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 Finite/fixed-time control provides a valuable approach for optimizing a system’s settling time; however, it lacks the 

flexibility to independently define both the settling time and the convergence domain. Unlike traditional approaches 

that address semi-global bounded tracking for pure feedback systems, this paper achieves not only convergence of 

tracking errors to zero but also ensures that the convergence time can be predefined according to user requirements. 

To develop the desired predefined-time controller, a mild semi-bounded assumption for non-affine functions is first 

introduced, which addresses the design challenges posed by pure feedback structures. Then, by leveraging the 

properties of Radial Basis Function (RBF) neural networks and Young’s inequality, an upper bound for unknown 

nonlinear functions and external disturbances is derived. Finally, a predefined-time virtual control input is provided, 

and its derivative is estimated using a finite-time differentiator. It is rigorously proven that the proposed novel 

predefined-time controller guarantees global convergence of tracking errors to zero within the specified time. The 

effectiveness and practicality of this predefined-time control method are validated through examples. 
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1. Introduction 

Linearization of nonlinear systems is an important method for 

early research on the control of nonlinear systems, but it has great 

limitations [1]. As for the research on the control theory of nonlinear 

systems, the research methods include phase plane method and 

descriptive function method. However, these two methods are mainly 

used for the design and stability analysis of simple nonlinear system 

controllers. In the 80s of the last century, Italy scholar Isidori and 

others introduced mathematical tools such as differential geometry 

and differential algebra into the control theory of nonlinear systems, 

giving sufficient necessary conditions for making the state space 

observability and controllability of nonlinear systems, which greatly 

promoted the development of nonlinear system theory [2]. On this 

basis, many scholars have applied adaptive control, fuzzy control, 

and other control methods to the control analysis of nonlinear systems 

[3].  

In the field of modern control, convergence is an important 

indicator of system stability. In order to achieve a faster convergence 

speed, finite/fixed-time stability has attracted the attention of many 

scholars [4], [5], [6], [7]which enables the state of the closed-loop 

system to converge to the equilibrium point in a finite/fixed time.  

In recent years, significant advancements have been made in 

adaptive intelligent finite/fixed-time control, leveraging the strong 

approximation capabilities of neural networks (NNs) [8], [9], [10]. 

For instance, Zhang et al. [11] proposed an adaptive neural finite-time 

control method for single-input single-output (SISO) nonlinear 

systems with full-state constraints and actuator failures. For multiple-

input multiple-output (MIMO) nonlinear systems, a solution for 

nonsingular fixed-time output feedback control was addressed in [12]. 

In stochastic nonlinear systems, Sui et al. [13] introduced an adaptive 

fuzzy finite-time control approach, while Wu et al. [14] developed a 

fixed-time fuzzy consensus control strategy for multi-agent nonlinear 

systems. However, a common limitation in these studies is that the 

settling times cannot be arbitrarily predefined [11], [12], [13], [14]. 

This becomes a challenge in many engineering applications, such as 

autonomous vehicle rendezvous and missile guidance, where 

ensuring system performance within a specified timeframe is crucial. 

This need drives the research into predefined-time control methods. 

Predefined-time stability, a specialized form of fixed-time stability, 

allows the convergence time to be selected in advance, as introduced 
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by Jiménez-Rodríguez E [15]. A sufficient condition for achieving 

predefined-time stability was later proposed in [11]. Due to the 

advantageous characteristics of predefined-time stability, it has been 

applied in areas such as robotics and rigid spacecraft systems [16], 

[17], [18]. However, in these works, the system nonlinearities are 

either known or required to meet linear growth conditions. As 

systems become more complex, the nonlinearities in practical control 

systems are often unknown, prompting growing interest in adaptive 

intelligent predefined-time control using FLSs/NNs. Specifically, for 

unknown strict-feedback nonlinear systems (SFNSs), an adaptive 

fuzzy predefined-time control approach was explored in [19]. 

Building on [19], Y Jiang et al. addressed input saturation and output 

hysteresis by developing a predefined-time adaptive fuzzy controller, 

[20]. It is acknowledged that pure-feedback nonlinear systems 

represent a broader class without the affine appearance of state 

variables. However, previous works [19], [20] did not account for 

signal quantization, crucial in networked systems where limited 

communication capacity necessitates quantizing signals before 

transmission. With the increasing use of networked systems, 

quantization has garnered significant attention. 

The neural network backstepping control method has emerged in 

recent years as an intelligent control technique for nonlinear systems. 

This method leverages the powerful function approximation 

capabilities of neural networks to estimate system uncertainties, and 

combines this with the backstepping approach to design feedback 

controllers, thereby significantly mitigating the impact of 

uncertainties on system stability. Currently, this method has been 

applied to various nonlinear systems, such as strict-feedback systems 

[21], pure-feedback systems [22], and partially non-strict-feedback 

systems [23]. However, due to the structural characteristics of 

nonlinear systems, the application of the neural network 

backstepping control method to certain systems faces challenges. 

Given its immense potential, if this method can be widely applied to 

underactuated systems, it will greatly advance the development of 

intelligent control techniques for nonlinear systems. Thus, 

researching the neural network backstepping control technology for 

nonlinear systems holds significant theoretical and practical 

importance. 

The characteristics of adaptive backstepping methods allow for 

achieving asymptotic stability in nonlinear systems and ensuring 

signal boundedness under parameter uncertainties, which has led to 

numerous significant results [24], [25]. By combining backstepping 

methods with fuzzy or neural adaptive technologies, effective control 

tools for uncertain nonlinear systems have been developed [26]. In 

[27], adaptive tracking control for nonlinear systems with unknown 

input constraints and unpredictable variables was investigated. In 

[28], a control design strategy based on variable separation was 

developed for non-strict-feedback nonlinear systems. 

Inspired by the above discussion, we have applied a novel control 

scheme based on adaptive neural networks to pure-feedback 

nonlinear systems. This approach ensures that the tracking error 

reaches zero within a predetermined time frame. In summary, the 

main contributions of our work are as follows: 

1) Unlike traditional finite-time and fixed-time control methods, the 

proposed controller addresses a significant issue by ensuring that 

the tracking error converges from any initial condition within a 

user-specified fixed time. Many practical control systems require 

a rapid transition from transient to steady-state response. 

2) The derivatives of virtual control laws are estimated using finite-

time differentiators instead of being directly applied in the 

recursive design. This approach effectively prevents the issue of 

“explosion of complexity.” This innovation allows for more 

efficient and manageable control system designs, streamlining the 

development process and enhancing system robustness. 

3) By applying neural networks, their strong adaptability and 

learning capability enable continuous adjustment of control 

strategies in response to system dynamics, improving the 

system’s accuracy and response speed. This approach also 

reduces the reliance on precise system models, making control 

system design more simplified and efficient. 

2. System preview 

The system is:              

 

( )

( )

1

1

( )

( )

i i i i

n n n

x f x h x

x f x h u

y x

+ = +


= +


=

 (1) 

where n   stands for the order of the system and 
 ix  are the 

system states.  u R  , y R  represent the control input and the 

output of the system, respectively. Nonlinear continuous nonaffine 

functions ( )if x  and ( )ih x  are unknown. 

Assumption 1 ( [29] ): Define ( ) ( ) ( )1 1 0i i i i ix h x hP + += − , where

1, ,i n=  , We assume that 
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( )
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, 0

, 0

i i i i i i i i i i

i i i i i i i i i

q

x x

P

q qP

x x q x x

x x

 

 

+ + + +

 

+ + + +

 +   + 


+   + 

 (2) 

where , ,i i iq q q
, and iq 

 stand for unknown positive constants and 

1 2 3 4, , ,i i i i    represent unknown constants, 1, ,i n=  . 

From(2), we can know that there exist functions ( )1 1 [0,1]i ix +   

and ( )2 1 [0,1]i ix +   satisfying 
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1 1 1 1 1 1 1 1 2 1
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1 , 0

1 , 0.
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 (3) 

To simplify the design of the control system, define the functions 

clearly ( )1i iE x +  and ( )1ix +  as follows: 

 

( ) ( )( ) ( )

( ) ( )( ) ( )
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 (4) 

Then, by applying (4), we can model the nonaffine terms 

( )1i iP x +
 as 

 ( ) ( ) ( )1 1 1 1 .i i i i i i ix x x EP x+ + + +=  +  (5) 

From (5), it follows that 

( )

( )

1

1

0

0

i i i i

i i iM

x

x EE

+

+

     

 
 

where  1, ,min , , ,i i n i i i iq q q q 

=  =  ,  1, ,max , , ,i i n i i i iq q q q 

=  =   and

 1 2 3 4maxiM i i i iE    = + + +  , and one can find a positive 

constant mig   such that mig i  . With the help of (5) and the 
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definition of ( )1i iP x +
 can be rewrote as 

 

( ) ( ) ( )

( ) ( )

1 1 1

1 1

1
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( ) (0)
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 (6) 

3. Controller design 

Step 1: 

Definition 
1 rz y y= − . 

Let the Lyapunov function: 

 2

1 1

1

2
V z=  (7) 

Seek guidance for it 
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Perform ( ) ( )1 1 1 0f x h+  an approximation, 

( ) ( ) ( )1 1 1 1 1 1 10 Tf x h W x+ =  +  

Cause 1 1 1 1 2[ , , , ]T

M MW W E A= ,
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We can get 
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Assumption 2: The desired reference signal 
ry  is a continuous 

and bounded function whose bound is unknown. Generally speaking, 

its time derivative is also a bounded function with unknown bound. 

We can find unknown constants 
1A  , 

2A   such that 1ry A  , 

2ry A . 

There is also Young's inequality 

 ( ) ( )
2

1 1 1

1 1
3 3 3

2 2
W q q W q +  + + = + +  (9) 

thereinto
2

1 1W = . 

Will (9) be brought in (8) 

 ( ) ( ) ( )1 2 2 1 1 2 1 1 1

1
3

2
V z x z z x z q  + + + +  (10) 

Design the virtual controller 
1  as 
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2
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Bring the (11) virtual controller 
1  in (10) 

 ( ) ( )
2
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1
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2

l l

c
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−
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Order 2

1 1 1

1

2
W V = + , among them 1 1 1  = − . 

rule 
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2
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The adaptive law is 

1 1

1
,

2
z = ( )1 0 0  . 

Step i: 

The finite-time differential function used to approximate 
1i −

 the 

first derivative is constructed as follows: 

1/ 2

( 1)1 ( 1)2 1 ( 1)1 1

( 1)2 2 ( 1)1 1

( )
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i i i i

i i i

sig
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Here,
( 1)1 ( 1)2 1 2i i   − −、 、 、   the state and parameters of the   

differentiator are described, respectively. According to Levant and 

Chen and Ge, if the initial deviation 
( 1)1 1(0) (0)i i − −−   and are 

( 1)2 1(0) (0)i i − −−  bounded, then a finite-time differentiator can be 

provided with arbitrary precision
1i −

 . Thus, we get 

1 ( 1)2 1( )i i it  − − −= −  the bounded estimation error 
1i −

,  we can 

find 
1i −

 such that: 1 ( 1)i i M − − . 
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The Lyapunov function is constructed as 

2

1

1

2
i i iV V z−= +  

Seek guidance for it 
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There is also Young's inequality 

 ( ) ( )
21 1

3 3 3
2 2
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Will (13) be brought in (12) 
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Construct a virtual controller 
i  as 
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Will (15) be brought in (14) 

 
( )

( ) ( )

2

1

1 1 1 1

1
exp

2

( )

l l

i i i i i i i i

c

i i i i i i i i

n
V V z z z k z

lT

z x z z x z


−

−

+ + − −

 − + −

−+

   (16) 
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The adaptive law is 

1
,

2
i iz = ( )0 0i  . 
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The Lyapunov function is constructed as 
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There is also Young's inequality 
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Will (19) be brought in (18) 
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The construction controller u  is 

 
( ) ( ) ( ) ( )

( ) ( )

1

( 2)2 1 1

1 1
[ exp 3

2

]

mn

l l

n n n n

c

n n n n n n

n
u sig z z q sign z

g lT

k sign z z x





−

− − −

= − + + +

+ − +

 (21) 

Will (21) be brought in (20) 

 
( )

( )

2

1

1 1 1

1
exp

2

)

l l

n n n n n n n n

c

n n n n n n

n
V V z z z k z

lT

z x z z z


−

−

− − −

 − + −

− −

 (22) 

Definitely (22) 

 ( )
2

1 1 1

1
exp

2

n n n
l

l

i j j j j j j

j j jc

n
V z z z k z

lT


−

= = =

 − + −    (23) 

Order 
2

1

1

2

n

n n j

j

W V 
=

= + , among them n n n  = − . 

rule 

( )

1

2

1 1 1 1

1
exp

2

n

n n j j

j

n n n n
l

l

j j j j j j j j

j j j jc

W V

n
z z z k z

lT

 

  

=

−

= = = =

= −

 − + − −



   
 (24) 

The adaptive law is 

1
,

2
n nz = ( )0 0n  . 

Bring it in (24) 

( )
2

1 1

exp 0
n n

l
l

n j j j j

j jc

n
W z z k z

lT

−

= =

 − −   . 

The stability of the nonstrict-feedback nonlinear system (1) is 

analyzed in this section. 

Theorem 1: For the considered pure-feedback system (1) subjected 

to unknown disturbances, the gains 
ik   satisfy (1 / 2) i ik   , The 

controller, composed of adaptive laws and virtual control inputs, 

guarantees that all closed-loop signals remain bounded, and the 

tracking error converges to zero within a specified time 
cT . 

Proof: we can know that 1, ,i iV z    are bounded. Due to the 

boundedness property of 
ry , we can know that is bounded. Because 

of the fact that 
i   are constants and i   are bounded, we can 

obtain the boundedness property of ˆ
i  . This combined with the 

boundedness of 
1z   and 

ry   and constants 
1, , ,m cq g n T  , and 

1k

contributes to the boundedness of 
1  . Ulteriorly, we have 

2x   is 

bounded. Because ( )1 1/ z   , ( ) ( ) ( )1 1 1 1/ , / , /r ry y          

are continuous functions that have bounded arguments, and 
1  is 

bounded, we can get that 
1   and 

12   are bounded. Considering 

that ( ) ( )2 2 2 1 2
ˆ, , ,z M Z x   are bound and the constants 

2, , ,m cq g n T , 

and 
2k , we have 

2  is bounded. From the boundedness property 

of 
2  and 

2Z , we get the boundedness property of 
3x . Likewise, 

we can obtain that ,i ix   and 
2i  are bounded. As a result, we are 

able to obtain the boundedness property of all the close-loop signals. 

Due to the boundedness of all close-loop signals, we can find 

constants 
ik  such that (1 / 2) i ik  , and we have 

( )

( ) ( ) ( )

2

1

12 2 22 2

1 1

exp

exp exp .

n
l l

n i i

i c

l ln n
l l

i i i i

i ic c

n
V z z

lT

n n
z z z z

lT lT

−

=

−−

= =

 −

 
− = −  

 



 
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we can see that ( )( /2)exp lx   and 1 ( /2) 0,lx x−     are 

monotonously increasing, we can get the following inequality: 

( ) ( ) ( ) ( )
1 1

2 2 2 22 2 2 2

1 1 1

1
e p xp ex

l l l ln n n

i i i i

i i i

z z z z
n

− −

= = =

      
        

      
    

( ) ( ) ( )

1

1
2 2 22 2 2

1 11

1 1
exp exp exp

l lnn nn

i i i

i ii

z z z
n n= ==

        
 =           

        
   

Therefore, we have 

( ) ( ) ( ) ( )
1 1

2 2 2 22 2 2 2

1 1 1

1
exp exp .

l l l ln n n

i i i i

i i i

z z z z
n

− −

= = =

      
        

      
    

Due to 0 ( / 2) 1l  , one has 

( ) ( ) ( ) ( )

( )

1
1 1

2 2 2 22 2 2 2

1 1 1

21
2 22

1 1

1
exp exp

1
exp

l l ln n n

i i i i

i i i

l
ln n

i i

i i

z z z z
n

z z
n

− −

= = =

−

= =

      
        

      

 
            

 

  

 

 

The above formula becomes 

( ) ( ) ( )

( ) ( )

21 1
2 2 2 22 2 2

1 1 1

1
2 2

1

1
exp exp

1
2 exp 2 .

l
l l ln n n

n i i i i

i i ic c

n l l

n n

ic

n n
V z z z z

lT lT n

n
V V

lT n

− −

= = =

−

=

 
     −  −       

 

 
= −  

 

  



 

We define 2 nV = , and we can rewrite above formula as 

1
2 2

2 1
exp

l l

c

n

lT n
  

−  
 −  

 
 

At time t  , ( ) 0nV t =   and ( ) 0n t =  , and we estimate the 

stability time bound as 
1

2

(0)

1
lim exp (0) .c c ct T T T

n


→

 
 − − = 

 
 

As a result, the tracking error 
1z   will converge to zero within 

predefined time 
cT . 

4. Emulation 

In the above formulation of the paper, the research work has been 

completed. In this section, the simulation verification of the designed 

finite-time controller will be done using matlab. 

In the preceding formulation of the paper, the research work has 

been accomplished. 

This section employs simulation examples to validate the efficacy 

of the proposed control strategy. The subsequent electromechanical 

systems are examined to illustrate the effectiveness and superiority 

of the developed control scheme in the physical system: 

sin( )

e

MQ BQ N Q I

LI RI V KBQ

 + + =


 + = −
 

where

2 2 2

0 0 0 0 0 0 0 0 02
, ,

3 5 2

J mL M L M R mL G M L G B
M N B

K K K K K K K      

= + + + = + = , 

G  represents the gravity coefficient, ( )I t  is the motor armature 

current, and ( )q t  represents the angular position of the motor. 
eV

represents the input control voltage. 

By designing the input voltage, the desired motion of the motor 

driving the load can be realized. 

Via a coordinate transformation 
1 2 3  ,    ,    x q x q x I= = =  , the 

above kinetic model can be rewritten in the following form: 

1 2

2 1 2 3 2

3 2 3 3

1
sin( ) ( )

1
( )B

x x

N B
x x x x d t

M M M

K R
x x x u d t

L L L


 =



= − − + +



= − − + +


 

The deception attack signals suffered by the sensor network are 

chosen as 
1 1 0.2sin( ) t = +  ,

2 1 0.1cos( ) t = +  ,

3 1 0.05sin( )cos( ) t t = + . 

In this section, we verify and analyze the performance of the 

control scheme designed. 

In this paper, and the controller parameters are designed as
1 1,mg =

11 12

21 22 31

2 3 1 2

41

3  = 0.25, q = 10,r  = 2,r  = 2.7,

r  = 3,r  =3.46,r  = 4.48, and r  = 4.49.

1, 2, 12, 15, 25,m mg g k k k= = = = =
 

The simulation results in this subsection are presented in Fig.1. 

 

 

Fig. 1. The trajectories of 𝑦(𝑡) and 𝑦𝑑(𝑡) 

We assign a fixed predefined time 2Tc=  , and the outcomes 

depicted in the figure. demonstrate that the system outputs 

successfully follow the desired tracking signal within 2Tc=  . This 

confirms that the time required for convergence using our control 
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strategy is independent of the system’s initial states. 

5. Summary 

In this study, we focus on the problem of global predefined-time 

tracking control for pure-feedback nonlinear systems that are affected 

by unknown disturbances. We introduced an innovative adaptive 

neural network (NN) control approach, specifically utilizing radial 

basis function (RBF) NN control combined with robust control 

techniques to address unknown nonlinearities. This scheme 

guarantees that the tracking errors converge to zero globally within a 

predetermined timeframe. Additionally, we developed virtual 

controllers whose derivatives are estimated using a finite-time 

differentiator. It’s important to highlight the growing importance of 

consensus control in multi-agent systems, which is increasingly 

relevant in various practical engineering applications like traffic flow 

management, coordination of robot teams, sensor networks, maritime 

navigation, and cooperative monitoring. Looking ahead, we aim to 

further explore and extend our predefined-time control strategy to 

nonlinear multi-agent systems, enhancing its applicability across 

diverse fields. 
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