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 This article proposes a safer path planning method for 4WD wheeled patrol robots traveling in unstructured road 

environment, which solves the problem that the robots cannot be restricted to the road area. In this article, we propose 

an improved Open-planner path planning algorithm integrating RoadEdge boundaries, so that the robot gives 

priority to driving to the right in unstructured road environment, and always drives in the road area during the 

obstacle avoidance process, so as to ensure the safety of the patrol robot during the cruise. The proposed algorithm 

is tested in simulation and real scenarios, and the experimental results are better than the original algorithm... 
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1. Introduction 

With the advancement of SLAM (Simultaneous Localization and 

Mapping) technology and the continuous improvement of computer 

performance, autonomous navigation technology has been widely 

applied in patrol robots. Autonomous navigation for patrol robots has 

already achieved mature applications in two-dimensional ground 

environments such as orchards (e.g., Cheng C et al., 2023), shopping 

malls (e.g., Dehuai Z et al., 2005), and campuses (e.g., Cheng C et 

al., 2021). However, in unstructured three-dimensional complex 

environments, path planning for patrol robots still presents certain 

challenges. These difficulties are mainly reflected in two aspects: 1) 

The planned path between two points for the patrol robot is often 

optimized for time and distance without considering the impact on 

other dynamic operations, as shown in Fig. 1(a); 2) Unstructured 

three-dimensional terrain and dynamic obstacles affect the robot's 

ability to drive within safe areas, as shown in Fig. 1(b). 

 
Fig. 1. Difficulty of unstructured terrain path planning. 

Based on Open-planner, this article proposes an optimized path 

planning method to generate safer travel paths on unstructured terrain. 

It focuses on local path planning, visualizing road boundaries in the 

form of vector maps in the constructed three-dimensional point cloud 

map, and introducing RoadEdge boundary constraints in path 

evaluation to determine safe driving areas by intersection and safe 

distance. Compared with the original algorithm, the proposed method 

can generate a safer trajectory in unstructured environment to ensure 

the safety of the patrol robot. 

In this article, the security and robustness of the proposed 

algorithm are tested under simulation and real scenarios, and the 

results are satisfactory 

2. Related Work 

Path planning methods based on ground robots have made 

remarkable progress in recent years. Commonly used path planning 

algorithms include Dijikstra, Floyd, A*, RRT, as well as ant colony 

algorithm, genetic algorithm, firefly algorithm, artificial bee colony 

algorithm, artificial potential field method and other intelligent 

algorithms (Patle B K et al., 2019). These technologies are not only 

widely used in the path planning of various types of patrol robots, but 

also continuously improved to adapt to new challenges. 

In terms of indoor environment patrol, Zheng J et al. (2022) 

proposed an improved deep reinforcement learning path planning 

method to shorten the path convergence time. X Zhou and his team 

(2023) proposed an improved Dijkstra algorithm, which realizes 

global path planning and conflict coordination of multi-robot systems 

by introducing real-time node occupancy, but requires tracks to be 
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laid in advance. Aiming at the agricultural greenhouse environment, 

K Tsiakas et al. (2023) used semantic segmentation to identify 

heating guide rails and radar ranging to achieve autonomous tracking, 

but this algorithm could not achieve obstacle avoidance and path 

conversion. 

Zhao D et al. (2020) proposed a new multi-objective cauchy 

mutation cat swarm and Artificial Potential Field method joint 

optimization algorithm ， which can effectively balance the 

relationship between the shortest path and good path smoothness. Teh 

CK et al. (2021) proposed an extended Dijkstra algorithm based on 

vision, which performs dynamic obstacle avoidance through multi-

sensor fusion. Although these indoor patrol algorithms have made 

many achievements in two-dimensional raster maps and planar path 

planning, they still face limitations in the perceptual dimension in 

unstructured environments. 

Outdoor patrol robot is widely used in power plant field，The 

multi-interval objective path planning scheme (Chen Z et al., 2022) 

adopts the interval multi-objective particle swarm optimization 

method, which can find the shortest collision-free path with the least 

risk in the obstacle environment, but it is only applicable to the static 

environment. Lu D et al. (2023) designed an adaptive 3D obstacle 

avoidance path automatic planning model, which controlled the 

planning time and planning distance through multi-objective 

optimization and depth grid correction technology, but the algorithm 

lacked the dynamic adjustment ability for obstacle recognition. Wang  

et al. (2022) also proposed a bidirectional search method for 

substation inspection environment, which uses artificial potential 

field and ant colony algorithm to conduct bidirectional search, which 

improves the patrol efficiency and safety of robots, but there are local 

optimal problems. Chen L et al. (2022) proposed a new algorithm 

integrating chaotic neural network and genetic algorithm for wind 

farm environment. Through chaotic neural network planning and 

genetic algorithm optimization, the inspection path of the robot is 

shortened, but the high algorithm complexity makes it difficult to 

meet the real-time requirements. Due to the scarcity of personnel in 

power plant inspection environment, most path planning algorithms 

are based on the shortest path, optimal efficiency and static 

environment, but do not consider the dynamic environment and 

complex road requirements. 

In terms of other outdoor environments, for the environment of 

chemical industrial park, Li Y et al. (2022) incorporated the fire risk 

level into the path planning assessment, and improved the accuracy 

and stability of TSP by introducing an improved IDESA algorithm. 

Gao Y et al. (2022) combined AFSA and DWA algorithms and 

introduced improved genetic algorithm to reduce the inspection time 

of patrol robots in a coal mine environment with low visibility and 

improve the path smoothness. Liu J et al. (2022) proposed A method 

combining improved A* and genetic algorithm to search the shortest 

patrol path. These methods perform well in avoiding static obstacles, 

but their adaptability in dynamic complex environments remains to 

be explored. 

These studies show that in recent years, the research on the path 

planning of patrol robots mainly focuses on the optimization of 

distance and time efficiency, which is usually suitable for static and 

flat road environments. However, in unstructured environments, such 

as variable mountain roads, where there are multiple dynamic 

obstacles, these current algorithms may struggle to adapt to new 

challenges. 

In recent years, more and more scholars have studied the path 

planning in unstructured complex environment. Aiming at the indoor 

environment with stairs and slopes, Wang C et al (2019) extracted 

multi-layer 2D maps from 3D OctoMap as navigation input, and used 

variable step length RRT algorithm to detect gradients for path 

planning, so as to avoid stairs. However, hierarchical OctoMap maps 

are time-consuming and inaccurate in a large-scale environment. 

Zhang B et al. (2022) proposed A hierarchical path planning method 

based on A* and Q-learning algorithms, which can divide stairs, 

obstacles and ramps, etc. However, when facing slopes with large 

angles, this method may mistakenly classify them as impassable 

obstacles. Huang Y and others (2023) use multi-layer Costmap as 

input for path planning and add radiation influence factor to the 

heuristic function of A* algorithm to achieve reasonable planning in 

a radiation environment, but the path has local oscillation, which 

affects the driving stability. 

Jian Z et al. (2022) proposed an uneven terrain navigation 

framework (PUTN) based on plane fitting. By introducing improved 

PF-RRT* and Gaussian process regression, the framework can 

effectively deal with path planning in uneven terrain, but it is prone 

to stall in the process of turning. Josef S et al. (2020) proposed a DRL 

deep reinforcement learning method, which can avoid obstacles and 

potholes in unknown terrain, but the path in the drivable area is 

random and lacks practical verification. H. Desarweesh and his team 

(2017) developed an Open-planner open-source planning algorithm 

based on the autoware platform. The architecture is shown in Fig. 2 

The algorithm independently plans on the existing three-dimensional 

point cloud map, and generates the main and auxiliary trajectories 

locally, so that the vehicle can preferentially drive on the main path, 

but may drive out of the road area when avoiding obstacles. 

 

Fig. 2. Open-planner architecture 

The above path planning algorithm may have its unique 

advantages in terms of planning efficiency and obstacle avoidance, 

but it may not be able to deal with two problems in practical 

application: 1) It will affect other people or things in the process of 

path planning and obstacle avoidance; 2) When there are exercisable 

areas in the same level, such as roadside grass, these areas cannot be 

identified. In order to solve these problems, this paper will study the 

Open-planner path planning algorithm. 

3. Path planning method optimization 

3.1 Path planning process 

Open-planner makes global path planning easier and faster 

because it removes kinematic optimization from the equation and 

uses vector diagrams to solve the problem. The red line shown in Fig. 

3(a) is a Lane line vector diagram visualized in the form of lane, 
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consisting of a series of points, each of which contains three-

dimensional position information and vectors pointing to the next 

Point. In the case that the robot position and target point are known, 

the system looks for the optimal sequence from the point closest to 

the robot's current position to the point closest to the target point, as 

shown in Fig. 3(b). 

 

Fig. 3. Global path planning 

The local path is planned based on the global path. The main 

process is as follows: 1) Receiving the global path information; 2) 

Obtain filtered and clustered information about perceived obstacle 

point clouds; 3) Candidate path generation: Generate initial RollOut 

paths according to initialization parameters such as path number and 

transverse density, and conduct path smoothing and post-processing, 

as shown in Fig. 4(a); 4) Path assessment: calculate the cost function 

from the three dimensions of central cost, transition cost and collision 

cost, select the local path with the lowest generation value as the 

optimal path, and block the path with possible collision. As shown in 

Fig. 4(b), red segments are locked paths, pink segment is the cost 

optimal path, and other colors segments are passable paths. 5) 

Behavior generation: The optimal local path is converted into a 

specific trajectory, and information such as robot speed and turning 

radius is generated to output robot control commands. 

 
Fig. 4. Local trajectory generation 

3.2 RoadEdge border fusion 

It can be seen from Fig. 4(b) that when avoiding obstacles, the 

robot will drive along the cost optimal trajectory. Judging from the 

habit of preferentially driving to the right on domestic roads, the robot 

may drive away from the road area at this time. In this article, 

RoadEdge boundary fusion is used to solve this problem. 

This article builds Gazebo simulation environment independently, 

as shown in Fig. 5(a), and uses NDT-Mapping to construct 3D map, 

as shown in Fig. 5(b). Similar to the Lane vector diagram, we drew 

the RoadEdge vector diagram based on the point cloud diagram, and 

generated a point set with bidirectional index, and added a visual 

display in Rviz, as shown in Fig. 5(b) green line segment. 

 

Fig. 5. Simulation environment and map construction 

Given m   generated local trajectories
1 2{ , ,... }mT T T T=  , each 

trajectory is equidistantly distributed with n   Waypoints 

1 2{ , ,..., }nP p p p=   from the current position to the furthest 

distance planned by the local path. Similarly, given i   generated 

RoadEdges
1 2{ , ,... }iR R R R=  , each RoadEdge equidistantly 

distributed with j   EdgePoints 
1 2' { ' , ' ,... ' }jP p p p=   from the 

starting point to the endpoint. Using all distributed points as input, 

calculate the intersection and safety distance between each local path 

and road boundaries, and output feasible and safe path index for 

subsequent evaluation and selection.The basic flow of the algorithm 

is shown in Algorithm 1. 

Algorithm 1   Path-Edge Intersection and Proximity Detection 

Input: T, P, R, P’, SafetyDistance 

Output: BlockedID- ID of the blocked trajectory 

1: Initialize id as -1 

2: For each Ta in T do 

3: TrajectoryBlocked ← False 

4: For each Pb in Ta do 

5: For each Rc in R do 

6: For each P’d in Rc do 

7: 
if IsIntersect((Pb,Pb+1),(p’d,p’d+1)) OR 

Distance((Pb,Pb+1),(p’d,p’d+1))< SafetyDistance 

8: TrajectoryBlocked ← True  

9: Exit all loops and go to Step 10 

10: If TrajectoryBlocked 

11: id ← ID of the current trajectory Ta 

12: Append id to BlockedID 

13: Return BlockedID 

 

In the process, IsIntersect() is a function to calculate the 

intersection of two line segments, which takes as input two line 

segments connected by two path points adjacent (Pb,Pb+1) to the local 

path and two points adjacent (p’d,p’d+1) to RoadEdge. First, a fast 

exclusion test is performed to check whether the boundary boxes of 

two line segments intersect. If the intersection problem on the three-

dimensional terrain is simplified to the XY two-dimensional plane 

problem of the road surface where the robot is currently located as 
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the line segments do not intersect, otherwise the boundary boxes 

of the two line segments intersect. It is necessary to conduct further 

straddle experiments to determine whether line segments intersect. 

The judging condition is that if two line segments intersect, the two 

endpoints of one line segment must be on both sides of the line where 

the other line segment is located, and vice versa. 

For line segment 1b bp p +  relative to 1'd dp p + , calculate as 

1 1
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For line segment 1'd dp p +  relative to 1b bp p + , calculate as 
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Where ‘ ’ represents the cross product in two-dimensional space, 

if 
1d   and 

2d   symbols are different, and 
3d   and 

4d   symbols 

are different, the two line segments intersect, otherwise they do not 

intersect. 

If only by the intersection judgment, the result is shown in Fig. 6(a). 

It can be seen that the outermost path is blocked at this point, but 

there is still a candidate path close to the RoadEdge. Due to the width 

and wheel spacing of the robot, if the path trajectory is selected, the 

robot safety frame may exceed the driving boundary. Therefore, the 

SafetyDistance parameter should be set according to the robot safety 

frame size, and the minimum Distance L between the candidate path 

point and the RoadEdge point should be calculated in the Distance() 

function as 

1 1 1 1min( ( , ' ), ( , ' ), ( , ' ), ( , ' ))b d b d b d b dL l p p l p p l p p l p p+ + + +=  (4) 

Where l   represents the distance between two endpoints, when

SafetyDistanceL  , the ID path is blocked, as shown in Fig. 6(b). 

 

Fig. 6. Effect of RoadEdge road boundary 

If only distance judgment is carried out, since the path and 

boundary are a series of spacing points, there may be special cases, 

as shown in Fig. 7. If L SaftyDistance  at that time, the paths 

would not blocked, but the paths actually intersect. Therefore, 

through the dual judgment of intersection and boundary safety 

distance, the robot can fully ensure that it always chooses a safe 

trajectory. 

L
1

2

b bp p +

1

2

d dp p +

bp

1bp +

dp 1dp +

 

Fig. 7. Calculation of distance between path and boundary 

4. Path planning method optimization 

4.1 Simulation Experiment 

In order to verify the superiority of the improved algorithm in this 

article, we built several simulation environments in Gazebo to 

compare the improved algorithm with the original Open-planner 

algorithm. The robot model is driven by 4WD chassis, equipped with 

C16 LiDAR for environment perception, and integrated with GPS for 

positioning. The main parameters are set as shown in Tab. 1. The 

trajectories of the robot are tracked and drawn by LK optical flow 

method. 

Tab. 1. Gazebo simulation parameters 

Name of parameter Default 

Maximum speed 1m/s 

Maximum acceleration 2m/s 

Maximum angular velocity 1rad/s 

Path planning length 15m 

Maximum obstacle avoidance distance  10m 

Minimum obstacle avoidance distance  2m 

Filtering Angle    20° 

Scenario 1: 

As shown in Fig. 8(a), the road is composed of the first half of the 

horizontal straight road and the second half of the 15° ramp, the road 

width is 5m, and the starting position of the robot is shown in the 

yellow circle. 

 
Fig. 8. Straight road scene simulation experiment 

In barrier-free environment, the paths before and after algorithm 

improvement are consistent as shown in Fig. 8(b). The robot drives 

on the right side of the road. After placing obstacles in the road, the 

paths before and after algorithm improvement are shown in Fig. 8(c) 

and Fig. 8(d) respectively. The original algorithm will cause the robot 

to drive away from the road area when avoiding obstacles, but the 

improved algorithm keeps the robot driving in the road area all the 

time. 

Scenario 2: 

Compared with scenario 1, multiple obstacles are added in this 

scenario. As shown in Fig. 9, the longitudinal spacing of these 

obstacles is greater than 5 times the maximum driving speed to ensure 

that the robot has sufficient obstacle-avoiding reaction time. 

 
Fig. 9. Straight multi-obstacle scene simulation experiment 

Before integrating the RoadEdge, the robot can avoid obstacles in 

a multi-obstacle environment, but there is a risk of driving away from 

the safe road area, as shown in the position of the red circle in Fig 

9(a). The driving trajectory after the fusion of RoadEdge is shown in 

Fig 9(b). At this time, when the robot passes the first obstacle, it will 

choose the path in the drivable area to ensure that the robot can 

always drive in the road area even in the process of frequent 

avoidance of obstacles, and ensure the safety of the robot. 
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Scenario 3: 

In this scenario, we build a horizontal S-shaped road, as shown in Fig. 

10. The road consists of two semicircles with a central axis radius of 

12m and a road width of 4m. The robot starts at one end of the road 

and travels to the end of the road. 

 

Fig. 10. Plane S-shaped road scene simulation experiment 

When there are no obstacles, the trajectory of the robot before and 

after the optimization algorithm is the same, as shown in Fig. 10(a). 

Open-planner can make the robot give priority to driving on the right 

in normal driving state. 

Randomly place cylindrical obstacles with a diameter of 1m on the 

road. The driving trajectory of the original Open-planner algorithm is 

shown in Fig. 10(b). The robot drives off the track when it passes the 

first cylinder, then returns to the road and drive off the road again 

when it passes the second and third cylinders. When using this 

optimization algorithm for path planning, the trajectory is shown in 

Fig. 10(c). When the robot passes the first cylinder, RoadEdge 

changes the candidate path selection strategy so that the robot drives 

on the left side of the cylinder. In the subsequent navigation process, 

the robot always maintains the obstacle avoidance strategy in the road 

area. 

Scenario 4: 

In this Scenario, there is a curved ramp with varying width, as 

shown in Fig. 16. The maximum slope of the road is 15°, the 

maximum width is 4m, the minimum width is 2m, the minimum 

turning radius of the road boundary is 1m, and the maximum turning 

Angle is 120°. The robot starts from the bottom of the slope and 

climbs along the road to the top target point. 

When using the original Open-planner algorithm for path planning, 

the robot's driving trajectory in barrier-free condition was shown in 

Fig. 11(a). The robot can safely drive to the target point and stay on 

the right side of the road. When placing cylindrical obstacles with a 

diameter of 1 meter in the area with the larger width of the road. as 

shown in Fig. 11(b). The robot drives off the road area and fall off the 

ramp while avoiding the last obstacle. When using the optimization 

algorithm to plan the path, due to the influence of RoadEdge fusion, 

the robot will only select the candidate path in the road area for 

tracking. At this time, the robot can avoid all obstacles and reach the 

planned target point, as shown in Fig. 11(c). 

 
Fig. 11. Curved lane change wide ramp scene simulation experiment 

4.2 Actual experiment 

To further verify the robustness of this algorithm in practical 

applications, we independently built a 4WD wheeled robot prototype, 

as shown in Fig. 12. 

 
Fig. 12. Patrol robot experiment platform 

With reference to the simulation experiment, this article built two 

static experiment scenarios. In the experiment, the yellow lines were 

used as the road boundary, Between the two yellow lines is the safe 

area, and outside the yellow lines is the unsafe area, the road width is 

4m, and the robot moved forward at 1m/s. 

Scenario 1: 

As shown in Fig. 13, this scene is an outdoor flat straight road 

environment in which multiple obstacles are randomly placed. 

Before algorithm optimization, in order to avoid the first obstacle 

at t=6.5s, the robot chooses the right path to follow and drives out of 

the boundary, then returns to the safe driving area and drives off the 

road again at t=18s, and finally reaches the end at t=22s. 

 
Fig. 13. Straight original path planning algorithm 

After algorithm optimization, the driving state in the same scene is 

shown in Fig. 14. At t=7s, affected by RoadEdge, the robot changes 

to drive on the left side of the road area. At t=13.5s, the robot drives 

on the right to avoid obstacles. At t=20s, the robot also chooses a safe 

driving strategy different from the original algorithm, and reaches the 

end at t=23s. The robot drives in the safe area throughout. 

 
Fig. 14. Straight optimization path planning algorithm 
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Scenario 2: 

As shown in Fig. 15, the scene is an outdoor flat curve environment. 

Multiple obstacles are placed in the road area surrounded by yellow 

lines. The robot starts on one side of the curve and reaches the target 

point on the other side. When using the original Open-planner for 

path planning, the robot travels within the road range from departure 

to t=12s. However, in the period of 18s to 23s, due to the lowest value 

of the outer pat, the robot tracks the path away from the road and 

finally reaches the end point at t=32s. 

 
Fig. 15. Curve original path planning algorithm 

The obstacle-avoiding driving state after optimization of the 

algorithm is shown in Fig. 16. By integrating safety boundary 

constraints in the path planning stage, the robot is ensured to always 

stay in the road area during the entire autonomous navigation process, 

and the safe obstacle-avoiding driving of the robot is realized. 

 
Fig. 16. Curve optimization path planning algorithm 

5. Conclusion 

This article presents an improved Open-planner path planning 

algorithm based on RoadEdge fusion. Through boundary fusion, 

rapid exclusion experiment and straddle experiment were used to 

verify the intersection between the candidate path and the boundary, 

and sets a safe distance threshold, so that the patrol robot would not 

drive away from the planned road area while preferentially driving to 

the right, and improves the driving stability of the patrol robot in the 

multi-obstacle unstructured environment. We verify the robustness of 

the improved algorithm in simulation and real environment. 
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