Fusion. The algorithm addresses the challenge of locating gas sources in outdoor time-varying airflow 

environments. And we build a CFD gas environment and UAV source searching platform, which provides a new 

solution for tracking UAV odor plumes and locating odor sources in outdoor natural environments. 
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1. Introduction 

In recent years, with the rapid development of the petrochemical 

industry, the risks and hazards in this field have also increased, and 

disasters caused by dangerous gas leaks are particularly severe (Li 

Lei. 2021). Currently, the petrochemical industry mainly relies on 

fixed-point sampling and manual inspection to detect leakage points. 

However, this method has its limitations and cannot perform all-

round and high-frequency detection, making it difficult to detect 

small leaks (Zhu Shengjie, et al. 2020). In addition, leaked hazardous 

gases may pose a threat to the safety of workers' lives. Therefore, 

there is an urgent need for a more accurate, efficient, and safer 

method to determine the location of gas leaks. 

Since the 1990s, researchers from around the world have been 

devoted to the study of olfactory robots. The GSL represents an 

important application direction in this field. However, these robots 

often face difficulties in completing tasks due to the presence of 

suspicious sources or weak wind conditions. In an effort to improve 

the accuracy and robustness of GSL, some researchers have sought 

to simulate biological sensing of the external environment and endow 

mobile robots with vision in order to enhance their functionality 

(Bian Zhenggang. 2015). Traditional GSL technologies have focused 

on two-dimensional searches, yet gas diffusion behavior in three-

dimensional space presents limitations in robots acquiring accurate 

gas information. Meanwhile, due to UAV ability to carry various 

sensors and achieve high-density sampling over large areas, they 

have found widespread use in various monitoring tasks. Compared to 

traditional ground robots, rotary-wing UAVs possess the advantages 

of high speed, a wide operational range, and reduced interference 

from terrain (Javier Burgués, et al. 2020) (Francis A, 2022). 

Moreover, UAVs have advantages over traditional sensor networks in 

speed of deployment, flexibility, and accuracy (Neumann P P, et al. 

2013). Furthermore, after undergoing special processing, UAVs can 

even function in adverse environments, and can be reused while 

maintaining higher levels of precision and efficiency. The use of 

search algorithms and movement strategies in combination with 

UAVs for GSL has become a major research focus of experts and 

scholars worldwide. 

Building upon the aforementioned research, this paper aims to 

solve the problem of searching for a single stationary gas plume that 

continuously emits smoke in a variable outdoor airflow environment 

for UAV. We propose to fuse vision and olfaction to study the relevant 

algorithms and strategies for gas plume detection, tracking, and gas 

source confirmation, forming a complete closed-loop source 

searching process that effectively enhances the UAV search 

efficiency and success rate. We have also established a CFD gas 

environment and UAV searching platform, providing a new solution 

for outdoor natural environment gas plume tracking and GSL. 

2. Methods 

2.1 Problem description 

The complete closed-loop source-seeking process of an unmanned 
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aerial vehicle consists of three stages: smoke plume detection, smoke 

plume information tracking, and gas source confirmation (Chen X X, 

et al. 2019). During the smoke plume detection stage, the UAV can 

be operated either by following a pre-planned trajectory or through 

manual control. For a fixed detection area, the UAV trajectory should 

be pre-set to ensure complete coverage in the shortest time and with 

minimal energy consumption. In a new or small detection area, 

manual control should be adopted to minimize energy consumption 

while ensuring complete coverage and obstacle avoidance. At this 

stage, both olfactory and visual sensors are utilized to search for 

suspicious smoke plumes. 

Three situations exist for smoke plume detection, situation A: 

visually seeing the smoke plume, situation B: seeing and smelling the 

smoke plume, and situation C: smelling the smoke plume. Because 

olfactory and visual searches are mutually independent and cannot 

work simultaneously, a behavioral decision must be made. In this 

article, olfactory priority is set higher than visual. When both 

olfactory and visual sensors detect gas at the same time, the olfactory 

search behavior is adopted, and a visual search behavior is used only 

when the olfactory sensor does not detect anomalies but the visual 

sensor does, which is shown in Fig. 1.  

Plumes have an inherent characteristic during their spread in the 

air - a high gas concentration and the plume is more concentrated near 

the gas source (Shen X, et al. 2021). This feature must be utilized in 

the critical final source-seeking phase to determine the gas source. 

However, traditional gas source confirmation, which mostly utilises 

ground mobile robots, relies solely on the high concentration 

characteristic and typically considers gas concentration above a 

certain threshold as a gas source. This method has an apparent 

limitation as it can yield pseudo gas sources and fall into local optima. 

This study extends the two-dimensional source-seeking to three-

dimensional source search based on the UAV platform. Gas source 

confirmation is markedly improved via detecting the peak changes in 

gas concentration in 3D space when it reaches the maximum and 

inspecting the plume source detected by visual sensors. This method 

significantly enhances the accuracy of gas source confirmation. 

UAV movement 

(autonomous flight or 

manual control)

A: seeing 

B: seeing and smelling

C: smelling 

Olfactory-based plume 

searching behavior

Vision-based plume 

searching behavior

gas source 

confirmation

N
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Fig.1. UAV sniffing and fusion gas source search process. 

 

2.2 Olfactory-based searching behavior 

Previous algorithms for olfactory source finding typically divide 

the task into separate subtasks of source finding and obstacle 

avoidance, making them unsuitable for environments with many 

obstacles. In this paper, we propose an information-theoretic source 

search and estimation strategy that integrates source finding and 

obstacle avoidance based on receding horizon Infotaxis (RHI), a 

method that plans multi-step forward-looking decisions to find more 

efficient paths and avoid local optima and obstacles. We also adopt 

random sampling and a binary sensor model to reduce computational 

complexity and make the computational load manageable. Our 

approach minimizes entropy based on information convergence and 

closely integrates obstacle avoidance and search to enable accurate 

and robust source term estimation in unknown and complex 

environments using UAV platforms. 

This study assumes that the gas source is fixed at 
3,[ , ]T

s s s sx y z +=    and maintains a constant release intensity 

sI + . 4,[ ],, T

ss s szx y I +=   represents the source term vector. 

k   denotes the average gas concentration at the sensing position 

, ,[ ]T

kk k kx y z=  at the k th time step, which is calculated using the 

dispersion model with the source term vector [17]. kc   represents 

the measured data of the sensor, and 11: 1[ ( ), , ( )]kk kc c c=  p p  is the 

observation sequence at each sensing position. The UAV is equipped 

with a laser radar, which can create local maps of unknown obstacle 

environments. These maps of obstacles are used to generate available 

paths for the estimation of source item and each step of the UAV 

decision satisfies , , , , ,a A   =    →    . 

Based on the sample-based sequential Monte Carlo method-

Particle filter, the state of the source term of the highly nonlinear 

random system was estimated. The samples 
k   collected by the 

particle filter (called particles) represent the source term, and at the 

k  th time step, each particle ( )i
k   is extracted from the proposal 

distribution and its associated weight ( )i
kw  to approximate the exact 

source term probability density distribution (PDF) in the Bayesian 

inference formula, and approximate the subsequent term: 

 ( )( ) ( )

1:

1

( | )
pN

i i

k k k k

i

p c w   
=

 −  (1) 

where 
PN  is the number of the particles and   is the Dirac Delta 

function. The unnormalized particle weight update based on 

Bayesian inference can be expressed as: 

 ( )( ) ( ) ( )

  1|i i i

k k k kw p c w

−=   (2) 

where 

 

( ) ( )
2

2

| ; ,

1 ( )
exp

22

k k k k k

k k

kk

p c c

c

  



 

=

 −
= − 

 

 (3) 

 
2 2

,sen ,envk k k   +  (4) 

The standard deviation of the environmental noise 
env    is 

constant, while the detection noise
sen  is proportional to the current 
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background concentration, that is 
sen

i

k  . The expected PDF of 

the source term 
1; 1

ˆ( | , )k k kp c c +
 , can also be approximated by a 

particle filter. The unnormalized weights for updating the potential 

source term can be calculated: 

 ( )( ) ( ) ( )

1 1
ˆ ˆ ( ) |i i i

k k k k kw p c a w

+ +=   (5) 

The normalized weights are 
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The probability of a binary measurement at the k  th time step 

 0,1kb   is expressed as 
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where 
b   is the user design parameter. 

( )
( ) ( ) ( )

1; 1 1 2 1
ˆ ,ˆ ˆ, ,

m
m m m

k k n k k k nb b b+ + − + + + −
 = 
 

b  is the future measurement set of 

binary sensors, and each component of the future measurement series 

predicted at the ( )k n+ th time step 
( )

1
ˆ m

kb +  from the estimated source 

term distribution ( )
( )

( )
1; 11:| ,ˆ

m
m

k k nk n kP b c + + −+ b  , which is approximated by 

the particle filter as: 
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To reduce computational complexity, a random sampling method 

was employed, and only a small number of sampled future 

measurement sequences from the estimated source probability 

distribution are considered instead of all possible future measurement 

orders in the receding horizon step. The mobile sensor selects the 

optimal decision sequence of a specific time range with length K  

at time-step k ,  : 1 1 1
ˆ , , ,ˆ ˆ ˆ

k k K k k k Ka a a a+ − + + −=  . 

The reduction of entropy for each source term at each time step is 

estimated using a utility function: 
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pN  denotes the number of particles of the particle filter (potential 

source term). m denotes the m th sample of future measurements 

that can be obtained from the sample of decision sequences along the 

path. We are less confident in the utility function for further 

predictions and introduce a confidence ratio of 0 1r    as a 

discount factor. The information convergence strategy guides the 

mobile sensor to obtain measurements in the direction that minimizes 

the expected entropy of the potential source term PDF. Therefore, we 

choose the optimal decision to maximize the utility function.  
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Due to the inaccurate prediction of the future, we use only the first 

element *

ka of the optimal decision sequence for the actual moving. 

 

Algorithm: pseudocode of the algorithm RHI at step k 

1: Get new data from olfactory sensors 
kc  

2: Update the obstacle map 

3: Update the particle source term using particle filtering 

 ( ) ( )( ) ( ) ( ) ( )

1 1, ,i i i i

k k k kw w − − →  

4: for 1, ,6Kpath = (over-prediction of all decision paths generated) 

5:    for 1, , mm N=   

(
mN   sequences selected among the 

dN   discrete measurement 

sequences generated by the measurement) 

6:       for 1, ,n K=  ( K  step path for UAV) 

        if no obstacles ahead 

Update measurements 
( )

1: 1

m

k k nb + + −   

Calculate the utility function for this step 
(path,m)

1k nU + −
 

          else 

            Break 

       end 

    end 

Calculate ( )(path)

: 1k k KU a + −  

end 

7: Choose the best path
*

: 1k k Ka + −
 

8: Move to a new sensing position 

11 1 1[ , ] [ ,, , ]T T

k k k k kk kk x y x zyz + ++ +→= =   

 

2.3 Vision-based plume searching behavior 

In the petroleum and chemical industry, most gas leaks are not 

visible to the naked eye. However, the emergence of Optical Gas 

Imaging (OGI) has changed this situation by enabling the 

visualization and accurate positioning of leaks that are not visible to 

the naked eye, especially volatile organic compound (VOC) leaks. 

OGI enables rapid and efficient visualization detection of gas leaks, 

avoiding the risk of exposure to toxic gases for detection personnel, 

and quickly scanning equipment components to eliminate safety 

hazards. However, OGI still has limitations, such as restricted 

detection range and blind spots. Moreover, OGI detection relies on 

operator judgment and generally lacks real-time feedback. 

To address the limitations of OGI, mounting OGI on unmanned 

aerial vehicles (UAVs) can achieve comprehensive and multi-angle 

scanning and inspection. In 2015, Ren Shaoqing proposed Faster R-

CNN (Ren Shaoqing, et. 2021), which achieved real-time detection 

of targets. Faster R-CNN is an improved version of R-CNN and Fast 

R-CNN, with faster and more accurate target detection capabilities. 

Faster R-CNN is based on a deep neural network that implements 

target detection and comprises two main components: the Region 

Proposal Network (RPN) and the Fast R-CNN detector. RPN is an 

algorithm that uses convolutional neural networks to quickly 

generate candidate regions and can quickly detect possible target 

regions in the original image. The Fast R-CNN detector is used to 

further detect targets in candidate regions by extracting features, 

performing classification and regression in each candidate region to 

identify and locate targets. Compared with previous target detection 

algorithms, Faster R-CNN does not require manual feature extraction, 

but instead automatically learns features through deep neural network 

training. This method not only improves detection accuracy, but is 
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also more flexible and easier to implement. 

RPN achieves object detection by first examining which position 

in the feature map contains the object through the classifier, and then 

adjusting the corresponding position accordingly through the 

regressor. In order to generate region proposals for the CNN-based 

detection network, the classifier and regressor are trained according 

to the following equations, ultimately detecting the object's class and 

region. 

The loss function is: 

 

*

cls

cls

* *

reg

reg

1
L({ },{ }) L ( , )

1
L ( , )

i i i i

i

i i i

i

p t p p
N

p t t
N



=

+




 (13) 

Where i  represents the index of an anchor in a mini-batch. 
ip  

is the predicted probability that anchor i   contains an object. *

ip  

represents the ground truth label, which is 1 if the anchor is positive 

and 0 if it is negative. 
it   is the vector that predicts the 4 

parameterized coordinates of the bounding box, and *

it   is the 

ground-truth box associated with the positive anchor. The formula 

consists of two main parts: the classification loss 
clsL   is used to 

train the network to classify anchors as positive or negative, and the 

regression loss 
regL  is used for bounding box regression training. 

The two parts in the formula are normalized using 
clsN  and 

regN , 

and the latter incorporates a balance weight  . For the regression 

loss, a robust loss function (
L1smooth ) is used, which is defined as 

follows: 

 
* *

reg L1

{ , , , }

L ( , ) smooth ( )i i i i

i x y w h

t t t t


= −  (14) 
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2
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0.5 1
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x x
x

x

 
= 

−
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where the four-dimensional vector x  , y  , w  , and h   represent 

the center coordinates and width and height of the window. 

Based on the collected gas target data, including sample images 

and labeling information of different types of gases, the Faster R-

CNN algorithm is used for training to obtain the Faster R-CNN model. 

During formal detection, the trained Faster R-CNN model is used to 

detect the target in the input image. In the detection process, the 

sliding window and region of interest methods are used to extract and 

classify the possible gas target regions in the image, and the final 

target detection results are outputted. At this stage, the UAV adjusts 

its direction based on the target's position in the field of view. When 

the target is on the left side of the field of view, the UAV moves to 

the left, and when the target is on the right side of the field of view, 

the UAV moves to right, always keeping the target in the center of the 

UAV field of view. When the UAV approaches the target, it can be 

determined whether the target is a plume source. If it is a plume 

source, the UAV releases the source position. During the search, if 

the smell sensor senses the gas, the smell-based search behavior is 

executed. 

3. Results 

This section describes the scenario of gas diffusion in a three-

dimensional environment rich in obstacles. The search area is 

300 300 6m m m   . The standard deviation of the environmental 

noise 3

env 0.4 /mg m = , the detection noise ( )sen ;0.2 p  = , the 

binary sensor model threshold update parameter 0.7b =  , the 

confidence ratio 0.7r =  , the number of samples of the future 

measurement sequence, and the number of particles for the particle 

filter 500PN = . 

Tab. 1. Gas source information and obstacle distribution. 

ID ,[ , ]sS s

T

sx y z=  SI  pseudo-gas source   

(a) (190.0, 225.0, 2.0) 4mL/min  less 

(b) (190.0, 225.0, 2.0) 4mL/min (175.4, 152.1, 3.24) less 

(c) (175.0, 200.0, 2.0) 4mL/min  more 

(d) (200.0, 235.0, 2.0) 4mL/min (181.3, 158.6, 2.89) more 

 

Table 1 describes the initial gas source setup and the number of 

obstacles, where   denotes the degree of how many obstacles are 

present. 

  

(a)                       (b) 

  

(a)                      (d) 

Fig. 2. Figure (a), (b), (c), (d) correspond to the four sets of experiments, where the 

blue and black boxes represent obstacles and the rest of the area represents the 

UAV-accessible area. Different shades of color represent different gas 

concentrations. The red pentagram indicates the location of the gas source, and the 

yellow four-pointed star indicates the pseudo-gas source. 

Four sets of experiments were conducted under different 

conditions of obstacle quantity and the presence of false gas sources, 

as shown in Fig. 2. At the beginning of the experiment, the UAV was 

positioned outside the gas diffusion area and could not detect the 

presence of gas through the gas sensor, but the plume was identified 

through OGI, as shown in Fig. 3. At this point, the UAV executed a 

vision-based search behavior and quickly approached the plume. 

When the plume was reached, the olfactory sensor detected the 

presence of gas, and the UAV stopped the vision-based search 

behavior and switched to an olfaction-based search behavior until the 

gas source was found. According to the data in the table, it can be 

seen that the presence of false gas sources under the same obstacle 

quantity condition can cause some difficulty in determination, but the 

UAV can still move towards the real gas source in a short period of 

time. In addition, obstacle quantity affects the speed of UAV 

movement, but the UAV is still able to avoid obstacles and complete 

the search task. 
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Fig. 3. OGI visualizes the gas into a grayscale image and labels the gas with a 

Faster R-CNN model for target detection. 

Tab. 2. Data of the gas search process. 

ID Start position Source declaration location Error Time step 

1 (60.0, 45.0, 0.0) (189.3, 225.7, 1.95) 0.99 35 

2 (60.0, 45.0, 0.0) (189.1, 224.5, 1.96) 1.03 48 

3 (100.0, 35.0, 0.0) (173.9, 201.1, 1.95) 1.56 37 

4 (100.0, 35.0, 0.0) (198.3, 234.1, 1.93) 1.92 55 

4. Summary 

The olfactory vision fusion technology based on UAV platform can 

better accomplish the task of gas source determination, visualize the 

gas through OGI, which makes it possible to find the plume at a 

longer distance, improve the efficiency of finding the plume and 

avoid blind search, while combining with olfactory sensors in gas 

source determination to enhance the accuracy of gas source 

localization and solve the problem of gas source localization caused 

by pseudo-gas sources in turbulent environment. Meanwhile, the 

UAV makes the traditional gas source finding change from two-

dimensional to three-dimensional, making full use of the spatial 

concentration characteristics of the gas source in three dimensions, 

as well as improving the source finding limitations due to other 

factors such as terrain. In order to solve the difficulty of obstacle 

avoidance in the source finding process, the backward view greedy 

algorithm is used to combine source finding and obstacle avoidance 

and reduce the computational load of real-time decision making using 

random sampling and binary sensor model. However, there are still 

some areas for improvement. Firstly, the feasible decision of UAV 

can be extended to two or even three directional vectors and improve 

the search efficiency. Secondly, the grayscale image formed by using 

OGI is blurred to a large extent, and in the process of real-time 

recognition, the image needs to be enhanced and segmented, and the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computational complexity and recognition is difficult, so the visual 

target detection method needs to be improved. 
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