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 Spatio-Temporal action localization is a task of classifying the corresponding action category in a sequence frame 

and locating its position in each frame. You only watch once (YOWO) is an excellent one-stage algorithm for action 

classification and location based on 2D CNN and 3D CNN, which has fast inference speed. However, its 

identification precision needs to be further improved in some practical applications. In order to improve the 

identification precision. We introduce the multi-scale idea of the feature pyramid. In terms of sampling method, we 

propose a method that randomly select the key frame to obtain local features in consecutive frames, and jointly 

predict the each frame with global features extracted from the 3D network. The proposed algorithm’s Frame-mAP 

can achieve 81.6% and 87.0% on jhmdb-21 and UCF101-24 respectively, which has an impressive improvement of 

7.2% and 6.6% compared with YOWO algorithm. Besides, the inference speed can reach 15 fps only on the GPU 

of GTX1660Ti. Compared with other state-of-the-art architectures, our method also achieves competitive 

performance. 
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1. Introduction 

Spatio-temporal action location is a complex task which needs 

classify the action and locate the actor by bounding boxes on each 

frame of the input video stream. The popular object detection 

algorithm, like Faster-RNN[1] and Yolov3[2], which can classify and 

locate objects from video stream. These models can be roughly 

divided into two-stage mode and one-stage methods. The two-stage 

method, like Faster-RNN, which generates dense region proposal in 

each frame and intercepts features for classification, and then uses 

the action tube algorithm to obtain the best action pipeline. However, 

its inference speed is so slow that it is difficult to meet the needs of 

real-time detection. One-stage algorithm, like Yolov3, which 

generates location and classification information at one time, can be 

trained by end-to-end. Its inference speed is much faster than the two-

stage algorithm. However, action recognition from single frame 

based on 2D CNN cannot represent association information between 

actions, which leads to poor recognition effect. 

In order to learn more effective feature, 3D CNN needs to be 

considered. The YOWO[3] is a more efficient one-stage algorithm 

for spatio-temporal action location, which is based on the idea that 

the previously received data needs to be considered first when located 

and classified the current frame. As shown in Figure 1, the author 

proposed a method that extract the global information on continuous 

frames of fixed length by 3D-CNN, and extract local information on 

the last frame by 2D-CNN, then fuse the local and global information 

by attention modules, finally, predict the location and classification 

information of the last frame just like the Yolov2[4] algorithm. 

YOWO is well-known for its high accuracy and fast inference speed. 

 

Fig. 1. YOWO network structure 

However, the algorithm also has the following disadvantages: 

1. Only take the last frame of the clip as key frame. This strategy 

is not friendly to the prediction of the frame at the front of 

video streaming. Because of the lack of timing information in 

front of the key frame, the current frame can only be predicted 

by using a cyclic sequence. 

2. Only the feature information of the last layer of the 2D 
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network is used. This layer is obtained by 32 times down 

sampling of the original image, the resolution of the feature 

map is low, so that it is difficult to regress accurate parameters 

of bounding box. 

3. The feature maps of 2D-CNN and 3D-CNN are directly 

stacked, and then the channel attention module in Danet[5] is 

used to strengthen the feature extraction. However, the single-

scale fusion strategy loses multi-scale information. 

In view of the above disadvantages, we propose the following 

improvement methods. 

1. Firstly, we set any frame of the current clip as the key frame, 

then we can predict the information of any frame in one video 

without destroying the timing of the video. For a continuous N 

frames of video stream, the prediction result of each frame can 

be obtained as follows: input N frames into the 3D-CNN to 

obtain global features, and use the 2D-CNN as a sliding window, 

obtain local features frame by frame and jointly predicted the 

result of the current frame with global features. 

2. Secondly, we select the last three feature layers of 2D-CNN to 

achieve multi-scale feature, and replace single head prediction 

with multi-scale prediction. 

3. Thirdly, we propose a method called secondary fusion. for the 

three 2D-features, they are separately fused with 3D features to 

gain features of three scales, and then FPN[6] is used to further 

aggregate the multi-scale features. This structure decrease 

network parameters and maintain fast inference speed. 

The remainder of the paper is organized as follows. In Section 2, 

we review the related work for action recognition and spatio-

temporal action localization. In Section 3, we introduce the network 

structure and the improvement methods in detail. In Section 4, the 

experimental results are presented with additional discussions. 

Finally, the paper is concluded in Section 5. 

2. Related works 

2.1 Action recognition 

With the development of deep learning, CNN as a powerful feature 

extractor is gradually applied to action recognition. Frame-by-frame 

extraction of CNN information is used in action classification[7,8], 

while two-stream structure[9] combined RGB image and optical flow 

features can further improve the accuracy of classification. Recently, 

3D ConvNets[10,11,12], extended by 2D networks, have been proved 

to be more effective in extracting spatio-temporal features. The I3D 

network[13] further improved the 3D convolution technique by 

expanding the convolution kernel of the 2D-CNN network pre-

trained on ImageNet into a 3D convolution kernel, and proposed a 

kinetics dataset to solve the transfer in action recognition learning 

problems. 

In order to extract more effective features, Wang et al. [14] even 

combine 3D-CNN and optical flow features. Although 3D 

convolution network is more efficient in feature extraction, it also has 

some disadvantages, such as large amount of parameters and 

expensive training cost. Some researchers have begun to explore 

ways to improve the 3D network structure: P3D[15] proposes three 

different space and time separation convolution methods to reduce 

the parameter of the 3D convolution kernel, R(2+1)D[16] shows that 

2D convolution and 1D convolution are sufficient to learn the 

discriminative features of action recognition, S3D[17] tries to 

separate 2D and 3D convolution operations and add attention 

modules. 

2.2 Spatio-temporal Action Localization 

The task of spatio-temporal action localization is more 

complicated than action recognition which requires correct 

classification and accurate location of actors within the time interval 

when the behavior occurs. Most of the current spatio-temporal action 

localization algorithms are based on two stages 

[18,19,20,21,22,23,24,25,26]: RPN(Region Proposal Network) is 

used to generate dense region proposals in each frame for clips, then 

Roipooling layer is used to intercept feature map to make further 

classification, finally, a link algorithm is used to connect the boxes to 

form action tubes. 

For the one-stage algorithm, the method is generally not consistent. 

Many methods are based on one-stage object detection networks. 

ACT[27] build upon the SSD[28] framework, which extracts features 

frame by frame 2D networks and stacks them for regression and 

classification. MOC[29] build upon the CenterNet[30] framework, 

which directly predict the position of the moving point, the motion 

trajectory between adjacent frames and the bounding box parameters. 

Some scholars pay attention to the fine-tuning and aggregation of 

features: CFAD[31] uses 3D features for action classification and 

coarse-grained action location, then use a time suggests module to 

fine-tuned the key frame location information to achieve higher 

location accuracy; STEP[32] performs frame-by-frame classification 

and location, and uses the time-gradual module to gradually fine-tune 

features to extend local information to global information. Tang et 

al.[33] proposed the asynchronous interaction aggregation network 

(AIA),which used object detector and 3D-CNN to obtain global and 

local information, and interactively fusion features to achieve better 

performance in dense actions scene; Ref. [34,35] used graph neural 

network to get the correlation between the action and the scene. 

In addition to using convolution networks, some scholars have 

found that RNN and its variants perform well in action spatio-

temporal location: Akshaya Ramaswamy et al.[36] proposed a 

method of extracting features by I3D and obtain spatio-temporal 

modeling by LSTM. Song et al.[37] used BLSTM, a type of 

bidirectional RNN, to learn the multimodal features that share 

context information of adjacent clips. 

Recently, the self-attention models have become popular, even the 

transformer[38], which is completely based on the attention 

mechanism, can replace the convolutional network to achieve good 

results: Rizard Renanda Adhi Pramono et al proposed a structure that 

initial action detection by the two-stream CNN[39] or 3D-CNN[40], 

and then learn the spatio-temporal relationship of actors by 

hierarchical self-attention module(HiSAN), Rohit Girdhar et al[41] 

proposed a Transformer-style architecture to aggregate features from 

the spatiotemporal context. 

Compared with other algorithms, YOWO has practicability clear 

structure and great possibility for improvement. We start with YOWO. 

YOWO is also the one-stage algorithm, which combines 2D-CNN, 

3D-CNN and attention mechanism. Though YOWO can meet real-

time inference speed, the prediction accuracy needs to be improved. 

In this paper, we make improvements based on YOWO so that it can 

be truly applied to actual engineering projects. 

3. Methods 

3.1 Video sampling method 

In YOWO, continuous frames will be input to the I3D network to 

obtain the spatio-temporal features first, then take the last frame as 
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the key frame and is input to the 2D network to obtain spatial features, 

finally the classification and regression prediction of key frame are 

performed after the features are fused. We generalize it to a more 

general form, where any frame in the clips can be regarded as a key 

frame. However, it can bring a problem that how to ensure the 

sampling balance, that is, the probability of the network getting any 

positions of key frame is basically equal. 

For a video sequence
max1 2[ , ,..., ,..., ]i Lv v v v , select any frame as 

the key frame, max[1, ]curk L .Sample the video clips 1 2[ , ,..., ]Lx x x in 

this video sequence, where the key frame is the 𝑗-th frame of this clip. 

Besides, the sampling step of the video clip is p  .So the clip 

sequences is described as 
( 1) ( )[ , ,..., ]

cur cur curk j p k jp k L j pclip v v v− − − + −= . In 

order to ensure the validity of the clips, there should be:  
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( 1) 1
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+ − 
 (1) 

Then the upper and lower bounds of j  can be obtained as: 
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 (2) 

Restrict the upper and lower bounds of j   to be within the 

subscript of the clip sequence, we can get: 

 
min min

max max

max(1, )

max(1, )

j j

j j

=


=
 (3) 

During the training process, we set min max( , )j random j j=  ; 

During the testing process, we set maxj j=  . Clip sequence is 

1 2[ , ,..., ]Lclip x x x , and its length is L . The prediction result for 𝑗-

th frame is described as below: 

  2 3 1 2( ( ) ( , ,..., )), 1,j fuse d j d Lp f f x f x x x j L= +   (4) 

where 
fusef represents the fusion network, 2df represents the 2D 

backbone extraction network, and 3df represents the 3D backbone 

extraction network. 

In this way, any frame in one clip can be used as a key frame, the 

balance of sampling can be guaranteed in the random way. At the 

same time, this method also indirectly expands the data field which 

can increase the robustness of the network. For example, for 16-

frames clips, any frame can be input into the network as a key frame. 

Compared with taking only the last frame, the data field is expanded 

by 16 times. Finally, this method forces 2D-CNN to learn the location 

information of key frames, while the 3D network essentially affects 

the classification prediction. The prediction results of key frames are 

affected by both the front frames and the rear frames, that is in line 

with the way people watch videos. 

3.2 Network structure 

 
Fig. 2. the fusion module in YOWO 

As shown in Figure 2, in YOWO, the last layer of features of the 

2D network and the 3D network are used for stacking, and the 

prediction results are obtained after several convolutions and 

attention mechanisms. This method is simple and the information 

extracted is limited, so we designed a secondary fusion module to 

replace it. This structure can also learn multi-scale prediction which 

is helpful to obtain more accurate location information. We try to add 

its attention mechanism to our structure, but it reduces the 

performance of the network, so we abandoned the attention 

mechanism in the fusion module. Although the structure is more 

complex, the network uses many 1×1 convolution to compress 

channels, so the overall parameters will not increase. The overall 

network structure is shown in Figure 3. 

 

Fig. 3. Overall network structure 

As shown in Figure 3, the C represents concatenation, the 

ConvLayer is composed of convolution and LeakyReLu and 

Batchnormal, the UpSample is composed of a 1x1 convolution and 

adjacent upsampling, and the STM represents scale transfer module. 

In the feature extraction part, the I3D network is used to extract 

spatio-temporal information which is pretrained on the kinetics 

dataset. For the 2D network, we replace the darknet19 in YOWO with 

the CSPdarknet53. CSPdarknet53 has a CSP structure[42], which can 

greatly reduce the amount of network parameters and increase the 

inference speed. 

 

Fig. 4. STM (scale transfer) 

For the 224×224 input, the 3D network mainly contributes to the 

classification information and doesn’t require accurate location 

information, so we only take the low-resolution feature map obtained 

by the last convolution, which has higher semantic information. For 

the 2D network, because the accurate location information of the key 

frame needs to be obtained, we take the last three layers of 2D 

network as effective features, which are the results of 8 times, 16 
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times, and 32 times downsampling of the original image. For the 

three feature maps, the high-resolution feature map has a small 

receptive field due to its low downsampling ratio, which is suitable 

for detecting small object, while the low-resolution feature map has 

a large receptive field due to its high downsampling ratio, which is 

suitable for detecting large object. 

Fuse module is applied in the feature fusion, as shown in Fig. 3. 

The 3D feature needs to be sampled to the same size as the 2D 

features first, where a STM[43] structure is implemented. As shown 

in Figure 4, STM is a feature rearrangement technology, each point 

of the channel is rearranged on the r r plane, so as to achieve the 

effect of magnifying the resolution of the feature map by r times, 

and it won’t introduce parameters without loss of information. For 

the upsampled 3D features, we stack them with 2D features 

separately, then fuse the stacked features after two convolutions. In 

the second stage of fusion, we use the feature pyramid to further 

integrate the spatio-temporal features at different resolutions. As 

show in “FPN” of Fig. 3, low-resolution features are stacked with 

high-resolution feature maps after three convolutions and nearest 

upsample. Finally, we learn from the prediction layer of yolov3, 3×3 

convolution is performed to integrate the features, and 1x1 

convolution is performed to change the channels to

3(5 )cL n= + ,where cn represents the number of classes. The location 

information and classification information of the key frame will be 

predicted in the same time. 

3.3 Loss function 

In YOWO, the smoothL1loss is used as the regression loss, 

MSEloss as the confidence loss, and the multi-class Facolloss[44] as 

the classification loss. We make the following improvements: We use 

IOU as the regression loss. Compared with the smoothL1loss, IOU 

loss has scale invariance to the bboxes, which is helpful to train better 

detectors. so the ciouloss[45] is used which is an improved version 

of IOU loss. We try to apply muti-class Focalloss to our multi-scale 

prediction structure, the classification loss will be very small during 

the training process, so that the percentage of each loss are extremely 

imbalanced, this leads to poor training results. on the other hand, 

softmax function and multi-classes loss are used in YOWO, which is 

conducive to the prediction of single label categories. Although 

UCF101-24 and jhmdb-21 datasets are all single-label scenarios, but 

in actual scenarios, a person often has multiple actions at the same 

time. Therefore, we all use binary focalloss as the confidence loss and 

classification loss, and the sigmoid function is used to convert the 

output into probability distribution. The definition of each loss will 

be described in detail below. 

For the regression loss, the distance between the center point and 

the aspect ratio are considered in ciouloss by comparing with the 

iouloss, which can make bounding box regression more accurately 

and faster. It is defined as: 

 

2

2

( , )
1

gt

ciou

b b
L IOU

c


= − + +  (5) 

where IOU represents the intersection ratio of the truth box and the 

predicted box, and ( , )gtb b  represents the center point distance 

between the truth box and the predicted box, c  represents the 

diagonal distance of the smallest circumscribed rectangle, and  is 

the aspect ratio penalty which can be described as: 

 

g
2

2

4
(arctan arctan )

t

gt

w w

hh



= −  (6) 

where gtw , gth epresents the width and height of the truth box, w

and h represents the width and height of the predicted box. 

For confidence loss and classification loss, we start out with the 

binary cross-entropy loss, but classification loss is difficult to 

decrease in the middle of training, and the performance is poor, so we 

use binary FocalLoss instead. We further compare the effects of the 

two loss functions, we train 40 epochs for 8-frames-clip on jhmdb-21 

dataset. Except for the loss function, the other parameters remain the 

same. The confidence threshold is 0.005 and the IOU threshold is 0.4 

in non maximal suppression, and the evaluated IOU threshold is 0.5 

to distinguish between positive and negative samples, the 

experimental results are shown in table 1, we reported the metrics of 

recall and Frame-mAP. The recall of BCE loss is relatively low, 

which further affects the Frame-mAP. 

Tab. 1. recall and Frame-mAP@0.5 between BCE loss(binary cross-entropy loss) 

and binary Facol Loss on jhmdb-21. 

Loss 

fuction 

NMS 

mIOU recall Frame-mAP conf 

thresh 

iou 

thresh 

BCE 

Loss 
0.005 0.4 0.5 84.3 67.7 

BFocal 

Loss 
0.005 0.4 0.5 92.9 77.4 

 

The FocalLoos is defined as Equation (7): 

 ( ) (1 ) log( )t t t tFL p p p= − −  (7) 

where t and  are all hyperparameters,  is used to mine difficult 

samples, t  control the balance of positive and negative samples, 

tp represents the predicted score. 

Equation (7) can be written as binary Facolloss: 

 
( , , , ) (1 ) log( )

(1 ) ( )(1 ) log(1 )

t t t t t t t

t t t t

BFL p g p g p

p c g p





  



= − −

− − − −
 (8) 

where tg represents the true label. For positive samples, 1tg = ; 

for negative samples, 0tg = . 

According to Equation (8), the classification loss and confidence 

loss can be described as Equation (9) and Equation(10): 
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i j t t
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+ 





 (10) 

where S  represents the grid, B  represents the number of priori 

boxes, ( )tp c represents the predicted category probability of the grid 

point, and ( )tg c represents the true category probability, tc represents 

the probability that the grid point contains an object. For the 

classification loss, we use the default parameters in the paper of 

Facolloss, that is, 0.25, 2t = =  .For the confidence loss, our 

prediction mode is similar to yolov3, which already have the methods 

to balance the positive and negative samples, so we set 0.5t =  so 

that the weight ratio of positive and negative samples is 1:1. For the 

final conv layer of the classification and confidence subnet, the bias 

should be initialization to log((1 ) / )b  = − − , where 0.01 = [44]. 
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in this way, all prediction results will be negative samples at the 

beginning of training, which is conducive to the convergence of the 

network. 

Furthermore, the input of the spatio-temporal action location 

network is not a single RGB image, but a time sequence of a certain 

length, so the training process is expensive. In order to speed up the 

convergence, we also fine-tuned the method of positive and negative 

sample division strategy for training based on yolov3. In yolov3, each 

ground truth box can only be assigned to one priori box which has 

the highest iou among the three feature layers, this sampling rule is 

too strict for action recognition. So we change this rule: for the 

topmost feature map, only one box with the highest iou with the nine 

priori boxes is matched; for the second layer feature map, look for 

the two boxes with the highest iou with the nine priori boxes for 

prediction in turn; for the third layer, look for the three boxes with 

the highest iou with 9 priori boxes in turn, if they are not present, this 

layer will not be responsible for prediction. In this way, the number 

of positive samples for each training step increase which can 

effectively speed up training. and the features closer to the bottom 

layer have a greater probability of making more predictions, which is 

in line with the law that the bottom layer will get more semantic 

information in top-down pyramid. What’s more, the resolution of the 

bottom feature map is higher, the original image is divided into more 

grid cells, and it is difficult to have intensive labels for action 

recognition, so it will not increase the label overwrite[46], which 

means that center points of truth box coincide when image 

downsample as feature map, so that the prediction is made by the 

same grid and the previous boxes is ignored. 

3.4 Other improvements 

The parameters of network can reach nearly 500M in YOWO when 

we use resnext101 as a 3D network, it is easy to overfit during the 

training process. In the process of training the original network of 

YOWO, the 10th iteration of the network has basically reached the 

desired effect, the following training will not bring the significant 

improvement. Therefore, some regularization methods to prevent 

over-fitting are necessary. In addition to basic data augmentation, we 

use dropblock to prevent over-fitting. At the same time, we add the 

attention mechanism to the detection head to further improve the 

performance of the network. 

3.4.1 Attention mechanism 

The attention mechanism is widely used in sequence models, 

which can significantly improve the accuracy of multi-classification 

networks. In recent years, the attention mechanism has also begun to 

be applied to convolutional neural networks, such as the SE 

module[47], CBAM module[48], which are used in image 

classification and object detection. Here we have added the SE 

module to the detection head to perform channel selection and 

channel suppression on the fused features to obtain more delicate 

features, and only increase the amount of 1M parameters. The 

structure of the SE module can be divided into two steps: 

compression and excitation. As show in Figure 5, compression is 

obtained by performing global average pooling on the feature layer 

to obtain the global compressed feature of the current feature map; 

excitation is obtained the weight of each channel in the feature map 

through a bottleneck structure of two-layer fully connection, which 

is weighted to the original feature map next. 

 

Fig. 5. SE attention model 

3.4.2 Dropblock 

Dropblock[49] is a strong regularization method for preventing 

over-fit. we add it to the structure of FPN. As show in Fig. 6, 

compared with dropout discarding points in the feature map, 

dropblock discards a region in the feature map which can effectively 

prevent overfitting. 

 
(a)                     (b) 

Fig. 6. (a) is the ordinary dropout, which represents discarding points randomly; (b) 

is the dropblock, which represents discarding a region of the feature map randomly. 

4. Experimental Details 

4.1 Dataset and Experimental parameters 

We evaluate the results on the benchmark datasets jhmdb-21 and 

UCF101-24. For the jhmdb-21, it contains 22712 training labels and 

9126 test labels, and a total of 21 actions. For the UCF101-24, it 

contains 337835 training labels and 137558 test labels, and a total of 

24 actions. 

The experimental platform is driven by a single GPU of Nvidia 

1660ti. We use the SGDM optimizer with an initial learning rate of 

0.0001 and the momentum of 0.937. For the jhmdb-21, a total of 40 

epochs are performed. We freeze 2D and 3D network at the beginning 

of training, unfreeze the 3D network in the 10th epoch, and unfreeze 

the 2D network in the 25th epoch. The learning rate is halved in the 

10th, 18th, 25th, and 35th epoch; For the UCF101-24, we train a total 

of 20 epochs, and we freeze 2D and 3D network at the beginning of 

training, unfreeze the 3D network in the 5th epoch, and unfreeze the 

2D network in the 15th epoch. For all the datasets, the data 

augmentation we used include random horizontal flipping, random 

zoom, spatial jitter and color jitter. The range of random zoom value 

for images is between 0.5~1.5 and color jitter is between 0.7~1.3. It 

should be noted that for each RGB images in the same clip, the 

parameters used for data augmentation should be consistent, 

otherwise the coherence of the action in spatio-temporal dimension 

will be destroyed. The RGB images input to the network are all 

resized to 224×224. 

4.2 Comparison with YOWO 

In order to prove that our method is effective, we did the 
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experiment on the dataset jhmdb-21. In this experiment, we conduct 

experiments with 8-frames clips. We use the YOWO as baseline, we 

get an improved version of YOWO by replacing the backbone 

network and loss function first, and then gradually add new modules 

to improve the network for experimental control. Furthermore, we 

take Frame-mAP@0.5 as evaluation index, the IOU threshold is 0.4 

and the confidence threshold is 0.005 in non maximum suppression. 

The experimental results are shown in table 2. 

Tab. 2. YOWO* is the result of replacing YOWO’s 2D feature extraction network 

darknet19 with cspdarknet53 and introducing ciouLoss and binary FacolLoss. 

KFRS represents the random sampling of key frames designed in this paper. 

SecondFuse is the secondary fusion module, Frame- mAP is the test result of 

jhmdb-21 test dataset. 

Methods Frame-mAP(%) Parameters 

YOWO 64.9 462M 

YOWO* 71.1 372M 

+KFRS 73.6 372M 

+SecondFuse 76.3 373M 

+dropblock 77.0 373M 

+SE 77.4 373M 

 

As shown in the table 2, YOWO’s original network Frame-mAP 

is 64.9%, YOWO* replaces the 2D backbone network and loss 

function, gains 6.2% improvement, Frame-mAP reaches 71.1%; 

introduce KFRS , that is to improve from the sampling rules during 

training, Frame-mAP increased by 2.5% to 73.6%; the single-head 

fusion structure of YOWO was replaced with a secondary fusion 

module , Frame-mAP increased by 2.7%; the dropblock module 

continued to be introduced, to prevent network overfitting, Frame-

mAP increased by 0.7%; finally the SE attention mechanism was 

introduced, the parameter increased by 1M, and Frame-mAP 

increased by 0.4%. From the above analysis, we can see that for 8-

frames clips, we have achieved a 12.5% improvement compared to 

YOWO on the jhmdb-21.  

In order to verify the effectiveness of the improved positive and 

negative division strategy, we take 8-frames clips for training, and 

train 40 epoch in total. With the growth of epoch, we separately 

recorded the changes of Frame-mAP@0.5 under the yolov3’s 

division strategy and our division strategy. As shown in Figure 7, our 

strategy is obviously faster than yolov3’s. 

 
Fig. 7. The blue and red lines represent the growth curve of Frame-mAP with the 

number of iterations under yolo3’s and the improved positive and negative sample 

division strategy, respectively. 

We also compare Frame-mAP of our network with the best result 

of YOWO on the datasets jhmdb-21 and UCF101-24, the input image 

size is still 224×224. The results are shown in table 3. 

Tab. 3. Compare Frame-mAP@0.5 between ours and YOWO under 8-frames and 

16-frames input. 

 

As shown in the table 3, on the jhmdb-21, YOWO’s Frame-mAP 

reached 64.9% for the input of 8-frames clips, while our Frame-mAP 

can increase by 12.5% to 77.4%; for 16-clip input, YOWO’s mAP 

reached 74.4%, it can be seen that it is even smaller than ours with 8-

frame as input. The best result we achieved with 16-frames clips is 

81.6% Frame-mAP, which has increased by 7.2% compared to 

YOWO. on the UCF101-24, the Frame-mAP for YOWO reached 

79.2% for 8-frames clips while reached 80.4% for 16-frames clips, 

and we reached 85.9% and 87.0% with an impressive improvement 

of 6.7% and 6.6%.  

Finally, we compared the inference speed with YOWO, all results 

are run on a single GPU of GTX1660Ti. As shown in table 4, through 

the improvement of the network structure, the network parameters 

reduced from 462M to 373M, the FLOPs of network will increase 

slightly, and the inference speed of our network can reach 10 frames/s 

for 16-frames input while reach 15 frame/s for 8-frames input, which 

is almost equal to YOWO. 

Tab. 4. Compare inference speed between ours and YOWO under 8-frames and 16-

frames input. 

 
Cli

p 
2d-backbone 

3d-

backbone 

Parameter

s 

GFLO

Ps 

Run 

time 

YO

WO 
8 darknet19 resnext101 462M 24.9 63.4ms 

ours 8 cspdarknet53 resnext101 373M 27.0 63.8ms 

YO

WO 
16 darknet19 resnext101 462M 43.6 98.1ms 

ours 16 cspdarknet53 resnext101 373M 45.8 95.0ms 

 

4.3 Comparison with state-of-the-art 

We have compared our method with other state-of-the-art 

architectures on jhmdb-21 and UCF101-24. Using the standard 

metrics, we report the frame-mAP at IOU threshold 0.5 and the video-

mAP at various IOU thresholds, our method achieves competitive 

performance under different tested threshold criterion. In some 

respects, our method achieves state-of-the-art. 

 

4.3.1 Comparison on dataset J-HMDB-21 

As shown in table 5, on dataset J-HMDB-21, in term of Frame-

mAP@0.5, Video-mAP at IOU threshold 0.2 and Video-mAP at IOU 

threshold 0.5, we all lag slightly behind HiSAN. while the threshold 

is 0.75, Video-mAP still has 68.3%, which is 5.6% higher than 

HiSAN, but 6.7% lower than MOC. In general, compared with other 

state-of-the-art architectures, our method is still competitive. 

 

method 

Jhmdb-21 UCF101-24 

8 16 8 16 

YOWO 64.9 74.4 79.2 80.4 

ours 77.4 81.6 85.9 87.0 

mailto:Frame-mAP@0.5
mailto:Frame-mAP@0.5
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Tab. 5. Performance on dataset J-HMDB-21 and comparison with SOTA results by 

frame-mAP under IOU threshold 0.5 and video-mAP under different IOU 

thresholds. 

Method 
Frame-

mAP 

Video-mAP 

0.2 0.5 0.75 

ROAD(2017)[19] - 73.8 72.0 44.5 

ACT(2017)[27] 65.7 74.2 73.7 52.1 

TPnet(2018)[20] - 74.8 74.1 61.3 

YOWO(2019)[3] 74.4 87.8 85.7 58.1 

CA RCNN(2020)[25] 79.2 - - - 

CFAD(2020)[错误!未

找到引用源。] 
- 84.8 83.7 62.4 

MOC(2020)[29] 74.0 80.7 80.5 75.0 

HiSAN(2021)[40] 85.4 93.9 91.8 62.7 

ours 81.6 87.7 87.5 68.3 

4.3.2 Comparison on dataset UCF101-24 

Tab. 6. Performance on dataset UCF101-24 and comparison with SOTA results by 

frame-mAP under IOU threshold 0.5 and video-mAP under different IOU 

thresholds. 

Method Frame-mAP 

Video-mAP 

0.2 0.5 0.75 

ROAD(2017) - 73.5 46.3 15.0 

ACT(2017) 65.7 77.2 51.4 22.7 

YOWO(2019) 80.4 75.8 48.8 - 

CFAD(2020) - 79.4 62.7 - 

MOC(2020) 78.0 82.8 53.8 29.6 

HST-

LSTM(2020)[36] 
82.4 87.2 - - 

HiSAN(2021) 80.3 88.6 66.4 29.3 

ours 87.0 84.7 74.0 26.6 

 

As shown in table 6, on dataset UCF101-24, we have achieved 

SOTA in most indicators. For the Frame-mAP@0.5, Our method 

outperforms the state-of-the-art results. For the Video-mAP, our 

method achieves SOTA at the IOU thresh of 0.5, it is worth 

mentioning that we are 7.6% ahead of the second place HiSAN, our 

method is slightly behind the HiSAN at the thresh of 0.75. 

4.4 Discussion on shortcomings 

 
Fig. 8. Visualization of some key frames’ detection results on jhmdb-21 test dataset 

 

Fig. 9. Visualization of some key frames’ detection results on UCF101-24 test 

dataset 

 
Fig. 10. 21 AP distribution of actions on the jhmdb-21 

 
Fig. 11. 24 AP distribution of actions on the UCF101-24 

 

Normally, our network has high location accuracy and 

classification accuracy, which is illustrated in Figure 8 and Figure 9. 

We also report the AP of each category on jhmdb-21 and UCF101-24 

in Figure 10 and Figure 11. Due to the high similarity between classes 

in jhmdb-21, the AP of some categories in jhmdb-21 is relatively low, 

such as sit and stand. 

In order to further analyze and evaluate the performance of our 

algorithm, and find out the problems in the classes of low AP, we 

report the confusion matrix on jhmdb-21 and UCF101-24. The 

detected results are based on the confidence threshold of 0.5 and the 

IOU thresh of 0.4. As show in Fig.11 and Fig.12, the vertical axis 

represents the real category and the horizontal axis represents the 

predict category. On jhmdb-21, 24% of the actual prediction results 

are stand for groundtruth boxes of sit, and 54% of the actual 
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prediction results are sit for groundtruth boxes of stand. There are the 

same problem for catch and shoot ball, it is difficult to distinguish 

between the two actions, while there is no similar opposite action 

sequence in UCF101-24, the classification of each category works 

well. So the network may be difficult to distinguish between these 

two sequences with opposite timing. 

 

Fig. 12.. confusion matrix on jhmdb-21 

 
Fig. 13. confusion matrix on UCF101-24 

5. Conclusion 

Based on the idea of YOWO, the following improvements are 

proposed in this paper. For sampling method, we have extended the 

key frame to any frame to increase the robustness of the network. We 

also have improved the network structure, and proposed a secondary 

fusion module that fuses 2d feature and 3d feature to obtain spatio-

temporal characteristics by STM first, then fuses the features again 

to obtain multi-scale features by FPN. Finally, the loss function and 

the method of positive and negative samples division strategy are 

redesigned. We have evaluated the improved network on the jhmdb-

21 and UCF101-24, the accuracy is greatly improved and inference 

speed is not decreased by comparing with YOWO algorithm, which 

can be applied to some practical projects for spatio-temporal action 

localization in real time. However, our algorithm has some 

shortcomings which is not very sensitive to temporal information, 

and will be improved in the future work. 
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