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 In real physical systems, too large control inputs can easily cause serious accidents, so it is of great practical 

significance to study the control problems of nonlinear systems with input dead zones and saturations. In this 

paper, an adaptive NNs command filter tracking control algorithm for multi-actuator constrained nonlinear 

systems based on backstepping method is designed based on finite time stability theory. By introducing a 

second-order command filter, the complexity explosion problem of the traditional backstepping method for 

designing controllers is solved. The designed control algorithm ensures good tracking control of the controlled 

system under the corresponding saturation and dead zone input environments. With the neural network command 

filtering control scheme, all variables in the controlled system are ensured to be bounded and the output tracking 

error fluctuates within a small domain of the equilibrium point. Simulations demonstrate the feasibility of the 

designed control scheme. 
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1. Introduction 

In reality, there are many real physical systems that can be 

characterized as uncertain nonlinear systems, which has led to their 

extensive development in the last two decades, and tracking control 

of nonlinear systems is one of the interesting research works[1-3].The 

presence of uncertainty makes the construction of controllers for 

nonlinear systems a difficult and significant task[4-6].The 

backstepping method is a practical approach to nonlinear control 

problems, was proposed by Krstic, Kanellakopoulos and Kokotovic 

at the end of the last century[7].Combining the backstepping method 

with the fuzzy or neural adaptive technique yields an effective 

control tool for solving uncertain nonlinear systems[8]. Due to the 

Characteristics of the adaptive backstepping method, it is possible 

to achieve asymptotic sedimentation of nonlinear systems and 

guarantee boundedness of the signal under parameter uncertainty, 

which has led to many fruitful results[9-11]. In the literature[12], 

adaptive tracking control of nonlinear systems with unknown input 

constraint and unpredictable variables is studied. In the literature[13] 

a controller design strategy based on separation of variables is 

designed for non-strict feedback nonlinear systems. The neural 

adaptive FTC technique allows the controlled system to achieve 

good tracking performance in finite time and the whole variables of 

the closed-loop system are bounded[14-16]. 

  Despite the fact that the design of controllers for nonlinear 

systems using adaptive inversion algorithms has solved many 

problems in the field of control, the algorithm still suffers from 

many problems[17].It should be noted that, since the virtual control 

inputs in the controller design process need to be differentiated and 

iterated repeatedly, the design of controllers for nonlinear systems 

using adaptive inversion algorithms will become more and more 

computationally intensive along with the increase in the order of the 

system, a phenomenon we refer to as ”complexity explosion”[18].In 

order to solve the defect of ”complexity explosion” of traditional 

backstepping algorithms, two methods of dynamic surface control 

(DSC) and command filter backstepping control have emerged[19-20]. 

However, as DSC ignores the errors introduced by the filter, it 

affects the control accuracy of the controlled system. Since then, the 

backstepping command filtering method has been combined with 

the adaptive technique to achieve significant results in eliminating 

the filter errors[21-22]. 

  Compared with asymptotic sedimentation methods, finite-time 

control methods have the advantages of fast convergence, high 

accuracy, good performance, and robustness to uncertainty by, and 

have achieved fruitful results[23].In practical engineering should be 

applied, nonlinear problems such as hysteresis, dead band, 
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saturation and external disturbances often occur. Deadband and 

saturation, as a non-smooth function, have a large impact on system 

control performance. Therefore, special attention should be paid in 

the controller design process of nonlinear systems. Li et al. 

combined the obstacle Lyapunov function with an adaptive 

backstepping control method to solve a FTC problem for nonlinear 

systems with dead zones[24].In recent years, many effective results 

have emerged for nonlinear systems with different input 

constraints[25-26].However, to our knowledge, few research results 

that use a combination of neural adaption and command filtering to 

solve simultaneous input deadband, saturation, and nonlinear 

disturbances. Therefore, it is an interesting task to study finite-time 

stabilized controllers for nonlinear systems with simultaneous 

multiple input constraints, and Non-linear disturbances. 

  In summary, it can be seen that external disturbances and the 

presence of input constraints on the actuator can have a significant 

impact on system control performance and safety, especially in 

control processes such as Mars drones far from Earth and chemical 

reactions with major safety incidents. Therefore, in this paper, for a 

class of uncertain nonlinear systems with multiple actuator 

constraints and external disturbances, a practical adaptive neural 

network FTC method is designed to reduce the effects of actuators 

and disturbances on the tracking performance of the system. 

Compared with the current research results, the main contributions 

can be summarized as follows: 

1. In this paper, we study the problem of adaptive NNs backstepping 

control for strictly feedback nonlinear systems with multiple 

actuator constraints and external disturbances by combining neural 

adaptive and command filter techniques. 

2. The introduction of command filter and compensation 

mechanisms solves the problem of exploding complexity arising 

from the traditional backstepping method of designing controllers. 

The designed control algorithm can explode the controlled system 

to achieve good tracking control performance while suffering from 

saturation and dead zone inputs. 

3. The control algorithm designed in this paper ensures that all 

signals of the controlled system are bounded, and the tracking error 

can quickly converge in finite time to the bounded adjustable tight 

set range. 

2. Problem formulation and preliminaries 

2.1  System Model 

Consider the following strictly feedback nonlinear system. 

 

1

1

( ) ( ),1 1,

( ) ( ) ( ),
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 (1) 

in which  1( ), , ( ) , 1, ,n

i ix x t x t i n=   =   expresses the 

system state variables, and y indicates the system output; 

( ), 1, ,if x i n=   displays the unknown smooth nonlinear 

functions. ( )id t represents unknown bounded external interference 

with 1 ( ) 0i ix f x+ +  . ( )u t  represents control inputs subject to 

nonlinearities of multiple actuator constraints and is described as 

 ( ) ( )u s v v t v= +  (2) 

where v  represents the input signal for dead zone and saturation 

nonlinear models. Select , , ,l l u u+ − + −
are positive design constants, 

0, 0H Lu u  denote the normal number to be designed. ( )m v

called the dead zone slope, ( ) ( ),m v v  is description as follows 
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2.2  Mathematical Preparation 

The objective of this paper is to design a new finite-time tracking 

control algorithm for non-linear systems with tight feedback so that 

the system output can trace the wanted trajectory signal in finite 

time and all the variables of the considered system are well bounded, 

so the below assumptions and lemmas are implemented without loss 

of generality. 

Assumption 1:[27] The positive and negative slope of the dead 

zone and saturation nonlinear models are equal, i.e l l l+ −= = . 

Assumption 2:[27] Dead-zone parameters of the controller 

,u u+ −
and l are bounded , that is, there are known parameters 

max max,u u+ −
and 

maxl that max max,u u u u+ + − −  and maxl l . 

Assumption 3:[28] The anticipated tracking trace signals
dy and 

their nth-order derivatives 
( )n

dy considered in this paper are 

continuous and bounded. 

Remark 1: In real production process environments, there are 

usually special requirements for system actuator inputs, such as 

controlling the maximum amplitude of the inputs within limits and 

trying to avoid fluctuations around zero to minimize consumption. 

Deadband and saturation are typically used to address the above 

requirements, and constraints on the control inputs can be 

accomplished by setting the actuator constraint-related parameters 

in advance according to actual requirements. Therefore, 

assumptions 1 and 2 above are reasonable and simplify the 

complexity of the subsequent controller design process. In real 

physical systems, we always want the control process of the 

actuator to be smooth, which is beneficial to the actuator. Therefore, 

assumption 3 is also reasonable. From Assumptions 1 and 2, it is not 

difficult to obtain that ( )v is bounded, and ( )v D  ,in which 

D represents the upper limit value. 



Y. Li et al. / IJAMCE 6 (2023) 206-214 

 

  Remark 2: Consider the actual situation, the control input signal 

𝑤 cannot be infinite. Therefore, consider that ( )m v satisfies the 

following inequality 

  
max

0 min , ( ) max 1,Hu
l m v l

v


 
    

 
 (5) 

in which 
maxv represents the maximum value of the designed 

controller. 

An RBF neural network is a three-layer forward network 

containing input layer (signal source node), hidden layer (layer of 

neurons), and output layer (linear combination of the outputs of the 

neurons in the hidden layer). Noteworthy is that neural networks 

have good parallel processing capability, approximation of arbitrary 

smooth nonlinear functions and self-organized learning. 

Lemma 1:[29] During the design of the system controller, RBF 

neural networks will be utilized to address the uncertainty terms in 

the uncertain nonlinear system. Specifically as follows： 

Supposing ( )q  is a continuous function defined on n

Z R  , for

0  , ( )   ,and 0l  being the NN node number, there 

exists a RBF NN satisfying: 

 ( ) ( ) ( )Tq P Z  =  +   (6) 

Where 
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 (7) 

in which  1 2

T

l    =  is the input of the NN, 

 1, ,
T l

l R  =  is the desired weight vector, and

( ) ( ) ( ) ( )1 2, , ,
T

lP p p p =       represents the basis function 

vector selected as 

 ( )
( ) ( )

2
exp , 1,2, ,

T

i i

ip i l
 



  −  −
 = − = 

  

 (8) 

Where
i ,  represents the center of the receptive field and width 

of the Gaussian function, respectively. 

  Lemma 2:[30] The filters used in this paper are described as 

follows 
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 (9) 

where ( 0,1  and 0  indicates positive filter parameters. 

Virtual Controller 
1i −

and 
i as input and output of filter, 

respectively, in which 1 ,2(0) (0), (0) 0i i i  −= = . 

Lemma 3:[31] For any positive constant 1 2 3, ,b b b and a real 

variable ,x y , the below inequality holds 

 

1

1 2 1 2 1 221 2

3 3

1 2 1 2

b

b b b b b bbb b
x y b x b y
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−
+ +

 +
+ +

 (10) 

Lemma 4:[32] Consider a dynamic system ( , )x f x u= ,

0(0)x x= ,in which : n nf R R→ represents a smooth mapping. If 

there exists a Radically unbounded and deterministic positive scalar 

function ( )V x ,
1 10, 0   and 0 1,0q      such that 

 1 2( , ) ( ) ( )qV x t V x V x   − − +  (11) 

then the output of this system ( , )x f x u= is practical finite-time 

stable, the set of residuals of the system solution is shown below 

 

1
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(1 ) (1 )
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 (12) 

in which (0,1) . Then one can obtain the settling time 

bounded by 
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Remark 3: In the above equation, we choose the parameter as: 

0.75q = . We also found this operation in the literature[33] , which 

facilitates the subsequent controller design process and satisfies the 

citation conditions. 

3. Controller design and stability analysis 

3.1  Finite-time Controller Design 

In this subsection, an adaptive neural network controller will be 

designed for system 1 by backstepping algorithm. The controller 

will handle both the tracking performance of the system and the 

boundedness of the variables. Moreover, the complexity explosion 

of the classical backstepping algorithm is conquered by the 

command filtering method. The controller consists of some basic 

stages and the design is built on the following coordinate 

transformation 

 
1 1 d

i i i

z x y

z x 

= −


= −
 (14) 

in which
dy expresses the desired reference trajectory signal, 

i
with 2,3, ,i n= represents the introduced command filter 

variable. 

Remark 4: Note that the command filter will increase the 

operational burden of the actuator, due to the error defect introduced. 

To address this drawback, we will design a compensatory signal to 

compensate for the tracking fault ( )1i i  −−  incurred by the 

command filter. 

In addition, to reduce the computational effort of controller 

design, we construct the compensation tracking error based on the 

idea of coordinate transformation as follows: 

 , 1, ,i i iz r i n = − =   (15) 

where
ir indicates the compensated signal. 

  Step 1: With the aid of (1) ,(12) and (13),one can get 

 1 2 2 2 1 1 1dr f d y r  = + + + + − −  (16) 

Select a Lyapunov function
1V as 

 
2 2

1 1 1

1

1 1

2 2
V  


= +  (17) 

where
1 1 1 12 / (2 1), 1/ 2   = −  denotes the parameters to 

be constructed. 1 1 1
ˆ  = − ,in which 1̂ denotes the estimate of the 

uncertain parameter
1 . 

Taking the time derivative of
1V ,one can get 
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2 1

1 1 1,2 1 2 2 2 1 1 1 1 1

1

1 ˆ( ( ) )qV k r h Z r     


−= − + + + + − −  (18) 

where
2 1

1 1 1 1 1,2 1( ) q

dh Z f y d k  −= − + + is an unknown term that 

contains unknown terms. Then ( )1 1h Z will be approximated by 

RBF NNs as 

 ( )*

1 1 1 1 1 1 1 1( ) ( ) ( ),,Th Z R x x    = +   (19) 

where 1 1[ , , ]T

d dZ x y y= ,and
1 1( )Z is estimate error, arbitrary 

constants
1 0  .Applying Young’s inequality, it produces 
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where
2

*

1 1 1, 0a =  . 

  Next, the virtual controller is introduced as
1  ,and design a 

compensating signal
1r as 

 1 1,1 1 1 1 1 1 12

1

1 1ˆ
22

Tk z R R
a

   = − − −  (21) 

 1 1,1 1 2 2 1r k r r  = − + + −  (22) 

where 1,1k  indicates a parameter to be build. 

With the aid of (17)-(20), one can get 
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Then, building an adaptive law 
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Thus, on the basis of above equation, one has 
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Step i: With the aid of (1) ,(12) and (13),similar to step 1 as 

 1 1 1i i i i i i i ir f d r   + + += + + + + − −  (26) 

Select a Lyapunov function
iV as 
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where 2 / (2 1), 1/ 2i i i i   = −  represents a parameter to be 

constructed. 

Then, Similarly to step 1, we get 
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in which
2 1

,2 1( ) q

i i i i i i i ih Z f d k  −

−= + + + − .Similarly, there 

exists an NNs, exist 0i  ,
*( ) ( ) ( )T

i i i i ih Z R x x = + with

( )i i iZ  . 

  Combining the Young’s inequality, we have 
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where
2
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  Next, the virtual controller is introduced as
i ,construct the 

compensating signal
ir ,and adaptive law ˆ

i as follows: 
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where ,1ik indicates a normal number to be constructed. With the 

help of (27)-(30), we obtain 
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Step n: With the aid of (1), (12) and (13), one can get the 

derivative of
n as 
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  Select a Lyapunov function
nV as 
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Then, we obtain the nV by (32) and (33) as: 
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where
2 1

,2 1( ) q
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−= + + + −  .Similar to (17) 

and (27), we can get 
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where ( )v D  . 

  Now, the actual control signal v ,compensation signal
nr ,and 

adaptive law ˆ
n can be constructed as follows: 

 ,1 2

1 1 ˆ( )
2

T

n n n n n n n

n

v k z R R
a

  


= − − −  (39) 

 ,1n n nr k r= −  (40) 

 
2

2
ˆ ˆ

2

Tn

n n n n n n

n

R R
a


   = −  (41) 

where ,1nk indicates a normal number to be constructed. With the 

help of (35)-(39), we obtain 
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3.2  Stability Analysis 

Now, after the above n-step controller design, the controller 

construction has been completed. This section will be concluded by 

the following theorem. 

Theorem 1: For the uncertain nonlinear system (1) that meets the 

conditions of Assumptions 1-3, under adopting the controller 

(19),(28),(37) and the adaptive law (30), then, the controlled system 

are practically finite-time stable and the signals of the system are 

bounded almost surely. 

Proof: Recalling the definition 1 1 1
ˆ  = − ,for any

1/ 2j  ,We can obtain the expression of inequality as follows 
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  With the aid of (41), we can get 
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where  ,1 ,2min 2 ,2 , , 1, ,q

j j ja k k j n= =  . 

  By applying Lemma 3, one can get 
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where
2

1 2

1

1 1 3
1, , ,

2 4 4

n

j
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=

= = = = . 

With the aid of (41)-(43), we can get 

 1

q

n n nV V V   − − +  (46) 

in which ,a = =  

2 2 2 2 1

1
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a D q q     −
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= + + + + −  (47) 

By using the formulation of Theorem 4, it can be easily obtained 

that the system (1) considered in this paper is practically finite-time 

stable and converges to the following compact set 
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where ( )0,1  . Then, the upper limit of the settling time can be 

expressed as 
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By the above description, it is proved to be completed. To get a 

clearer picture of the controller designed in this paper and to 

facilitate the design of the simulation in the next section, the 

adaptive NNs command filtering control algorithm scheme is shown 

in Figure 1. 

 

 

Fig. 1. The block diagram of control scheme. 

4. Simulation 

In the above formulation of the paper, the research work of this 

paper has been completed. In this section, the simulation 

verification of the designed finite-time controller will be done. 

Example 1: The following second-order nonlinear system is used 
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as the simulation object: 

 

2

1 1 2 1 2 1

2

2 2 1 2

1

(1 0.1cos( )) ( )

sin( ) ( )

x x x x x d t

x u x x d t

y x

 = + + +


= + +
 =


 (50) 

where 
1 2( ) 0.1sin(0.1 ), ( ) 0.1sin(0.5 )d t t d t t= = . The desired 

trajectory tracking signal is 0.5sin(1.5 )dy t= , the control 

objective is to utilize a controller u designed to enable the input to 

track the expected target path 
dy . 

The relationship between the actual input signal u and the actual 

control signal v of the system is defined as follows 

 

6, 6

0.6( 0.6), 0.6 6

0, 0.6 0.6

0.6( 0.6), 6 0.6

6, 6

 

  

 

 

 

v

v v

u v

v v
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

−  


= −  
 + −   −

−  −

 (51) 

The control law, the adaptive law and its related parameters are 

designed as follows: 1,1 2,110, 15k k= = ,
1 2 10a a= = , 1 = ,

60 = ,
1 20.85, 0.5, 0.1  = = = ,

1 21, 0.8 = = .The initial 

states and updating laws are selected as    1 2(0), (0) 0.3,0.5
T T

x x = ,

 1 2
ˆ ˆ(0), (0) 0.02,0.03

T T
   =
 

. 

Since RBF neural networks have excellent approximation 

performance, they are often used as an approximate model for 

unknown nonlinearities. In the present study, the RBF NNs is used 

to approximate the unknown nonlinear term ( )h Z .The following 

Gaussian function is chosen as the basis function of RBF NNs, and 

its expression as 

 
( ) ( )

( ) exp( )
2

T

i i

i

Z c Z c
R Z

− −
= −  (52) 

where 1,2, ,8i =  , The distribution interval of the center
ic of the 

Gaussian function is  1,1− . 

 

Fig. 2. System output and desired trajectory. 

 

Fig. 3. The trajectory of State variable
2x . 

 

Fig. 4. The trajectory of adaptive parameters. 

 

Fig. 5. The trajectory of tracking error. 

The simulation results in this example are presented in Fig 2~6. 

Figure 2 depicts the trajectory of the system output y , the 

expectation trajectory
dy  From Figure 2, it is easy to see that the 

control designed using this paper has good control performance, and 

the system output y can track our desired trajectory signal
dy very 

well after 1.8 seconds. Fig 3 and Fig 4 shows the trajectory of the 

state
2x of the system and the trajectory curve of the built adaptive 

law 1 2
ˆ ˆ,  . And Fig 5 shows the tracking error of the system 

fluctuates in a small range. Fig. 6 illustrates the trajectories of u and
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v  ,with deadband and saturation constraints, the control input is 

free of peaks and becomes smoother without affecting the control 

performance, which meets the realities of actual industrial 

production.  

 

Fig. 6. The trajectory of Control input u and v . 

Example 2: A single-link manipulator system containing 

stochastic perturbations is used as an example to prove the 

practicality of the designed controller. The single-link manipulator 

system model is given as: 

 
0 sin( ) ( )Jq Mgl q Bq u v= − − +  (53) 

in which ,q q and q  are the coordinate, velocity and acceleration 

of angles respectively. ( )u v is the input torque subject to saturation 

and deadband. Table I lists all the parameters of the single-link 

manipulator system. 

Tab. 1. Example 2 Parameters of a single link robotic arm system. 

Parameter Description Value 

J  torsion coefficient 
20.5kg m  

M  mess of the link 1kg  

g  acceleration of gravity 
29.8m s  

0l  length of the connecting rod 1m  

B  coefficient of friction 
20.5 N m  

We can rewrite the systems (50) as follows: 

 

1 2

2 1 2

1

2 ( ) 19.6sin( ) ( )

x x

x u v x x d t

y x

=


= − − −
 =

 (54) 

where ( ) 0.2sin(0.1 )d t t= .The desired trajectory tracking signal is

0.5sin( ) 0.5sin(0.5 )dy t t= + . The dead zone and saturation 

nonlinear models is description as follows 
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 (55) 

The control law, the adaptive law and its related parameters are 

designed as follows: 1,1 2,115, 15k k= = , 1 2 10a a= = , 1 = ,

60 = , 1 20.85, 0.5, 0.2  = = = ,
1 21, 0.8 = = .The initial 

states and updating laws are selected as    1 2(0), (0) 0.3,0.5
T T

x x = ,

 1 2
ˆ ˆ(0), (0) 0.02,0.03

T T
   =
 

. 

 

Fig. 7. Example 2: System output and desired trajectory. 

 

Fig. 8. Example 2: The trajectory of Control input u and v . 

 

Fig. 9. Example 2: System output with disturbance and without disturbance. 

The simulation results in this example are presented in Fig 7~10. 

Figure 7 depicts the trajectory of the system output and control 

input. From Figure 1, it is easy to see that the control designed using 

this paper has good control performance, and the system output y

can track our desired trajectory signal
dy very well. Figure 8 also 

demonstrates the controller trajectory and the trajectory of the 

control input, from which it is clear that after the deadband and 

saturation constraints, the control input amplitude is greatly reduced 

while ensuring good tracking performance. In order to demonstrate 

the robustness and stability of the adaptive neural network tracking 

control algorithm proposed in this paper, we add perturbations
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( ) 1.5sin(5 )d t t= to the control input signal u  .Fig 9 and Fig 10 

gives a comparison of the trajectories of the control input signal and 

the system output for additional disturbances and no disturbances. 

From the figure, it can be seen that the adaptive NN controller 

designed in this paper has good robustness and stability. 

 

Fig. 10. Example 2: Control input with disturbance and without disturbance. 

From the simulation results shown in this section, it is easy to see 

that applying the finite-time neural network tracking controller 

designed in this paper and selecting the appropriate parameters, the 

system can have good tracking performance with all signals 

bounded and the actual control inputs satisfying the dead zone and 

saturation constraints, which proves the usability of our designed 

controller. 

5. Conclusions 

For the actual physical system, this paper designs a finite-time 

tracking controller based on the command filter backstepping 

method for uncertain systems with multiple actuator constraints and 

nonlinear disturbances. The approximation property of RBF neural 

network is used to solve the interference of unknown nonlinear 

functions and simplify the controller design process. The problem of 

exploding computational complexity caused by the classical 

backstepping technique is solved by means of command filtering 

and compensation. The translation of the multi-actuator constraints 

(deadband and saturation) into a concise mathematical model 

largely simplifies the design of the control algorithm in this paper. 

The designed finite-time tracking control algorithm ensures that all 

variables of the system are bounded and the tracking error fluctuates 

in a small range. With the corresponding actuator constraints, the 

actual control inputs can meet the demands of a realistic industrial 

production environment. Finally, the simulation demonstrates the 

control effect of the algorithm designed in this paper and verifies 

the effectiveness of the proposed method. 
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