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 To address the issues of high memory usage in mango detection tasks, we propose a lightweight mango detection 
algorithm based on YOLOv8, called CS-YOLOv8. Firstly, in order to mitigate redundant calculations and memory 
access, we substitute the backbone of YOLOv8 with FasterNet. Secondly, we propose Channel Shuffle-Partial 
Convolution (CS-PConv) module, which fuses the channel shuffle mechanism and Partial Convolution (PConv) to 
enhance the exchange of information between convolutional and non-convolutional channels. Subsequently, CS-
PConv is used to replace the 1x1 convolution within the FasterNetBlock to design Channel Shuffle-FasterNetBlock 
(CS-FasterNetBlock), solving the problem of limited receptive field. Finally, we devise the Shared Parameter Head 
(SP-Head) by amalgamating the concept of shared weights with the CS-FasterNetBlock, not only diminishing the 
initial network parameters but also amplifying the important features of mango. We validate the effectiveness of our 
algorithm on both the MangoYOLO dataset. The experimental results demonstrate that the algorithm proposed in 
this paper significantly reduces the number of model parameters by 63.3% and decreases GFLOPs by 6.0G, while 
achieving an improvement of 0.6% in mAP0.5:0.95. 
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1. Introduction 

Mangoes are a commercially significant fruit crop with 
considerable economic importance, thriving in tropical and 
subtropical regions globally. Mangoes contain a variety of bioactive 
compounds including vitamin C, β-carotene, and polyphenols, they 
have extremely high nutritional value (Tharanathan et al.,2006; Singh 
et al., 2013; Ntsoane et al., 2019). As labor availability in orchards 
diminishes, manual picking has become increasingly challenging for 
growers (Fennimore et al., 2008; Zhou H et al.,2022; Mail M F et 
al.,2023). Consequently, the adoption of intelligent mango-picking 
robots represents a promising approach to sustain productivity and 
maintain product quality. However, the algorithms for mango 
detection still face the following issues. 

Model Complexity and Computational Resource Constraints: 
Mango picking algorithms typically demand substantial 
computational power and parameters, resulting in costly hardware 
deployment. Despite these demands, the actual benefits derived from 
costly hardware in outdoor mango picking environments do not 
consistently align with the investment. The significant need for 
computational resources impedes the widespread adoption of such 
technologies. Consequently, it is imperative to explore lighter and 
more efficient algorithms to reduce costs and enhance deplorability 

in real world settings. 
Challenges in Mango Recognition within Agricultural Contexts: 

The task of mango recognition in agriculture is plagued by the 
complexity of environmental conditions. For instance, when 
capturing images of mangoes in natural state presents numerous 
challenges, including unstable lighting on the mango surfaces, 
irregular mango shapes, shading caused by overlapping fruits, and 
shadow variations induced by daily weather conditions (Karkee et al., 
2012; Gongal et al., 2015). These uncontrollable and complex factors 
can significantly diminish the accuracy of mango identification. 
Consequently, it is essential to develop robust mango recognition 
algorithms and integrate them into mango-picking robots to 
effectively accomplish the task of mango detection. 

To address the challenges faced in mango picking tasks, 
researchers have primarily focused on mango detection. In the 
domain of mango detection, vision researchers have made significant 
advances. Koirala et al. (2019) have developed a modified YOLO 
architecture, termed MangoYOLO, which was deeper than YOLOv1 
but shallower than YOLOv3 to optimize the speed of mango 
detection. Xu Z F et al. (2020) conducted experiments with green 
mangoes and proposed a lightweight green mango detection method 
based on YOLOv3. J. S. Ignacio et al. (2022) employed the YOLOv5 
to identify mangoes and used the CIELAB color space to classify the 
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maturity of the mangoes. 
To comprehensively address the challenges associated with mango 

picking tasks, this study focuses on reducing redundant computations, 
decreasing the number of algorithmic parameters, and enhancing the 
feature extraction capabilities of the detection heads. Building on 
YOLOv8, this study introduces a lightweight mango detection 
algorithm, called CS-YOLOv8. The main contributions of this work 
are as follows: 

(1) Replacement of the backbone feature extraction network: 
To address the issue of redundant computations caused by the 
frequent use of regular convolutions in the YOLOv8’s backbone, we 
have adopted FasterNet (chen et al., 2023) as a replacement for the 
original backbone. FasterNet optimizes the regular convolution 
structure by using PConv, thereby reducing redundant computations 
and memory access. This approach significantly decreases the 
number of algorithmic parameters and computational complexity, 
while still effectively extracting spatial features. 

(2) CS-FasterNetBlock: In order to solve the problem of accuracy 
loss caused by FasterNet replacement of the backbone, we revisit the 
structure of the FasterNetBlock within the FasterNet. Building upon 
the PConv and integrating the channel shuffle mechanism proposed 
by the ShuffleNet (Zhang et al., 2018), we have developed a novel 
convolutional module, termed CS-PConv. In CS-PConv, a channel 
shuffle mechanism is introduced subsequent to the partial 
convolution layers, which enhances the intercommunication between 
convolved and non-convolved channels, thereby augmenting the 
capability of feature extraction from PConv. Subsequently, we have 
substituted the 1×1 convolutional layers in the FasterNet Block with 
CS-PConv, culminating in the design of the CS-FasterNetBlock. This 
refinement not only expands the receptive field and enriches the 
diversity of output features but also achieves enhanced detection 
accuracy with minimal additional cost. 

(3) SP-Head: In order to solve the problem of large computational 
resource consumption caused by the multiple use of 3×3 regular 
convolutions in the detection head in the original YOLOv8, this study 
introduces the concept of shared parameters (Yerimah et al., 2024) 
and integrates the CS-FasterNetBlock into the detection head. The 
new detection head is named SP-Head. By sharing detection heads of 
YOLOv8, the number of parameters is significantly reduced. With 
the CS-FasterNetBlock, the receptive field is further improved and 
the detection head feature extraction is enhanced. In ablation 
experiments, the SP-Head is not only more lightweight, but also has 
higher mango detection accuracy. 

2. Related Work 

2.1 YOLOv8 

Published in 2023, YOLOv8 was designed to integrate the most 
effective features of various real-time object detection models. 
YOLOv8 offers models in a range of sizes, including YOLOv8n, 
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, to accommodate 
diverse application scenarios. To minimize computational 
redundancy in simpler tasks with complex models, we selected the 
smallest model, YOLOv8n, after balancing detection accuracy and 
model parameter quantity. This model consists of three primary 
components: the Backbone, Neck, and Head, as shown in Fig. 1. 

Backbone: YOLOv8 utilizes an enhanced CSPDarknet53 
(Mahasin et al., 2022) as its backbone network, responsible for 
feature extraction tasks, which includes the Conv, C2f, and SPPF 
modules. The Conv module performs regular convolution, Batch 

Normalization (BN), and Sigmoid Linear Unit (SiLU) on the input 
image to produce the output. The C2f structure, designs for learning 
residual features, employs gradient shunt connections to ensure a rich 
flow of network information. The SPPF module converts feature 
maps of arbitrary sizes into fixed-size feature vectors by sequentially 
passing through three 5×5 maxpool operations, followed by 
cascading. This design reduces the computational load, effectively 
decreasing the algorithm's latency. 

Neck: The Neck component primarily facilitates the integration of 
multi-scales features, composed of two main elements: the Feature 
Pyramid Network (FPN) (Lin et al., 2017) and the Path Aggregation 
Network (PAN) (Liu et al., 2018). FPN constructs a feature pyramid 
to extract feature maps and achieve feature fusion across various 
levels. In contrast, PAN enhances the fusion process by utilizing 
convolutional layers to merge feature maps while preserving spatial 
information. The PAN-FPN combines up-sampling and down-
sampling techniques in order to fuse shallow positional information 
with deeper semantic information, enhancing the transmission of 
localization and semantic features and significantly improving object 
detection across multi-scales. 

Head: The detection head of YOLOv8 employs a widely-used 
decoupled head structure, comprising two heads: the category 
detection head and the bounding box detection head. This 
architecture captures category and location data from objects at 
various scales via three distinct sets of feature maps, each varying in 
size. 

 

Fig. 1. YOLOv8 structure.  

3. Design of CS-YOLOv8 algorithm 

This study addresses the issues of high memory usage in mango 
detection models by improving the YOLOv8 model in three key areas. 
Firstly, it is experimentally confirmed that substituting YOLOv8’s 
backbone network with FasterNet significantly reduces both the 
algorithm’s parameter counts and its computational complexity. 
Secondly, the CS-PConv convolutional module is developed to 
enhance information exchange among convolutional channels by 
incorporating the channel shuffle mechanism from the ShuffleNet. 
The CS-FasterNetBlock is created by substituting the 1×1 
convolutional layer in the FasterNetBlock with the CS-PConv, which 
broadens the receptive field and enhances the model's detection 
accuracy. Finally, we devise the SP-Head by amalgamating the 
concept of shared weights with the CS-FasterNetBlock. This SP-
Head not only addresses the issue of excessive parameters due to 
computational redundancy in the target detection head but also 
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elevates the precision of target detection. The improved model is 
named CS-YOLOv8 and its network structure is shown in Fig. 2. 

 

Fig. 2. The CS-YOLOv8 network structure. In its backbone, a channel feature 
fusion module, CS-FasterNetBlock, is designed to embed into the FasterNet 
network as the backbone of feature extraction. In its neck, PAN-FPN fuses shallow 
positional information with deep semantic information. In its head, three shared 
parameter detection heads with different scales are designed for feature prediction. 

3.1 FasterNet and PConv 

The extensive use of regular convolutions alongside C2f in the 
backbone network of YOLOv8 leads to significant redundant 
computations and a high volume of floating-point operations 
(FLOPs), resulting in increased model latency. The relationship 
between latency, FLOPs, and floating-point operations per second 
(FLOPS) is represented as Eq. (1). 

 
FLOPsLatency
FLOPS

=  (1) 

FasterNet is a lightweight network proposed by chen et al. in 2023 
with a network backbone that reduces latency and improves 
computational speed by increasing the number of FLOPS while 
effectively reducing the number of FLOPs. PConv is a convolution 
module in the FasterNet network, and its working principle is shown 
in Fig. 3. The PConv module efficiently extracts spatial features by 
minimizing computational redundancy and memory accesses, 
thereby reducing both the computational load and parametric volume 
of the network, while maintaining a constant output feature map and 
channel size. 

Due to the high similarity of feature maps across various channels, 
employing regular convolution for feature extraction can result in 
computational redundancy and increased memory usage. The PConv 
module selectively applies regular convolution operations to certain 
input channels, leaving the remaining channels unchanged, thereby 
enhancing the network’s capacity to distill key features from 
numerous similar and redundant feature maps. The FLOPs associated 
with the PConv module are represented as Eq.(2): 

 2 2
PConv pFLOPs h w k c= × × ×  (2) 

In the formula, h and w are the width and height of the feature map, 
k is the size of the convolution kernel, and cp is the number of 
channels for conventional convolution. In actual implementation, cp 
is 1/4 of cp, so the FLOPs of PConv is only 1/16 of that of regular 
convolution. 

Chen et al. proposed a FasterNetBlock based on the PConv, 
comprising a PConv layer followed by two sequentially connected 

1x1 convolutional layers. This module is characterized by its 
simplicity, minimal parameter count, and high processing speed. Its 
structure is shown in Fig. 3. Furthermore, excessive utilization of 
normalization and activation layers may result in diminished feature 
diversity, so only BN and Rectified Linear Unit (ReLU) are added to 
the two 1x1 convolutional layers of FasterNetBlock. Among these, 
BN enhances training speed and accuracy, whereas ReLU functions 
as an activation mechanism to expedite model training and mitigate 
the issue of gradient vanishing (Chen et al., 2023). Strategically 
positioning normalization and activation layers between the two 1x1 
convolutional layers within each FasterNet module optimizes latency 
and preserves feature diversity. 

In response to the challenges of large model parameters and 
difficulty in hardware deployment due to computational redundancy 
in the YOLOv8, apply to mango detection tasks, replacing the 
backbone network of YOLOv8 with FasterNet can decrease both 
computational and memory access, thereby rendering the backbone 
more lightweight. 

 

Fig. 3. FasterNet network structure. 

3.2 CS-FasterNetBlock 

Although PConv applies regular convolution to select input 
channels for feature extraction while keeping the rest of the channels 
unchanged, thereby significantly reducing memory access, this 
convolutional operation is restricted to the channels within each 
group. Consequently, there is no exchange of information between 
the convolutional and non-convolutional channels, which diminishes 
the network’s prediction accuracy. Therefore, to address the decrease 
in accuracy resulting from the substitution of YOLOv8’s backbone 
network with the FasterNet network, this paper proposes the CS-
PConv convolution module, which adds the channel shuffle 
mechanism after PConv. This structure facilitates information 
exchange between each channel group following partial convolution, 
boosts the model’s capacity to acquire global information, and 
increases the accuracy of network predictions. Simultaneously, 
substituting some of the 1x1 convolutions with channel shuffle can 
significantly reduce the number of parameters and expedite the 
feature fusion process among convolutional channels. The CS-PConv 
structure is shown in Fig. 4. 

 

Fig. 4. CS-PConv structure. 
The channel shuffle mechanism was first introduced in the 

ShuffleNet network, and its structure is shown in Fig. 5. This 
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mechanism reorders the channel groupings of the feature map to 
enhance feature communication across different groups. In traditional 
grouped convolution, the channels of the feature map are segmented 
into multiple groups, enabling convolution operations to take place 
within each group’s channels. Since the channels from different 
groups operate independently, this approach substantially reduces 
computational complexity. However, this grouping structure also 
results in information isolation among different group channels, 
thereby reduce the network’s accuracy. Introducing channel shuffle 
disrupts this isolation, facilitating increased information exchange 
among groups, which enhances both the performance and accuracy 
of the network. Divide the number of input channels n equally into 
group groups, with each group containing n//group of channels. 
Change the shape of the input channel number to (group, n//group). 
The obtained new channel can be transposed and then flattened to 
complete the channel shuffle. In response to the restricted 
information exchange between convolutional and non-convolutional 
channels resulting from PConv in the FasterNet network, which 
diminishes network accuracy, a channel shuffle mechanism has been 
incorporated following PConv to enhance network accuracy. 

 
Fig. 5. Channel Shuffle structure. 

 

Fig. 6. (a) FasterNetBlock structure (b) CS-FasterNetBlock structure. 

In this study, we reexamined the structure of FasterNetBlock. This 
block incorporates two 1x1 convolutional layers following PConv, 
which reduce the number of parameters and accelerate training speed. 
However, the receptive field of 1x1 convolutions is relatively small, 
limiting the acquisition of global features. To address these issues, 
this paper proposes CS-FasterNetBlock based on FasterNetBlock and 
CS-PConv, as shown in Fig. 6. Firstly, replacing PConv with CS-

PConv enhances the information exchange between convolutional 
and non-convolutional channels, and improves the model's ability to 
obtain and interact with global information. Secondly, CS-PConv is 
used to replace the two 1x1 convolutional layers in the 
FasterNetBlock to increase the receptive field and reduce the loss of 
effective mango feature information, thereby optimizing the accuracy 
of the model. 

3.3 SP-Head 

The head of YOLOv8 utilizes a popular decoupled head structure, 
distinguishing the classification head from the detection head. The 
detection head identifies the category and position information of 
objects by using three identical detection modules on three feature 
maps of varying sizes (Qu et al., 2023). Each detection module 
comprises a category detection branch and a bounding box detection 
branch. The specific structure is shown in Fig. 7.  

 

Fig. 7. Structure of the original YOLOv8 head. 

We reexamine the Head section of YOLOv8 and discover that it is 
consists of three detection modules, each featuring three detection 
branches. Each branch includes two 3x3 convolutional layers and one 
1x1 convolutional layer. Consequently, there are 12 layers of 3x3 
convolutions in the Head section of YOLOv8. Due to the use of a 
large amount of regular convolution in the detection module, this part 
of the parameter counts accounts for 25.0% of the entire network 
architecture. Considering that the focus of this paper is on mango 
picking tasks, which are conducted in outdoor environments, lower 
computational complexity and lightweight models are more 
advantageous for actual hardware deployment. Based on the concept 
of shared parameters, we redesign the Head section of YOLOv8. 
Replace multiple regular convolutions with CS-FasterNetBlock, 
which aims to further reduce the parameter count and maximize the 
utilization of convolution operations, thereby reducing computational 
redundancy in the detection head. Simultaneously, CS-
FasterNetBlock expands the receptive field of the detection head and 
enhances its feature extraction ability for mango target. In addition, 
the structure of the category detection branch and bounding box 
detection branch remains unchanged. We rename this new detection 
head as SP-Head, as shown in Fig. 8. 

 
Fig. 8. SP-Head Structure. 

4. Experimental results and analysis 

4.1 Experimental environment 

The experimental environment configuration for this paper is 
shown in Tab. 1. The training phase of this experiment adopts unified 
parameters. The Stochastic Gradient Descent (SGD) (Ruder et al., 
2017) optimizer is used, with an initial learning rate of 0.01, weight 
attenuation coefficient of 5×10-4, momentum parameter of 0.937, 
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batch size set to 2, and training epochs of 300 epochs. 

Tab. 1. Experimental parameter configuration. 
Name Configuration 

Operating system Windows 10 
Development Languages Python 3.8.17 

Frameworks Pytorch1.13.1+cuda11.7 
CPU Inter Core i7-7700 
GPU GeForce GTX 1660 Ti (8G) 

 
4.2 Experimental data 

This paper uses the open dataset MangoYOLO (Koirala et al., 2023) 
proposed by the Central Queensland University (CQU) as the mango 
object detection dataset. This dataset aims to detect mango fruits in 
tree canopy images. A total of 1730 images were obtained using a 5-
megapixel RGB digital camera and 720W LED floodlighting on an 
agricultural multifunctional vehicle running at a speed of 6 
kilometers per hour at night. These images are randomly divided into 
a training set (1300 images), a validation set (215 images), and a 
testing set (215 images). 

4.3 Evaluation Metrics 

In this study, Precision(P), Recall(R), and mAP0.5:0.95 are used 
as evaluation indicators for object detection. The calculation method 
for mAP is represented as Eq. (6). 

 TPPrecision
TP FP

=
+

 (3) 

 
TPRecall

TP FN
=

+
 (4) 

 
1

0
AP Precision d Recall= ∫  (5) 

 1

N
ii

AP
mAP

N
== ∑  (6) 

In the Eq. (3), TP represents the number of samples predicted as 
positive for a positive class, FP represents the number of samples 
predicted as positive for a negative class, and FN represents the 
number of samples predicted as negative for a positive class. In the 
Eq. (5), The P-value and R-value are two contradictory parameters. 
Ideally, a detection model with both high P-value and R-value would 
have better performance. Therefore, it is necessary to combine the 
Average Precision (AP) to combine these two evaluation indicators 
and evaluate the performance of the model. AP is equal to calculating 
the integral of P corresponding to each R. The mAP value can be 
obtained by adding up the AP values of detection results from 
different categories and dividing them by the total number of 
categories (denoted as N). mAP0.5 represents the average precision 
of the detection model when its IoU is set to 0.5, and mAP0.5:0.95 
represents the average precision of the detection model when its IoU 
is set to 0.5 to 0.95 (with an interval of 0.5 values).  

In addition, this study selects GFLOPs and Params as evaluation 
metric to measure the size of the model. 

4.4 YOLOv8 version comparative study 

To cope with different detection tasks, YOLOv8 provides models 
of different sizes at n/s/m/l/x scales, with different focuses on 
processing speed and recognition accuracy, providing diverse choices 
to meet different computing resources and real-time processing needs. 

In order to avoid computational redundancy of complex models for 
simple tasks, we conduct a comparative experiment on five versions 
of YOLOv8, and the experimental results are shown in Tab. 2. 

By conducting a comparative study of different versions of 
YOLOv8, we find that while other models slightly improve 
recognition accuracy compared to YOLOv8n, the increase is minimal. 
Among them, YOLOv8l has the highest accuracy but only improves 
by 0.5%. However, the number of parameters and GFLOPs of 
YOLOv8l is 20 times that of YOLOv8n. This significant increase in 
model complexity is disadvantageous for deployment in hardware 
environments with limited computational resources, such as in 
agricultural scenarios. Further analysis shows that the R of the other 
four versions of YOLOv8 are not as good as that of YOLOv8n. This 
phenomenon can be attributed to the increased number of 
convolutional kernels in the network, which, while enhancing the 
depth of feature extraction, also leads to the loss of some mango 
features in the original images, thereby reducing the recall rate. In 
agricultural scenarios with limited hardware computational resources, 
using complex models for simple tasks results in computational 
redundancy. Therefore, to balance detection accuracy and model 
parameters, we ultimately choose the smallest model, YOLOv8n, as 
the detection model. This choice not only ensures high detection 
accuracy but also effectively reduces the consumption of 
computational resources, making it well-suited for the practical needs 
of agricultural scenarios. 

Tab. 2. YOLOv8 version comparative experiment. n/s/m/l/x are different sizes of 
YOLOv8 models, which change the depth of the network and the number of 
convolutional kernels. 

Model P/% R/% mAP0.5:0.95/% Params/M GFLOPs/G 
YOLOv8n 96.0 96.6 73.3 3.0 8.2 
YOLOv8s 96.3 96.1 73.7 11.1 28.4 
YOLOv8m 95.8 96.0 73.5 25.9 79.1 
YOLOv8l 96.3 96.1 73.8 43.6 165.4 
YOLOv8x 95.9 96.0 73.7 68.1 257.4 

 

4.5 Ablation study 

In this section, we will validate the effectiveness of our respective 
modules on the algorithm through three ablation experiments, 
specifically targeting Fasternet, CS-FasternetBlock, and SP-Head. 
The number of iterations for each ablation experiment is the same. 

As shown in Tab. 3, replacing the backbone of YOLOv8 with 
FasterNet significantly reduces the number of parameters by 43.3%, 
which is more conducive to model hardware deployment. However, 
this significant reduction in parameter quantity comes at a cost, 
resulting in a slight decrease in mAP0.5:0.95 at the mango detection 
from 73.3% to 71.8%. In order to further improve the accuracy of the 
model, we reexamine the FasternetBlock and reconstruct the module 
CS-FasternetBlock to enhance the communication between channel 
information and improve the receptive field. The reconstruction of 
this module makes the mAP0.5:0.95 increase by 1.3%, and the 
parameter quantity remains unchanged. Finally, by integrating the 
concept of shared parameters with the CS-FasternetBlock module, a 
new shared detection head SP-Head is reconstructed. Compared to 
the original network, YOLOv8 achieves a 63.3% reduction in 
parameter count, a decrease of 6.0 GFLOPs, and an improvement of 
0.6% in mAP0.5:0.95. 

Tab. 3. Ablation experiment. Where A represents Fasternet, B represents SC-
Fasternet Block, and C represents SP-Head. 

A B C P/% R/% mAP0.5:0.95/% Params/M GFLOPs/G 
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   96.0 96.6 73.3 3.0 8.2 
   95.1 95.6 71.8 1.7 5.1 
   95.4 95.8 73.1 1.7 5.1 
   96.4 96.6 73.9 1.1 2.2 

 
The red square in Fig. 9 indicates the predicted result of mango 

target recognition. Based on the comparison of effects in Fig. 9, the 
following conclusions can be drawn. 1) The improved algorithm 
demonstrates higher confidence in mango detection. For instance, in 
the first, second, third, and fourth rows, the confidence scores for 
mango predictions by the enhanced model surpass those of YOLOv8 
and are more accurately aligned with the labeled positions. This 
improvement is attributed to the SP-Head's feature extraction module, 
CS-FasternetBlock, which focuses more on mango-specific features 
and refines their extraction. 2) In terms of identifying occluded 
mango targets, our improved algorithm significantly outperforms the 
original network. It accurately detects targets obscured by leaves, 
enhancing the recognition accuracy of occluded targets. For example, 
in the second and third rows, the proposed algorithm successfully 
identifies these occluded targets. 3) The proposed method accurately 
recognizes mango targets in both simple and complex backgrounds, 
as demonstrated in the first and fourth rows. Moreover, our model 
significantly reduces the parameter count and computational 
complexity of YOLOv8, making it more suitable for deployment on 
hardware with limited computational resources. 

 
Fig. 9. Example results of our model on On-tree mango instance segmentation 
dataset. (a)image, (b)label image, (c)YOLOv8, (d)CS-YOLOv8. 

4.6 Comparative experiments 

In this section, we aim to illustrate the advantages of CS-YOLOv8 
in mango detection. Regarding mango recognition, we evaluate 
several advanced object detection models, comprising lightweight 
models such as YOLOv5n (Jocher et al., 2022), YOLOv6 (Li et al., 
2022) and YOLOv7-Tiny (Wang et al., 2023). These models 
underwent training and testing utilizing the MangoYOLO dataset, 
with evaluation metrics including P, R, and mAP0.5:0.95 for object 
detection.  

As shown in Tab. 4, we evaluate our model on the MangoYOLO 
dataset. Based on the results, the following conclusions can be drawn. 
1) The CS-YOLOv8 network achieved a mAP0.5:0.95 metric of 73.9% 
on the MangoYOLO dataset. Compared to lightweight networks 
YOLOv5n, YOLOv6 and YOLOv7-tiny, there is a slight advantage 

in target recognition accuracy. The reason for this is that the CS-
FasterNetBlock module can enhance information exchange between 
channels and greatly improve the receptive field, enhancing the 
backbone network's ability to extract target recognition features. 2) 
The CS-YOLOv8 network has reached the lowest level in terms of 
parameter count and GFLOPs. Compared to the lightest YOLOv5n 
in the YOLO series, GFLOPs have decreased by 4.9G. This is 
because the SP-Head reduces information redundancy, significantly 
reduces parameters, and integrates the CS-FasterNetBlock module, 
without causing a decrease in its accuracy. 

Tab. 4. Comparative experiment on MangoYOLO dataset. 
Model P/% R/% mAP0.5:0.95/% Params/M GFLOPs/G 

YOLOv5n 96.7 94.9 73.1 2.5 7.1 
YOLOv6 95.4 96.4 73.2 3.1 8.4 
YOLOv7-

tiny 
95.1 94.6 72.9 6.1 13.3 

YOLOv8n 96.0 96.6 73.3 3.0 8.2 
CS-

YOLOv8 
96.4 96.6 73.9 1.1 2.2 

5. Conclusions 

The experimental results have proven that our proposed CS-
YOLOv8 model can effectively solve the problems of high device 
memory usage. Our model can effectively detect mango, while 
maintaining lightweight and without the need for geometric 
estimation of picking point characteristics. This model has undergone 
various optimizations and enhancements compared to the original 
YOLOv8. Through effective analysis of on YOLOv8 version 
comparative experiments, module ablation experiments, and 
detection algorithm comparison experiments, we reduce the number 
of model parameters by 63.3% compared to the original network and 
decrease GFLOPs by 6.0G and an improvement of 0.6% in 
mAP0.5:0.95. The future research focus will be on how to better 
control network parameters and deploy models on embedded devices, 
while significantly improving the detection accuracy of mango 
detection. 

Acknowledgements 

This work is supported by the Fundamental Research Funds for the 
Central Universities (No. 2682022KJ015), State Key Laboratory of 
Robotics and Systems (HIT) (SKLRS-2020-KF-13). 

References 

Tharanathan R N, Yashoda H M, Prabha T N. Mango (Mangifera indica L.),“The 
king of fruits”—An overview[J]. Food Reviews International, 2006, 22(2): 
95-123. 

Singh Z, Singh R K, Sane V A, et al. Mango-postharvest biology and 
biotechnology[J]. Critical Reviews in Plant Sciences, 2013, 32(4): 217-236. 

Ntsoane, M.L., Zude-Sasse, M., Mahajan, P., Sivakumar, D.: Quality assesment 
and postharvest technology of mango: A review of its current status and future 
perspectives. Scientia Horticulturae. 249, 77–85 (2019) 

Fennimore S A, Doohan D J. The challenges of specialty crop weed control, future 
directions[J]. Weed Technology, 2008, 22(2): 364-372. 

Zhou H, Wang X, Au W, et al. Intelligent robots for fruit harvesting: Recent 
developments and future challenges[J]. Precision Agriculture, 2022, 23(5): 
1856-1907. 

Mail M F, Maja J M, Marshall M, et al. Agricultural harvesting robot concept 
design and system components: A review[J]. AgriEngineering, 2023, 5(2): 
777-800. 

Karkee M, Zhang Q. Mechanization and automation technologies in specialty crop 
production[J]. Resource Magazine, 2012, 19(5): 16-17. 



X. Fang et al. / IJAMCE 7 (2024) 137-143 

 

Gongal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K.: Sensors and systems 
for fruit detection and localization: A review. Computers and Electronics in 
Agriculture. 116, 8–19 (2015) 

Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C.: Deep learning–Method 
overview and review of use for fruit detection and yield estimation. 
Computers and electronics in agriculture. 162, 219–234 (2019) 

Xu, Z.-F., Jia, R.-S., Sun, H.-M., Liu, Q.-M., Cui, Z.: Light-YOLOv3: fast method 
for detecting green mangoes in complex scenes using picking robots. Appl 
Intell. 50, 4670–4687 (2020). https://doi.org/10.1007/s10489-020-01818-w 

Ignacio, J.S., Eisma, K.N.A., Caya, M.V.C.: A YOLOv5-based Deep Learning 
Model for In-Situ Detection and Maturity Grading of Mango. In: 2022 6th 
International Conference on Communication and Information Systems 
(ICCIS). pp. 141–147 (2022) 

Chen, J., Kao, S., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G.: Run, Don’t 
walk: Chasing higher FLOPS for faster neural networks. In: Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 
12021–12031 (2023) 

Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient 
convolutional neural network for mobile devices. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition. pp. 6848–6856 (2018) 

Yerimah, L.E., Ghosh, S., Wang, Y., Cao, Y., Flores-Cerrillo, J., Bequette, B.W.: 
Shared Parameter Network: An efficient process monitoring model. 
Computers & Chemical Engineering. 181, 108522 (2024). 
https://doi.org/10.1016/j.compchemeng.2023.108522 

Mahasin, M., Dewi, I.A.: Comparison of cspdarknet53, cspresnext-50, and 
efficientnet-b0 backbones on yolo v4 as object detector. International Journal 
of Engineering, Science and Information Technology. 2, 64–72 (2022) 

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature 
Pyramid Networks for Object Detection, http://arxiv.org/abs/1612.03144, 
(2017) 

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path Aggregation Network for Instance 
Segmentation, http://arxiv.org/abs/1803.01534, (2018) 

Chen, B., Dang, Z.: Fast PCB Defect Detection Method Based on FasterNet 
Backbone Network and CBAM Attention Mechanism Integrated With Feature 
Fusion Module in Improved YOLOv7. IEEE Access. 11, 95092–95103 (2023). 
https://doi.org/10.1109/ACCESS.2023.3311260 

Qu, W., Zhong, S., Wu, Y., Cao, X.: Development of a real-time pen-holding 
gesture recognition system based on improved YOLOv8. In: 2023 
International Conference on Image Processing, Computer Vision and Machine 
Learning (ICICML). pp. 1035–1039 (2023) 

Ruder, S.: An overview of gradient descent optimization algorithms, 
http://arxiv.org/abs/1609.04747, (2017) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Michael, K., Fang, J., 
Yifu, Z., Wong, C., Montes, D.: ultralytics/yolov5: v7. 0-yolov5 sota realtime 
instance segmentation. Zenodo. (2022) 

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, 
W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X.: 
YOLOv6: A Single-Stage Object Detection Framework for Industrial 
Applications, http://arxiv.org/abs/2209.02976, (2022) 

Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In: 
Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. pp. 7464–7475 (2023) 

 
Xu Fang, received his bachelor's degree from 
Southwest Forestry University, China, in 2022. 
Currently, he is studying for a master's degree 
with the Tangshan Institute, Southwest 
Jiaotong University, China. His current 
research interests include object detection, 
semantic segmentation and robotic arm 
trajectory planning. 
 
 
Xingguo Song, Ph.D., graduated from Harbin 
Institute of Technology, School of Mechanical 
and Electrical Engineering, majoring in 
Mechanical Design and Theory, is a visiting 
scholar at Rice University and a postdoctoral 
fellow at Johns Hopkins University, USA. His 
main research interests are intelligent robotics, 
UAV path planning, bionic robotics, and 
computer vision. 
 
 
Yongjiang Li, received his bachelor's degree 
from Southwest Jiaotong University in 2022. 
He is currently pursuing a master's degree at 
the School of Mechanical Engineering at 
Southwest Jiaotong University. His current 
research interests include robot software 
architecture, ROS robotics, and path planning. 
 
 


