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 In order to solve the problem of workshop scheduling optimization of the hybrid production process, a 

pseudo-reverse learning compact genetic algorithm integrating imulated annealing and adaptive-mutation 

(IAAMPRLCGA) was proposed. Combine it with local assignment rules to solve the problem. The 

IAAMPRLCGA algorithm improves the anti-precocious ability of the compact genetic algorithm, improves the 

quality and diversity of generating new individuals, gives full play to the efficient global search ability of the 

compact genetic algorithm, solves the problem that the compact genetic algorithm is easy to fall into local 

optimum, and further enhances the overall performance of the algorithm. The results show that the 

IAAMPRLCGA algorithm can effectively solve the problem of workshop scheduling optimization of hybrid 

production process when combined with local assignment rules. 
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1. Introduction 

In today's manufacturing world, it is a crucial goal to complete 

production tasks at the lowest cost and the fastest speed [1]. In this 

context, production scheduling optimization has become one of the 

critical points for enterprises to occupy the market. The production 

process of ham sausage processing enterprises is a complex and 

unique hybrid production process that involves both continuous and 

discrete processes, which leads to the slicing state in the processing 

of ham sausages. This production process has a high degree of 

nonlinearity and is subject to multiple disturbances and severe 

coupling at the same time, and the pure hysteresis phenomenon is 

also quite prominent [2]. Therefore, for ham and sausage processing 

enterprises, the problem of scheduling optimization is particularly 

complicated. The manufacturing workshop of ham sausage 

processing enterprises belongs to a typical process manufacturing 

production workshop. In actual production, the production task of a 

particular specification of ham sausage is sent to the sterilization pot 

through the ligation process and then transferred to the packaging 

after being processed by the sterilization. This stage of the ham 

sausage production process comprises three processes. Because the 

process characteristics of the three processes are different, the 

production process of these three processes has the characteristics of 

mixed manufacturing and has a particular difficulty in solution. 

This requires us to find more efficient ways to solve such 

complex problems. Compared with other swarm intelligence 

optimization algorithms, the Compact Genetic Algorithm (CGA) 

has the advantages of high efficiency, fast speed, and small 

computation. It is very suitable for solving complex NP problems 

[3]. Therefore, the research on the application of compact genetic 

algorithms is becoming more and more extensive. Wang Shengyao 

first introduced the distribution estimation algorithm into the field 

of scheduling to optimize the Makespan minimization problem [4]. 

Ha, and Mussetta modified and improved the compact genetic 

algorithm by implementing multiple probability vectors and adding 

appropriate learning schemes between these probability vectors and 

proposed a modified compact genetic algorithm [5], which was 

applied to the optimization synthesis of linear and planar sparse 

arrays of different sizes, and achieved good optimization results. 

Xue et al. proposed a novel method based on a compact genetic 

algorithm [6] to solve the aggregation problem of optimizing three 

different basic similarity measures and experimentally proved that 

the technique can significantly reduce the time and memory 

consumption while ensuring the correctness and completeness of 

the alignment. 

Through the analysis of relevant literature in recent years, 

although the current scholars have solved the problem that the CGA 

algorithm is prone to precociousness, it has yet to significantly 

improve the optimization effect of the algorithm[7]. Therefore, this 
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paper proposes a pseudo-reverse learning compaction genetic 

algorithm that integrates simulated annealing and adaptive variation. 

The hybrid algorithm has operational feasibility and many 

advantages, which can better absorb the respective advantages of 

the two algorithms, complement each other's defects, and better 

solve the problem of scheduling optimization in the process 

workshop of ham sausage processing enterprises. 

2. Problem description and Mathematical Model 

2.1 Problem Description 

The production model of the finished product area of the ham 

sausage production line is shown in Figure 1. The scheduling 

optimization problem studied in this paper can be described as 

continuous rolling production in the finished product area of the 

ham sausage production line: ligation, tumbling, and packaging 

processes. 

First, the ham sausage filling is processed in the previous process 

and then comes to the finished product area. In the actual 

production process, the filling of a specific type of ham sausage is 

sent to the sterilization pot in the sterilization process 
2Oper  

through the ligation process 
lOper  and then transferred to the 

packaging process 
3Oper  for packaging after the sterilization 

process 
2Oper  treatment, the ham sausage production process 

includes three processes, in the ligation process 
lOper , it is 

produced according to a specific processing speed, and different 

types of production tasks will be assigned to different ligation line 

production. The ligation process has typical manufacturing 

characteristics. In sterilization process 
2Oper , the ham sausage is 

sterilized according to the whole pot. After the ligation of the ham 

sausage accumulates enough, it is transferred to the sterilization pot 

through the AGV trolley. Therefore, a ham sausage production order 

is generally split into multiple sub-orders during sterilization. At the 

same time, when the production line is laid, a ligature line is 

matched with multiple sterilization pots, which will be arranged into 

a sterilization unit. The sterilization process has typical discrete 

manufacturing characteristics, and the ham sausages produced by 

multiple sterilization pots that complete the same production order 

are sent to one or more packaging lines to match them in the 

packaging process 
3Oper . Due to the different process 

characteristics of the three processes, the production process of the 

three processes has hybrid production characteristics. In this 

multi-process hybrid ham sausage production plant, the ligature line 

produces different types of ham sausages per unit of time. Therefore, 

the time taken for different types of ham sausages to fill AGVs is 

also different. A production order has a continuous processing time 

on the ligature line, but it is divided into multiple time segments in 

the sterilization process 
2Oper . Although the ham sausage of the 

same production order will enter the matching packaging line after 

sterilization, the production task of this production order still shows 

the state of slicing in the production time dimension of packaging 

process 
3Oper . Therefore, the production load of each packaging 

line is also different, and the workload of the packaging line could 

be more balanced due to the one-to-one or one-to-many relationship 

between each refractory pot production unit and the packaging line 

that matches it. Tracing the cause, the load imbalance is greatly 

affected by the ligature line's different processing speeds when 

producing different products. Therefore, this problem is difficult to 

solve. Figure 1 is the production model diagram of the finished 

product area of the ham sausage production line. 

 

Fig.1 Production model of finished product area of ham sausage production line 

2.1 Model Parameters 

The process section model of the finished product area of the ham 

sausage production line includes the following parameters, as 

shown in Table 1. 

 

Table.1 Model parameters of the production line in the finished ham sausage area 

Parameters Parameter description 

1Oper  Ligation process 

2Oper  Sterilization process 
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3Oper  Packaging process 

Nl  Number of ligation lines 

Nsp  Number of sterilizers 

Npk  Number of packaging lines 

kWl  The
thk  ligature line of the ligation process, 0 k Nl   

lWs  
The 

thl  sterilization pot in the sterilization process,

0 l Nsp   

mWpk  
The 

thm  packaging line of the packaging process,

0 m Npk   

lV  Standard processing speed for ligature lines 

pkV  Standard processing speed of the packaging line 

,l iT  
The processing time required for production task iHtc in the 

ligation process 

,s iT  The theoretical theory of the 
thl sterilizer started time 

sT  The time it takes for a sterilizer pot to process a pot 

,pk iT  
The total processing time required for production task 

iHtc  

in the packaging process 

,r iT  
The elapsed time of production task 

iHtc  on the packaging 

line 

im  
The total amount of processing for the 

thi  production task,

{1,..., }i n  

,o im  
Specifications of the single product of production task

iHtc ,

{1,..., }o q  

sm  Standard capacity for one sterilizer， 0 l Nsp   

q  
The number of specifications and types of individual items 

for the production task 

n  The total number of production tasks processed 

iHtc  Production task i ， {1,..., }i n  

2.3 Basic Assumptions and Constraints 

2.3.1 Hypothetical Variables 

i

k l

i,k

i

k l

Production task Htc is assigned to ligature
1

line Wl in ligation process Oper
Al =

Production task Htc is not set to ligature
0

line Wl in ligation process Oper







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  (1) 
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pot Ws in sterilization process Oper
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

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
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
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 (3) 

2.3.2 General constraints on the finished product area of the ham 

sausage production line 
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Eq. (4) represents the constraint that production task can only 

select one ligature line for processing in the ligation process; Eq. (5) 

represents the processing time required by production task in the 

ligation process; Eq. (6) represents the theoretical starting time of 

the sterilizer corresponding to production task; and Eq. (7) 

represents the total processing time required by production task in 

the packaging process consists of two parts. One part is the 

processing time of production task on the packaging line, the other 

part is the flow time of production task on the packaging line. 

2.3.3 Basic Assumptions 

Based on the actual production process of the ham sausage 

processing industry, this paper makes the following assumptions: 

(1) The equipment does not need additional switching time 

(2) Any production line machine can process the production task, 

and the running process cannot be interrupted. 

(3) The transportation time of semi-finished products between 

various processes in the running process needn't to be considered. 

(4) The buffer between processes is infinite. 

2.4 Evaluation Indicators of Production Scheduling Results 

Eq. (8) and Eq. (9) take the maximum completion time as the 

evaluation index: 

                  maxminC                    (8)  

 max {1,..., }max i,3C C i n= ，             (9)  

In Eq. (9), maxC represents the maximum value of all production 

tasks in the processing completion time of the last production 

process (packaging process), the time when the same batch of 

production tasks is fully processed. 

3. Pseudo-reverse Learning Compact Genetic Algorithm 

That Combines Simulated Annealing and Adaptive 

Variation 

3.1 Standard Compact Genetic Algorithm 

A probability vector represents the population in the standard 

compact genetic algorithm. Two individuals are produced during 

each generation of evolution, and then the better individual is used 

to update the probability vector [7]. After multiple generations of 

evolution, if one of the probability values in probability vector is 

too large, similar gene fragments will appear in the same position in 

the newly generated individuals, thus reducing the diversity of the 

new individuals. At the same time, the developed unique individual, 

in turn, needs to be updated with the probability vector, which 

further increases the probability value in the probability vector. 
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When all probability values in the probability vector are 0 or 1, the 

compact genetic algorithm terminates evolution. Figure 2 shows the 

flow chart of the close genetic algorithm. 

3.2 Pseudo-reverse Learning Compact Genetic Algorithm That 

Combines Simulated Annealing and Adaptive Variation 

The standard compact genetic algorithm has a robust global 

search ability, but its local search ability is insufficient, which can 

easily lead to precocious convergence [8]. The simulated annealing 

algorithm is a relatively simple algorithm among intelligent 

algorithms, and although the algorithm is simple, the application 

results of the algorithm can often obtain an approximate solution of 

the global optimal solution, and the application performance of the 

algorithm is good [9]. However, the parallel processing ability of 

the simulated annealing algorithm could be better, and the 

computational efficiency could be higher.  

 

Fig.2 Flow chart of compact genetic algorithm 

The defects of the algorithm are particularly prominent when 

dealing with the scheduling optimization problem of multi-machine, 

multi-product, and multi-process. Therefore, the fusion of the two 

algorithms can improve the compact genetic algorithm's 

anti-precious ability, improve the simulated annealing algorithm's 

computational efficiency, and reduce the simulated annealing 

algorithm's parameter dependence. Therefore, a pseudo-reverse 

learning compact genetic algorithm that combines simulated 

annealing and adaptive mutation is proposed by combining the close 

genetic algorithm with the simulated annealing algorithm and the 

simulated annealing algorithm system. The hybrid algorithm has 

many advantages, which can better absorb the respective advantages 

and complementary defects of the two algorithms, give full play to 

the high-efficiency in global search ability of the compact genetic 

algorithm and the sudden jump ability of the simulated annealing 

algorithm, improve the problem that the close genetic algorithm is 

easy to fall into local optimum, and further enhance the overall 

performance of the algorithm. 

3.2.1 Pseudo-reverse learning initializes populations 

The population quality of the initialization of the population 

algorithm will directly determine the superiority of the algorithm 

[10]. Therefore, initializing population quality is critical for the 

algorithm. The standard compact genetic algorithm generally uses 

the random initialization method to generate the initial population in 

the initialization stage. However, the method is significant and 

cannot ensure the diversity of the initialized population. Moreover, 

the uneven population quality makes the search time to converge to 

the optimal solution longer, resulting in a lower convergence rate 

[11]. In order to improve the performance of the compact genetic 

algorithm, this paper introduces the pseudo-reverse learning 

strategy into the algorithm. 

Ref. [12] has theoretically proved that population initialization 

based on reverse learning can obtain a better initial solution, 

accelerating the convergence speed. Therefore, based on the reverse 

learning strategy, this paper proposes initializing the population 

using the pseudo-reverse learning strategy. Here is how it works: 

Let the Ith individual in the initial population be 

,1 ,2 ,( , , , )i i i i DX x x x=  , 
, [ , ]i j j jx a b ,where D is the dimension 

and [ , ]j ja b  is the range of the value of the jth dimension. The 

following formula 
,1 ,2 ,( , , , )i i i DX x x x=   can calculate the 

pseudo-reverse individual: 

           , , , 1,2, ,i j j j i jx a b x j D= + − =           (10) 

             
, ,

,

, ,

( , ),

( , ),

j i j i j j

i j

i j j i j j

rand m x x m
x

rand x m x m


= 


   (11) 

Where 
2

j j

j

b a
m

−
= , ( , )rand a b  represent the random number 

in ( , )a b . 

The steps to initialize the population with a pseudo-reverse 

learning strategy are as follows: 

(1) Randomly initialized population  1 2, , , NP X X X=  ; 

(2) Peudo-reverse population  1 2, , , NP X X X=   is calculated 

according to Eq. 10 and Eq. 11;  

(3) Individuals with better fitness values were selected from the 

population set as the initial population. Equation 3.1 and Equation 

3.2 processes are introduced, and the improvement of the standard 

reverse learning strategy is completed. The pseudo-reverse learning 

strategy is used to initialize the population, which helps to obtain a 

more evenly distributed high-quality solution in the population, 

thereby promoting the convergence speed of the algorithm. 

3.2.2 Simulated annealing operation and adaptive mutation 

perturbation 

Metropolis proposed simulated annealing (SA) in 1953 [13], 

characterized by retaining inferior populations under certain 

probability conditions, increasing the diversity of populations, and 

improving the ability to jump out of local optimizations to a certain 

extent. 
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With the gradual increase in the number of iterations, it is a 

common phenomenon that all individuals in the optimization 

algorithm population gradually evolve toward the optimal 

individual, which leads to a gradual decrease in the diversity of the 

population. If, in this process, the optimal individual happens to be 

the local optimal solution, then the algorithm may fall into a 

situation of premature convergence [14]. To avoid this, an adaptive 

mutation perturbation strategy is proposed, and its formula is as 

follows: 

        

t t t

_ _ _(1 )b new b Gaussian b Cauchy

t t
X X X

Maxiter Maxiter
= + −

      (12) 

Wherein: t

_b newX  represents the new individual after the 

mutation of the optimal individual; t is the current number of 

iterations; Maxiter  is the maximum number of iterations; 

t

_b GaussianX  denotes the individual after the Gaussian mutation; 

t

_b CauchyX  means the individual after Cauchy's mutation. 

The following conclusions can be drawn through the comparative 

observation of the density functions of the standard Gaussian and 

Cauchy distributions: the probability density of the Gaussian 

distribution is higher in the middle part and lower in the two parts. 

In contrast, the probability density of Cauchy distribution is 

relatively balanced in the middle and sides. This suggests that the 

Gaussian distribution is more inclined to produce smaller random 

numbers, while the Cauchy distribution is more inclined to make 

more significant random numbers. Therefore, the Gaussian variant 

has a strong advantage in local search, while the Cauchy variant is 

more suitable for global exploration [15]. 

A comparison of the density functions of the standard Gaussian 

and Cauchy distributions is shown in Figure 3. Gaussian is a 

Gaussian variant, and Cauchy is a Cauchy variant. 

 

Fig.3 Comparison of standard Gaussian and Cauchy distribution density functions 

From Equation 3.3, it can be seen that when the algorithm starts 

running, the t-value is small and the weight of Cauchy mutation is 

large. By using Cauchy mutation, a larger step size is obtained to 

avoid the algorithm falling into local optima. As the algorithm 

continues to run, the t-value is larger and the weight of Gaussian 

mutation is larger. Accurate search is performed through Gaussian 

mutation. 

The adaptive mutation perturbation generates a new solution and 

is combined with the simulated annealing algorithm to accept the 

poor solution with a certain probability; the local optimal solution 

can jump out, making up for the lack of local search of the compact 

genetic algorithm. This strategy combines local search and global 

exploration to improve the performance and robustness of the 

algorithm. 

3.2.3 Design of pseudo-reverse learning compact genetic algorithm 

combining simulated annealing and adaptive mutation 

In the actual hybrid production process problem, there are often 

process differences between products, and the same product needs 

to be processed on different machines at different times. According 

to the process flow, the constraints are relatively many, and the 

complexity of the problem is further increased. To adapt to the 

algorithm's effectiveness under different production plans and 

product process constraints, this paper adjusts and improves the 

algorithm appropriately, enhances the scope of application of the 

algorithm, and simplifies the algorithm's operation. 

(1) Algorithm initialization parameter design 

① Annealing initial temperature. The initial annealing 

temperature determines the annealing efficiency and the probability 

of accepting the inferior solution, and there are differences in the 

determination of different problems and different constraint data, so 

the problem data determine the determination according to specific 

rules 

0 max minT = k* f - f（ ）        (13) 

In Eq. 13: 

 k  ----Generally take 20, 50, 100, etc.; 

maxf  ----The maximum fitness value of an individual in the 

initial population 

minf  ----The minimum fitness value of an individual in the 

initial population. 

②Annealing selection probability parameters. The Metropolis 

criterion is applied to the annealing selection probability, and the 

likelihood of selecting a relatively inferior solution is: 

i bf f

t
ip e

−

=                (14) 

In Eq. 14: 

ip  indicates the probability of selecting a newly generated 

individual in the population; 

if  indicates the fitness value of the newly generated individual; 

bf  shows the fitness value of the individual selected in the 

previous iteration. 

t indicates the current annealing temperature value. 

③ Annealing coefficient. The selection of the annealing 

coefficient determines the speed of annealing temperature 

attenuation, generally considering the needs of the algorithm to 

solve the problem globally; the annealing coefficient is selected as a 

number close to 1 and is taken in the text. 

(2) Coding and decoding Design 

The process of generating new individuals according to the set 

probability model can be briefly described as follows: in the 

probability model, the value of each gene of the individual (from 

the 1st to the nth position), that is, the arrangement of the 

production task at the corresponding position, is determined 

according to the probability of each production task appearing at 

that position. Specifically, the number of production tasks is 

selected using roulette to determine the processing sequence of 

production tasks, and each gene locus is selected individually. 
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In the individual decoding process, the production tasks are 

distributed sequentially according to the information contained in 

the individual in the first process. The production tasks are selected 

for processing in the second and subsequent processes based on the 

First Available Machine First (FAMF) principle. 

Through the above process design, the IAAMPRLCGA algorithm 

makes full use of the solution performance of the compact genetic 

algorithm. It combines the sudden jump ability of the simulated 

annealing algorithm, and the following simulation experiments 

verify the actual effect. 

3.2.4 Pseudo-inverse learning compaction genetic algorithm steps 

that fuse simulated annealing and adaptive mutation 

Step 1: Establish a probability matrix. Firstly, the probability 

matrix is used to replace the probability vector in the standard 

compact genetic algorithm. The probability matrix contains the 

distribution information and evolutionary trend of the current 

population genes, reflecting the core idea of compact genetic 

algorithm. Based on the individual encoding method in this article, 

establish a n n matrix as a probability model P . In the 

probability model, rows 1st to
thn correspond to the workpiece

1J to

nJ ;Columns 1 to n correspond to the 1 to n genes of the individual, 

respectively. Elements in a probability model, such as ,

L

i sP

representing the probability of a workpiece
iJ appearing on an 

individual's 
ths  gene in the generation L . 

Step2: Initialize the probabilistic model P , set the algorithm 

evolutionary algebra 0L = . 

Step3:Using pseudo reverse learning to initialize the population. 

Generate two new individuals, and the process of generating each 

individual is as follows: the 1st to 
thn  genes of the individual are 

sequentially selected using a roulette wheel method. The probability 

of the workpiece
iJ appearing on the 

ths  gene is ,

L

i sP . Once a 

workpiece is selected on a certain gene, the probability of the 

workpiece appearing at any position after that position is reset to 

zero. Unselected jobs continue to participate in the selection until all 

jobs complete the selection, and a new individual is generated. 

Using pseudo reverse learning, two individuals with better fitness 

values are identified as the initial population, denoted as
1I ,

2I . 

Decode the individual
1I ,

2I  and select the individual 

corresponding to the smaller maximum completion time as

BetterI . 

Step 4: A new solution I  through adaptive mutation 

perturbation is generated through the probability model, and the 

new solution I  competes with the optimal individual BetterI  

obtained in Step 3, and the winning individual is recorded as 

BestI . If BestI  is the new solution, continue with Step 5; If 

BestI  is BetterI in Step 3, then introduce the Metropolis criterion 

of simulated annealing algorithm to reselect new solutions I  and 

BetterI , denote the selected individual as BestI , and continue 

with Step 5. 

Step5:Guided by BestI , the probability model P  is updated 

to evolve in the direction of BestI , while the evolutionary algebra 

1L L= + . 

Step6:Determine any ,i sP  is either 1 or 0. If the condition is met, 

execute Step 8; If not satisfied, execute Step 7. 

Step7:Determine whether the evolutionary algebra L  has 

reached the set maximum evolutionary algebra 
maxL . If 

maxL = L , 

output the historical optimal individual and the evolution ends. 

Otherwise, perform a decay calculation with a decay coefficient of 

  for the current temperature value 
n

0T   and return to Step 4. 

Step 8: Output the optimal individual and the algorithm ends. 

 

Fig.4 IAAMPRLCGA algorithm flow chart 
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4. Simulation Experiments 

The simulation experiment program is written through Python 3.8 

simulation software, the operating system is Windows 11, the 

processor is Corei5, the CPU is 2.60GHz, and the PC memory is 

8GB. 

Currently, the research on the optimization of mixed process 

scheduling is in the initial stage, and there is a lack of standard 

examples, so this paper uses the actual data of the ham sausage 

processing workshop to build the simulation data and simulate it. 

In order to verify the effectiveness of the improved method, this 

paper designs multiple sets of simulation schemes under the same 

data scale. Then this paper test the effect of solving the optimization 

problem of mixed process workshop scheduling under four swarm 

intelligent optimization algorithms, namely genetic algorithm (GA), 

standard compact genetic algorithm (CGA), wolf pack optimization 

algorithm (WPA) and IAAMPRLCGA algorithm. 

4.1 Algorithm Parameter Setting 

For the sake of fairness and objectivity in the experiment, the 

parameter values of genetic algorithm and wolf pack optimization 

algorithm in this article refer to the settings in reference [15]: in 

genetic algorithm, the population size 100NP = , crossover 

probability 0.8cP = , and mutation probability
mP = 0.8 ; in the 

WPA algorithm, the number of individuals in the population 

100NP = . The number of competitive wolves q  is 5, the 

search direction h  is 4, and the movement step size stepb  is 

0.3. Each experiment runs 20 times and the number of iterations sets 

to 500. 

4.2 Mixed Ham Sausage Production Process Workshop Case Test 

4.2.1 Construct simulation data 

(1) Workshop model parameters 

The production workshop of a ham sausage processing enterprise 

is a process workshop composed of multiple production lines, and 

this paper focuses on the finished product area of its production 

workshop. The production simulation data contain three processes:

 1 2 3, ,Oper Oper Oper  , each ligature line corresponds to a fixed 

plurality of sterilization pots, and the sterilization pots 

corresponding to each ligature line are arranged into a sterilization 

group. Each ligature line corresponds to a different number of 

sterilizers, and the buffer zone between the sterilization process and 

the packaging process can be regarded as an infinite buffer. 

Table.2 Model parameter table 

Model 

parameters 
Parameter description 

Parameter 

value 

Nl  
The number of production lines 

corresponding to operation 
1Oper  

4 

1Nsp
 

The number of sterilizers 

corresponding to the first production 

line 

10 

2Nsp
 

The number of sterilizers 

corresponding to the second 

production line 

6 

3Nsp
 

The number of sterilizers 

corresponding to the third 

production line 

8 

4Nsp
 

The number of sterilization pots 

corresponding to the fourth 

production line 

14 

1Npk
 

The number of packaging lines 

corresponding to the first production 

line 

2 

2Npk
 

The number of packaging lines 

corresponding to the second 

production line 

5 

3Npk
 

The number of packaging lines 

corresponding to the third 

production line 

6 

4Npk
 

The number of packaging lines 

corresponding to the fourth 

production line 

6 

(2) Parameters of the processing object 

The total number of ham sausage production task attribute 

information 2X = , 1Prop represents the single item specification 

attribute of the production task,
2Prop represents the entire task 

attribute of the production task, the single item specification 

attribute of the production task

 1 1 2 3= , ,PropValue HtcType HtcType HtcType ，  and the total task 

attribute of the production task

 2 1 2 3= , ,PropValue HtcQuota HtcQuota HtcQuota . 

Table.3 Item specifications and total quantity attribute information table for 

production tasks 

attributes 
Single item specifications 

1Prop
 

Total 2Prop
 

1
Htc

 1Type
 1Quota

 

2
Htc

 2Type
 2Quota

 

3
Htc

 
3Type
 3Quota

 

4
Htc

 
2Type
 4Quota

 

5
Htc

 1Type
 

4Quota
 

6
Htc

 3Type
 

4Quota
 

Table.4  Standard machining timesheets for production tasks 

 1Oper
 2Oper

 3Oper
 

1
Htc

 
111 120 60 

2
Htc

 
238 300 150 



Z. Han et al. / IJAMCE 7 (2024) 56-64 

 

3
Htc

 
267 480 240 

4
Htc

 
143 180 90 

5
Htc

 
167 180 90 

6
Htc

 
100 180 90 

4.2.2 Simulation scheme 

The IAAMPRLCGA algorithm, GA algorithm, WPA algorithm, 

and CGA algorithm were combined with the FAMF principle as 

global optimization algorithms to solve the scheduling optimization 

problem of a ham sausage processing enterprise, and the effect of 

each scheme was further analyzed. A total of 4 sets of simulation 

schemes were designed, and the assignment rules of simulation 

schemes 1~4 were FAMF, and the information on the four sets of 

simulation schemes is shown in Table 5. 

Table.5 4 groups of simulation scheme information 

Simulation 

scheme 

Global optimization 

algorithms 
Assignment rules 

Schem1 GA FAMF 

Schem2 WPA FAMF 

Schem 3 CGA FAMF 

Schem4 IAAMPRLCGA FAMF 

4.2.3 Simulation results and analysis 

(1) Evaluation indicators 

In the simulation experiment, the maximum completion time 

maxC  is used as the fitness function value of the optimization 

algorithm, and the goal is to minimize the full completion time. The 

four sets of simulation schemes were run 20 times to calculate their 

respective averages, and the results are shown in Table 6. 

Table.6 Comparison table of evaluation indicators of the results of production 

scheduling in 4 groups 

Evaluation indicators scheme1 scheme2 scheme3 scheme4 

maxC
 

Optimum 418 412 408 398 

Worst 425 422 414 404 

average value 421 416.7 410.8 402 

Based on the detailed analysis of the data listed in Table 6, it is 

clear that the IAAMPRLCGA algorithm presents significant 

advantages in solving the optimization problem of maximum time 

to completion. Specifically, compared to other optimization 

algorithms, the total completion time of scheme four is reduced by 

4.8%, 3.4%, and 2.5% comparing with scheme one and scheme 3, 

respectively. This result not only highlights the excellent 

performance of the IAAMPRLCGA algorithm in the field of 

scheduling optimization but also shows its significant improvement 

in terms of maximum completion time. 

The box plot is shown in Figure 5. Further observation of the box 

plot shows the trend of fitness values for GA, WPA, CGA, and 

IAAMPRLCGA optimization algorithms. It is worth noting that the 

fitness values of all algorithms show a decreasing trend as a whole, 

which indicates that the performance of the optimization algorithm 

gradually improves with its iterative progression. However, 

compared with other algorithms, the boxplot of the IAAMPRLCGA 

algorithm shows a more compact data distribution and no outliers, 

which shows that the proposed algorithm is also excellent in terms 

of stability. 

 
Fig.5 Fitness value box diagram 

(2) Gantt chart analysis of production scheduling results 

Figure 6 shows the Gantt chart of the 10th experimental results in 

the IAAMPRLCGA algorithm, which is the optimal Gantt chart. 

Different colors in the diagram represent different types of 

production tasks, and the Gantt chart can be used to obtain the 

online processing sequence of production tasks. 
1

Htc 、
2

Htc 、 

3
Htc and

4
Htc first enter the ligation production lines 1、2、3 and 4, 

respectively, and then carry out continuous rolling production in the 

corresponding sterilization and packaging units. At t=398, the ham 

sausage production line will complete all production tasks. 

 

Fig.6 Gantt chart for optimal scheduling 

(3) Analysis of the evolutionary process of scheduling 

According to the iterative curves of the optimization values of the 

four optimization algorithms IAAMPRLCGA, GA, CGA, and WPA 

under the same actual simulation data shown in Figure 7, it can be 

found that with the increase of training algebra, the final 

optimization values of the four algorithms show a trend of gradually 

decreasing and tending to stabilize. In the initial stage of the 

algorithm, due to the large population size of the GA algorithm and 

the WPA algorithm, they show a significantly fast convergence 

speed and demonstrate a strong search ability for the solution space. 

However, although the GA algorithm shows a fast convergence 

speed in the search process, its optimization ability is significantly 

inferior to that of the other three algorithms when the maximum 

number of iterations in the graph is 500. At the same time, although 

the WPA algorithm has a fast convergence speed, it is easy to fall 

into local extremes and stop evolving within 85 generations, 

resulting in poor optimization results. In the process of evolution, 

the probability value distribution in the probability model decreases 

rapidly, which leads to the decline of its search performance, and 

the evolution stagnates in the 149th generation, falling into local 

extremums. Although its optimization speed is slightly more potent 
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than the WPA algorithm, it still needs to improve its ability to jump 

out of local extremes and insufficient evolutionary vitality. 

On the contrary, the scheme using the IAAMPRLCGA algorithm 

shows a fast search performance similar to that of the CGA 

algorithm in the initial stage. However, in the process of continuous 

evolution, the distribution of probability values in probability 

models rapidly decreases. The search performance also declines, 

and the evolution stagnates at 140 generations, falling into local 

extremums. At this time, the simulated annealing algorithm is 

introduced to regain the evolutionary ability of the algorithm. At the 

same time, the ability of the algorithm to search the solution space 

is enhanced, and the algorithm finds the optimal solution when it is 

iterated to the 275th generation. The results show that the 

IAAMPRLCGA algorithm has significant advantages in dealing 

with optimization and incredibly complex scheduling problems. 

 

Fig.7 Optimization value iteration graph 

5. Conclusion 

To solve the hybrid production Process Workshop Scheduling 

Optimization Problem in a ham sausage processing enterprise, a 

pseudo-reverse learning compact genetic algorithm combining 

simulated annealing and adaptive variation was proposed. Through 

simulation experiments, it is known that the IAAMPRLCGA 

algorithm can better solve problems such as easily falling into local 

optima and premature convergence compared to other swarm 

intelligence optimization algorithms, and more effectively solve the 

scheduling optimization problem of hybrid production process 

workshops. Broadening the application scope of the 

IAAMPRLCGA algorithm in scheduling optimization problems is 

the next research direction. 
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