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 Neuropeptides, small protein-like molecules, play essential roles in cellular communication and modulate 

physiological processes such as pain, mood, and immune responses. This thesis presents a neuropeptide 

classification method based on a fine-tuned ESM-1b model. Initially, the ESM-1b model was pre-trained on a 

neuropeptide-specific dataset, with multiple sequence alignment (MSA) via a Hidden Markov Model (HMM) 

applied to the training sequences. This generated an output.afa file, which highlighted shared sequence features to 

enhance model generalization. After fine-tuning, the model was combined with a convolutional neural network 

(CNN) to extract high-dimensional feature representations that comprehensively characterize the input sequences. 

These representations were subsequently processed by a gradient boosting tree classifier, which optimized feature 

weighting and classification, enabling precise differentiation between neuropeptides and other peptides. This multi-

step approach leverages the advantages of both deep learning and ensemble learning techniques, enhancing the 

accuracy and robustness of neuropeptide classification and laying a foundation for deeper insights into their diverse 

biological roles. 
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1. Introduction 

Neuropeptides are signaling molecules composed of fewer than 

100 amino acids that are widely distributed across the nervous and 

endocrine systems, regulating physiological processes such as mood, 

pain, immunity, and metabolism [1]. By binding to specific receptors, 

neuropeptides influence various functions, including appetite control, 

energy metabolism, and cardiovascular regulation. Given their 

association with numerous diseases, such as depression and diabetes, 

studying neuropeptides can aid in early disease diagnosis and support 

the development of new therapeutic drugs [2]. Recently, deep 

learning models have enabled more accurate predictions regarding 

neuropeptide occurrence and function, thereby accelerating research 

and progress in medical applications [3]. 

In 2017, Ji QY et al. utilized mass spectrometry for neuropeptide 

identification, a method that, while effective, requires costly 

equipment, complex procedures, and skilled personnel for operation 

and maintenance [4]. In 2021, Md Mehedi Hasan and colleagues 

introduced the NeuroPred-FRL model, combining diverse encoding 

techniques and a random forest classifier to improve neuropeptide 

prediction accuracy [5]. By 2023, Wang Lei et al. had furthered deep 

learning applications in neuropeptide prediction with NeuroPred-

PLM, which integrates a protein language model with a multi-scale 

convolutional neural network to capture both semantic and local 

features [6]. Most recently, in 2024, Jian Wen and colleagues released 

NeuroPpred-SHE, a hybrid model that blends traditional approaches 

with modern machine learning. Most recently, in 2024, Jian Wen and 

colleagues released NeuroPpred-SHE, a hybrid model that blends 

traditional approaches with modern machine learning [7]; however, 

its high complexity and limited interpretability pose challenges. Also 

in 2024, Lei Wang’s team introduced DeepNeuroPred, which 

leverages pre-trained language models and convolutional neural 

networks (CNNs) to accurately predict cleavage sites in neuropeptide 

precursors [8]. 

Recent advancements in deep learning have significantly improved 

neuropeptide prediction, leveraging its ability to model complex 

patterns within biological sequences. Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Transformer architectures have all contributed to more robust feature 

extraction from sequence data, leading to improved peptide 

classification accuracy. However, challenges persist. A major 

limitation remains the scarcity of labeled neuropeptide data, which 

impedes these models' ability to generalize effectively to new 

sequences. Furthermore, while deep learning models are skilled at 
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capturing intricate sequence patterns, they often lack interpretability, 

making it difficult to determine which sequence regions most 

influence the predictions. This gap in interpretability restricts the 

utility of such models in biological research, where identifying 

specific contributing sequence elements is essential. Additionally, 

traditional deep learning approaches may overlook the multi-scale 

and hierarchical nature of neuropeptide features, potentially reducing 

their generalization capabilities across diverse peptide sequences. 

To address these challenges, this paper introduces a novel multi-

model integration approach, NeuroPred-INT, designed to enhance 

both the accuracy and generalizability of neuropeptide prediction. 

The model begins by fine-tuning the ESM-1b protein language model 

on a neuropeptide-specific training set and applying a Hidden 

Markov Model (HMM) for multiple sequence alignment. This step 

facilitates the extraction of common sequence features, enriching 

data diversity and substantially improving model generalizability. 

Next, NeuroPred-INT incorporates a CNN for feature extraction to 

capture local sequence patterns, thereby improving its interpretive 

accuracy of sequence information. Building on this, a global attention 

mechanism generates attention weights that focus on the most salient 

features, capturing contributions from specific sequence positions 

and enhancing interpretability. Finally, a gradient boosting tree 

classifier is employed to refine predictive performance through 

further training and optimization. Independent testing demonstrates 

that NeuroPred-INT has a clear advantage in accuracy and 

generalizability compared to other state-of-the-art neuropeptide 

prediction models. 

2. Materials and Methods 

2.1 Datasets 

The dataset used in this study is based on a previously published 

dataset, modified to meet the specific requirements of deep learning 

models. The original data were sourced primarily from the NeuroPep 

2.0 database, which includes 11,282 experimentally validated 

neuropeptide sequences, with 5,333 new entries added in version 2.0 

[9]. After applying a series of filtering steps—retaining neuropeptides 

between 5 and 100 residues in length and setting a CD-HIT similarity 

threshold of 0.9—4,463 neuropeptide samples were selected. For a 

fair evaluation, all neuropeptide test data were drawn from the newly 

added entries in NeuroPep 2.0, with 444 sequences (10%) randomly 

selected as an independent test set. 

During data processing, the original CSV format (seq, label) was 

converted to FASTA format to accommodate deep learning model 

input requirements. In the FASTA file, “NP” represents positive 

samples, while “OTP” represents negative samples, facilitating 

efficient parsing and processing of sequence data by the model. The 

dataset can be accessed via the URL: 

https://github.com/LeanderLi1014/dataset.git 

2.2 Methods 

NeuroPred-INT is an integrated model designed for neuropeptide 

prediction. The model architecture of NeuroPred-INT is presented in 

Fig. 1. First, neuropeptide sequences, collected in FASTA format, 

were subjected to multiple sequence alignment (MSA) using a 

Hidden Markov Model (HMM), generating an output.afa file that 

emphasizes shared sequence features to improve model 

generalization [10]. Next, the ESM-1b model was pre-trained on the 

neuropeptide-specific dataset and fine-tuned with custom attention 

layers and a label transformer block. The attention layer identifies 

and assigns weights to different positions within the sequence, 

producing a weighted sum of hidden states. Subsequently, the fine-

tuned ESM-1b model, in combination with a convolutional neural 

network (CNN), extracted high-dimensional feature representations 

from the input sequences. These representations were then processed 

by a gradient boosting tree classifier, which optimized feature 

weighting and classification, enabling accurate differentiation 

between neuropeptides and other peptides. 

 

Fig. 1. The flowchart of NeuroPred-INT. 

2.2.1 Fine-tuning of the ESM-1b model 

The ESM-1b model, developed by Facebook AI, serves as the core 

of our neuropeptide classification approach [11]. To optimize the 

model's learning from neuropeptide sequences, we defined a custom 

dataset class, PeptideDataset, to manage the input sequences and their 

corresponding labels. 

For data preparation, we used a custom function, 𝑟𝑒𝑎𝑑_𝑓𝑎𝑠𝑡𝑎(), 

to read the FASTA file containing neuropeptide sequences and their 

labels. This function parses sequence headers, identifying and 

extracting sequences by distinguishing neuropeptides (NP) from 

other peptides (OTP). 

We then initialized the ESM-1b model and tokenizer with pre-

trained weights from the Hugging Face model hub. Before training, 

we performed Bayesian optimization to determine optimal 

hyperparameters, setting a learning rate of 1.49e-6 and five training 

epochs [12]. We created an instance of PeptideDataset with 

sequences and labels extracted from the FASTA file, splitting it into 

80% for training and 20% for validation. Data loaders were 

configured for efficient batch processing, with an empirically 

determined batch size of 32 for optimal performance. 

To further enhance training efficiency, we enabled mixed-precision 

training (fp16), which improved performance and reduced memory 

usage. The final model training configuration, established using the 

TrainingArguments class, included parameters for the optimized 

learning rate, epochs, and a weight decay of 0.01. 

2.2.2 Hidden Markov Model and MSA 

Neuropeptide sequences were first collected in FASTA format and 

then processed through multiple sequence alignment (MSA) using a 

Hidden Markov Model (HMM). The HMM estimates parameters via 
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the Baum-Welch algorithm, maximizing the likelihood of the 

observed sequences. The conditional probability of the actual 

neuropeptide sequences is calculated as follows: 

𝑃(𝑋 | 𝜆) =  ∑ 𝑃(𝑋, 𝑝𝑎𝑡ℎ | 𝜆)𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠         (1) 

where 𝑋 represents the neuropeptide sequence in the dataset, and 𝜆 

denotes the model parameter [13,14]. This formula is instrumental in 

generating the MSA, capturing conserved features and patterns 

within the sequences that are critical for accurate classification. The 

resulting MSA file effectively identifies conserved sequence motifs 

and patterns, which are essential for reliable neuropeptide 

classification. 

2.2.3 Custom Attention Laye 

A custom attention layer is incorporated to highlight critical 

features within neuropeptide sequences. The attention mechanism 

calculates weights 𝛼𝜄 through a softmax function applied to linear 

transformations of hidden states ℎ𝑖: 

𝛼𝜄 =
𝑒𝑊ℎ𝑖+𝑏

∑ 𝑒𝑊ℎ𝑖+𝑏𝑇
𝑗=1

                     (2) 

where 𝑊  is the learnable weight matrix, 𝑏  represents the bias 

term, 𝑇  is the sequence length, and 𝑖, 𝑗  are indices of sequence 

elements [15]. 

These attention weights are then applied to hidden states through 

weighted summation, yielding an aggregated representation: 

𝑐 = ∑ 𝑎𝑖ℎ𝑖
𝑇
𝑖=1                   (3) 

The aggregated representation is subsequently processed by a 

transformer block to capture complex dependencies within the 

sequence data, after which the output is passed to a classifier for final 

prediction [16-18]. 

2.2.4 Gradient Boosting Trees 

Gradient Boosting Trees (GBT) is a powerful ensemble learning 

method that enhances model prediction performance by iteratively 

constructing a series of weak learners, typically decision trees [19]. 

GBT optimizes the model by minimizing the gradient of the loss 

function, enabling it to excel on complex datasets. 

The fundamental concept behind GBT is the iterative addition of 

new decision trees to correct the errors made by the preceding trees. 

Each new tree is trained on the residuals (errors) of the previous tree. 

Specifically, GBT is trained as follows [19]: 

1. Initialize the model: 

𝐹0(𝑥) = arg 𝑚𝑖𝑛𝛾  ∑ 𝐿(𝑦𝑖 , 𝑦)𝑛
𝑖=1            (4) 

where 𝐿 represents the loss function, 𝑦𝑖 denotes the actual value, 

and 𝛾 is a constant. 

2. Iterative training: 

For each iteration 𝑚 = 1,2, … , 𝑀: 

Compute the residuals (negative gradients): 

𝑟𝑖𝑚 = [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
          (5) 

Fit a new decision tree ℎ𝑚(𝑥) to predict the residuals: 

ℎ𝑚(𝑥) = arg 𝑚𝑖𝑛ℎ  ∑ (𝑟𝑖𝑚 − ℎ(𝑥𝑖))2𝑛
𝑖=1       (6) 

Update the model: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑣ℎ𝑚(𝑥)         (7) 

Where 𝑣 is the learning rate, which controls the contribution 

of each tree to the final model. 

 

3. Final model: 

𝐹𝑚(𝑥) = ∑ 𝑣ℎ𝑚(𝑥)𝑀
𝑚=1           (8) 

2.2.5 Loss Function 

  The loss function applied in this study is Binary Cross-Entropy 

Loss, appropriate for binary classification tasks, such as 

differentiating between neuropeptides (NP) and other peptides (OTP) 

[20]. The Binary Cross-Entropy Loss is defined mathematically as 

follows: 

𝐿(𝑦, 𝑦) = −[−𝑦 ∙ log(𝑦) + (1 − 𝑦) ∙ log(1 − �̂�)]     (9) 

where: 𝐿 denotes the loss function, 𝑦 represents the true labels (0 

for OTP, 1 for NP), 𝑦 indicates the model’s predicted probabilities. 

During training, the loss function integrates with the model 

through these key steps: 

1. Forward Propagation: The model processes the input data, 

generating predicted probabilities𝑦. 

2. Loss Calculation: The Binary Cross-Entropy Loss quantifies 

the discrepancy between the predicted probabilities 𝑦 and 

the true labels 𝑦, yielding the loss 𝐿. 

3. Backward Propagation: The gradients of the loss 𝐿  with 

respect to the model parameters are computed. The 

optimizer then updates the model parameters to minimize 

the loss. 

This iterative procedure continues until the model parameters 

converge, minimizing the loss function and resulting in a model 

capable of accurately classifying neuropeptides versus other peptides. 

2.2.6 Performance Metrics 

To evaluate the performance of the neuropeptide classification 

model, several metrics were calculated, including Precision, Recall, 

F1 Score, Sensitivity, Specificity, Accuracy, and Matthews 

Correlation Coefficient (MCC). Together, these metrics provide a 

comprehensive assessment of the model's classification capabilities. 

Here, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent the number of true positives, 

true negatives, false positives, and false negatives, respectively [21-

23]. 

Precision (Pre) 

Precision measures the accuracy of positive predictions, defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (10) 

Recall (Rec) / Sensitivity (SN) 

Recall, also known as Sensitivity, evaluates the model’s ability to 

identify positive samples, defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (11) 

F1 Score (F1) 

The F1 Score, a harmonic mean of Precision and Recall, balances 

these metrics: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (12) 

Specificity (SP) 

Specificity evalua
t
es the model’s ability to identify negative 

samples, defined as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
              (13) 

SpecAccuracy (ACC) 

Accuracy measures the overall correctness of the model’s 

predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (14) 

Matthews Correlation Coefficient (MCC) 
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The Matthews Correlation Coefficient is a balanced metric that 

considers all four components of the confusion matrix: 

𝑀𝐶𝐶 =
𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∙(𝑇𝑃+𝐹𝑁)∙(𝑇𝑁+𝐹𝑃)∙(𝑇𝑁+𝐹𝑁)
        (15) 

3. Results and Discussion 

3.1 Hyperparameters Tuning 

Extensive hyperparameter tuning was performed prior to model 

training to enhance performance. Parameters tuned included the 

learning rate, training epochs, multi-head attention configuration, and 

classifier choice (Random Forest vs. Gradient Boosting Tree). All 

experiments were conducted on Google Colab, utilizing the 

integrated T4 and L4 GPUs. 

Following the tuning process, optimal parameters were identified 

for neuropeptide classification. The final model was configured with 

a learning rate of 1.29 × 10−5, 10 training epochs, and 12 attention 

heads, with a Gradient Boosting Tree classifier selected for 

classification. These settings provided an optimal balance between 

model accuracy and training stability, ensuring reliable performance 

in distinguishing neuropeptides from other peptide sequences. 

3.2 Comparison with the state-of-the-art methods for neuropeptide 

prediction 

To ensure an unbiased comparison, we used a consistent 

independent test set for model evaluation. As shown in Tab. 1, the 

INT model demonstrated outstanding performance, achieving an F1 

score of 0.9229 and an accuracy of 0.9212, closely matching the PLM 

model’s F1 score of 0.9238 and accuracy of 0.9223. Minor 

differences in precision, recall, and specificity between the INT and 

PLM models suggest that both are highly effective for neuropeptide 

classification. 

 

The ROC and PR curves for the INT model, illustrated in Fig. 2 

and Fig. 3, further demonstrate its robustness. The ROC curve, with 

an AUC of 0.963, indicates a high true positive rate across various 

thresholds, while the PR curve, with an AP of 0.962, shows that the 

model maintains high precision as recall increases. Notably, the AUC 

and AP values for the INT model are higher than those of the other 

two models. These metrics confirm the INT model’s effective balance 

of precision and recall, establishing it as a reliable tool for 

neuropeptide prediction. 

Although the FRL model achieved the highest precision (0.9517) 

and specificity (0.9617), it showed lower recall (0.7545) and a 

correspondingly lower F1 score (0.8417). These results indicate that 

the FRL model adopts a more conservative classification strategy, 

emphasizing precision over recall. This approach may reduce false 

positives but could increase false negatives. 

In summary, while the INT and PLM models offer a balanced 

approach to neuropeptide classification, the FRL model prioritizes 

precision, potentially at the cost of recall. This analysis underscores 

the importance of selecting a model based on specific application 

needs, whether the priority is minimizing false positives or achieving 

balanced performance. 

3.3 Visualization of features extracted by NeuroPred-INT 

To gain insights into the features extracted by the NeuroPred-INT 

model, we employed t-SNE (t-distributed Stochastic Neighbor 

Embedding) to visualize high-dimensional data at key stages of the 

model’s processing (see Fig. 4-7) [24]. These visualizations reveal 

how the model differentiates neuropeptides from other peptides. 

The initial t-SNE plot shows the output of the tokenizer, 

representing input sequences in a numerical format. Here, two 

relatively distinct clusters emerge, with minor overlap, indicating that 

the tokenizer captures essential sequence features and establishes a 

foundation for further processing. 

Tab. 1. Performance comparisons of NeuroPred-INT with the two 

representative state-of-the-art methods on the independent test set 

Methods Pre Rec F1 SN SP ACC MCC 

FRL 

Model 
0.9517 0.7545 0.8417 

0.754

5 
0.9617 0.8581 

0.732

1 

PLM 

Mode 
0.9067 0.9414 0.9238 

0.941

4 
0.9032 0.9223 

0.845

2 

INT 

Model 
0.9030 0.9437 0.9229 

0.943

7 
0.8986 0.9212 

0.843

2 

 

Fig. 2. Comparison of ROC curves of FRL, PLM and INT models 

 

Fig. 3. Comparison of PR curves of FRL, PLM and INT models 

In the next stage, the t-SNE plot of the Transformer layer output 

illustrates the enhanced separation between neuropeptides and other 

peptides. Compared to the tokenizer output, data points are more 

dispersed within the feature space, suggesting that the Transformer 

layer amplifies the separation by creating a broader representation. 

Following this, the t-SNE plot of the attention layer output captures 

the effects of the custom attention mechanism. This layer emphasizes 

the most relevant sequence components, enhancing feature extraction. 

The plot shows two clusters with some overlap, indicating that the 

attention mechanism retains distinctiveness while refining the feature 

space. Finally, the t-SNE plot of the classifier logits reveals two 

compact and well-separated clusters with minimal overlap, 

demonstrating the classifier’s effectiveness in consolidating extracted 

features for accurate predictions. 

3.4 Model Interpretability 

To enhance the interpretability of our neuropeptide classification 
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model, we employed a combination of attention mechanisms and 

visualizations of learned representations. The AttentionModel, which 

incorporates a custom attention layer, enables us to investigate the 

influence of specific amino acid residues on the model's predictions. 

By analyzing the attention weights assigned to each residue, we can 

identify the critical segments of the peptide sequences that are pivotal 

for classification. 

 

Fig. 4. Visualization of Tokenizer Output 

 

Fig. 5. Visualization of Transformer Layer 

 

Fig. 6. Visualization of Attention Layer 

For each input sequence, we computed the attention weights 

generated by the model during the forward pass. These attention 

weights, derived from the last hidden states, reflect the significance 

of each amino acid in determining whether a sequence belongs to the 

neuropeptide (NP) or non-neuropeptide (OTP) class. 

 

Fig. 7. Visualization of Classifier Logits 

The visualization results indicate that the model predominantly 

focuses on key residues characteristic of each class. For instance, in 

NP sequences, specific residues such as F and G exhibited 

significantly higher attention weights, suggesting their crucial roles 

in neuropeptide functionality. Conversely, OTP sequences displayed 

distinct patterns, with different residues gaining attention, aiding in 

their differentiation from NPs. 

The implementation of multiple sequence alignment (MSA) via a 

Hidden Markov Model (HMM) significantly enhances the model's 

interpretability. The aligned output sequences in the output.afa file 

reveal conserved regions consistent across similar peptides. This 

alignment not only highlights shared sequence features but also aids 

in understanding the evolutionary relationships among peptides. 

Analysis of the alignment revealed that conserved motifs often 

correspond to regions with higher predictive accuracy, as evidenced 

by the model's performance metrics. This correlation between 

alignment and prediction success underscores the importance of 

evolutionary context in peptide classification. 

4. Conclusions 

In this study, we introduced NeuroPred-INT, a novel multi-model 

integration approach designed to enhance both the accuracy and 

generalizability of neuropeptide prediction. By fine-tuning the ESM-

1b protein language model on a neuropeptide-specific training set and 

applying a Hidden Markov Model (HMM) for multiple sequence 

alignment, we successfully extracted shared sequence features, 

enriching data diversity and improving model generalization. 

The incorporation of a Convolutional Neural Network (CNN) for 

feature extraction, combined with a global attention mechanism, 

enabled NeuroPred-INT to capture local sequence patterns and 

emphasize the most salient features. This approach significantly 

enhanced the interpretive accuracy of sequence information. In the 

final step, a gradient boosting tree classifier further refined predictive 

performance through targeted training and optimization 

Our extensive evaluation using independent test sets demonstrated 

that NeuroPred-INT surpasses other state-of-the-art neuropeptide 

prediction models in both accuracy and generalization. The model 

achieved an F1 score of 0.9229 and an accuracy of 0.9212, 

maintaining a balanced approach to both precision and recall. 

t-SNE visualization of NeuroPred-INT features revealed distinct 
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clusters, highlighting each component's role in neuropeptide 

differentiation. The attention mechanism, in particular, identified key 

residues influencing predictions. 

In summary, NeuroPred-INT is a robust and interpretable tool 

advancing neuropeptide prediction, with future work aimed at 

improving interpretability and expanding to other peptide 

classifications. 
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