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Abstract

With advancements in robotics, mobile robots are increasingly deployed in

diverse applications. However, complex indoor environments pose challenges

for perception and obstacle recognition. This paper proposes a costmap-based

multi-sensor fusion method that integrates visual point clouds with two 2D

LiDARs for obstacle detection. A downward-facing LiDAR enables ground

obstacle detection, with systematic functional design and parameter optimization.

Experimental results demonstrate effective 3D obstacle perception and improved

obstacle avoidance, achieving an average response time of 1.09 s for static

obstacles and 1.30 s for dynamic obstacles.
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1 | INTRODUCTION

With the advancement of technology, mobile robots are being increasingly applied across various fields, including commercial

services, transportation and logistics, healthcare, and professional cleaning[1, 2]. In complex indoor environments, environmental

perception and obstacle recognition face multiple challenges. Sensors serve as the primary data source for environmental

perception. However, single-sensor systems have significant limitations: cameras are highly sensitive to lighting conditions, while

LiDAR is constrained by its field of view and susceptibility to occlusions. Moreover, indoor environments contain both static and

dynamic obstacles with varying heights, further increasing the complexity of perception.

This paper proposes a multi-sensor-based approach for environmental perception and obstacle recognition using a costmap.

Obstacle layers are generated separately from visual point clouds and two 2D LiDARs, and then fused through the costmap.

Additionally, a ground obstacle detection method based on a downward-facing LiDAR is designed, with functional implementation

and parameter configuration. The proposed method is validated within a unified path planning framework. Experimental

evaluations on a real mobile robot platform demonstrate the effectiveness of the approach.
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2 | RELATED WORK

2.1 | Obstacle Recognition

Obstacle recognition algorithms have evolved from traditional geometric methods to learning-based methods, with each stage

of technological advancement laying the foundation for subsequent improvements.

Early obstacle recognition algorithms primarily relied on geometric models to identify obstacles in the environment by

processing point cloud data, such as filtering, segmentation, and clustering. Among them, the grid map-based obstacle recognition

method became the most common form. For example, the grid-based method proposed by Thrun et al.[3] and others stores

obstacle information in a gridded form and uses simple geometric operations for obstacle detection. This method heavily relies on

the source of the obstacles, including their accuracy and coverage.

With the continuous development of computing power and machine learning technologies, obstacle recognition began to

incorporate classification and regression algorithms, transitioning into the machine learning-based phase. Support Vector Machine

(SVM) proposed by Cortes et al.[4] and the Random Forest (RF) algorithm proposed by Breiman [5] have been widely used for

obstacle classification tasks. These algorithms can train on feature data obtained from sensors, enabling more accurate object

recognition in complex environments. Compared to traditional geometric methods, machine learning significantly enhances

performance in diverse environments, particularly when identifying multiple types of obstacles or handling dynamic obstacles,

showing stronger adaptability.

With the rapid development of deep learning technologies, the performance of obstacle recognition algorithms has improved

significantly. Specifically, convolutional neural networks (CNNs) proposed by LeCun et al.[6] have made it possible to extract

high-level features from complex image and point cloud data, greatly enhancing recognition capabilities. Deep learning-based

algorithms can not only perform traditional obstacle detection but also carry out semantic segmentation, enabling precise

identification of both the type and location of obstacles. For example, the YOLO model proposed by Redmon et al.[7] and the

Mask R-CNN model proposed by He et al.[8] can perform real-time object detection, while the PointNet model proposed by Qi et

al.[9] for point cloud data can directly recognize obstacles in three-dimensional space, providing stronger perception capabilities

for autonomous navigation in complex environments.

However, single-sensor obstacle recognition often faces issues such as noise interference and misidentification. To improve

accuracy and robustness, sensor fusion technology has gradually become an important tool in obstacle recognition. By integrating

data from multiple sensors, such as LiDAR, RGB-D cameras, and IMUs, robots can better perceive obstacles in complex

environments.[10] In dynamic scenes, sensor fusion can effectively reduce errors and uncertainties caused by the limitations of a

single sensor. For example, Cai et al.[11] proposed a low-cost and robust multi-sensor data fusion solution for heterogeneous

multi-robot cooperative navigation, which integrates data from multiple sensors. Based on the principles of discrete Kalman

filtering and extended Kalman filtering, a three-step joint filtering model is used to improve state estimation, and after processing

visual data with the YOLO deep learning object detection algorithm, the fusion filter is updated.

2.2 | Obstacle Avoidance Technology

Obstacle avoidance technology is closely related to path planning algorithms and mainly includes methods based on graph

search, sampling, and optimization. It has continuously developed with the improvement of computational capabilities.

Starting with Dijkstra’s algorithm [12], this method guarantees global optimality but has lower computational efficiency. The

A* algorithm [13] speeds up the search process by incorporating a heuristic function but still faces high computational complexity

in large-scale or obstacle-dense environments. The D* Lite algorithm [14] improves real-time performance and adaptability in

dynamic environments by updating paths locally.

A representative method is the Rapidly-exploring Random Tree algorithm [15], which rapidly explores the target area through

random sampling, though it cannot guarantee the optimal path. The Timed Elastic Band algorithm [16], on the other hand,

provides smooth paths through trajectory optimization, making it suitable for dynamic obstacle avoidance scenarios and able to

respond quickly to environmental changes.
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F I G U R E 1 Schematic diagram of sensor perception range.

The Dynamic Window Approach [17] and Model Predictive Control [18] are representative of optimization-based algorithms.

DWA samples within the velocity space and optimizes the motion trajectory by combining multiple cost functions, enabling

real-time obstacle avoidance. MPC predicts future states based on the robot’s dynamic model, making it suitable for complex

environments with strong adaptability and real-time capabilities.

3 | OBSTACLE DETECTION AND OBSTACLE AVOIDANCE DESIGN

This paper uses an RGB-D camera and two LiDARs for environmental perception. The RGB-D camera is employed to

detect and recognize 3D obstacles in front of the robot, while one LiDAR is placed horizontally to detect global obstacles, and the

other is tilted downward to detect ground obstacles. The multi-source sensor fusion enables 3D obstacle recognition, describing

the distribution of obstacles in the overall environment. The perception range is shown in Fig. 1.

Ground obstacle detection is implemented using the downward-facing LiDAR. The design of the downward-facing LiDAR

involves several key factors, including scanning range, obstacle recognition, and geometric correction. To accurately identify

ground obstacles and reduce the influence of the ground, the functional scheme of the downward-facing LiDAR needs to be

tailored to the specific application scenario.

The horizontally placed LiDAR is primarily used for global obstacle detection. Unlike the downward-facing LiDAR, the

horizontal LiDAR application is relatively straightforward and does not require complex custom designs. It can directly input

point cloud data into the perception fusion algorithm. Its main task is to continuously scan the surrounding environment and

provide global obstacle information.

The three sensors are fused through a costmap. The depth image data from the RGB-D camera, the global obstacle information

from the horizontal LiDAR, and the ground obstacle information from the downward-facing LiDAR are integrated through various

layers of costmaps to generate a unified grid map. This grid map precisely describes the obstacles in the environment, providing

spatial distribution, size, and relative position of obstacles, thus offering high-precision environmental perception data for the

robot’s navigation and obstacle avoidance.

3.1 | Design of Downward-Facing LiDAR

Traditionally, a single horizontally placed LiDAR has limitations in detecting ground and low-level obstacles. Since its main

scanning plane is horizontal, it is challenging to effectively cover low-lying objects or obstacles near the ground. This can lead

to blind spots in environments with complex terrain or numerous low-level obstacles. To address this issue, this paper adds an

additional tilted LiDAR to the existing horizontal LiDAR, enhancing the detection capability for ground and low-level obstacles

by adjusting the scanning angle, thus improving the accuracy and comprehensiveness of environmental perception.

When designing the downward-facing LiDAR, the following key factors were considered: tilt angle α , laser scanning angle

β , obstacle recognition, and geometric correction.

The tilt angle α determines the ground obstacle detection distance D. A larger tilt angle brings detected obstacles closer to the

robot, reducing the available space for subsequent path planning, which may negatively impact the planning process. Conversely,
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F I G U R E 2 Design of tilt angle.

F I G U R E 3 Design of scanning angle.

a smaller tilt angle allows obstacles to be detected farther from the robot, providing more space for path planning. However, an

excessively small tilt angle may deviate from the intended purpose of ground obstacle detection, making it ineffective in capturing

ground-level obstacles.

Therefore, the optimal tilt angle must balance sufficient path planning space and effective ground obstacle detection. The

ideal detection distance D should be 1.5 to 2 times the robot’s body length. Based on this detection distance and the LiDAR

installation height H , the appropriate tilt angle can be calculated as Eq. (1):

α = arctan(H/D) (1)

The laser scanning angle β determines the detection range L. When the laser scanning angle increases, the horizontal detection

range in front of the LiDAR also expands. Conversely, when the scanning angle decreases, the horizontal detection range becomes

narrower.

Theoretically, the laser detection range should be at least equal to the robot’s body width. However, in practical applications,

to meet the requirements of path planning, the detection range L should cover 1.5 to 2 times the robot’s width.

By leveraging geometric relationships, the required laser scanning angle can be derived from the desired detection range, as

expressed in Eq. (2):

β = 2 · arcsin
(

L

2
√

H2 +D2

)
(2)

The primary goal of obstacle recognition is to distinguish between the ground and obstacles. Typically, LiDAR detects

obstacles by analyzing laser reflections and calculating obstacle distances based on the reflection time. For the downward-facing

LiDAR, it is necessary to compare the measured laser distance with the expected ground distance in the absence of obstacles.

Assuming that, in an obstacle-free scenario, the laser signal at point i reaches the ground at a distance of li, f rist , the presence
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F I G U R E 4 Diagram of obstacle recognition.

of an obstacle would result in a detected distance li smaller than li, f rist . Conversely, if there is a depression or gap, the detected

distance would be greater than li, f rist , but it should still be classified as a ground obstacle. Therefore, the recorded obstacle

distance should be maintained as li, f rist .

To account for measurement errors, a threshold thr is introduced to differentiate between obstacles and ground. Following

this logic, all point cloud data within li, f rist and its threshold thr are filtered out, while points with distances greater than li, f rist are

retained, as described in Eq. (3).

By applying this process to each laser data point within the scanning angle, the ground obstacle recognition for the current

position is completed.

li =


li , li < li, f rist − thr

0 ,
∣∣li, f rist − li

∣∣< thr

li, f rist , li > li, f irst + thr

(3)

The purpose of geometric correction is to accurately determine the horizontal distance di from an obstacle to the robot. Since

the LiDAR is installed at an inclined angle, the coordinate system of the raw data is affected, meaning that the directly obtained

obstacle distance is typically the straight-line distance li from the obstacle to the LiDAR.

However, for mapping or navigation purposes, the required measurement is the horizontal distance from the obstacle to the

robot, which is necessarily shorter than the straight-line distance. To precisely determine the obstacle’s position, the LiDAR data

must be geometrically corrected based on the tilt angle and installation height, converting the straight-line distance li into the

horizontal distance di, as expressed in Eq. (4):

di = li ·

√
l2
i, f rist −H2

li, f rist
= li ·

√
1− H2

l2
i, f rist

(4)

Thus, the actual distance of each laser measurement di is given by:
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F I G U R E 5 Diagram of geometric correction.

di =


li ·

√
1− H2

l2
i, f rist

, li < li, f rist − thr

0 ,
∣∣li, f rist − li

∣∣< thr√
l2
i, f rist −H2 , li > li, f rist + thr

(5)

3.2 | Perception Fusion

The global laser point cloud data from the horizontal LiDAR, the ground obstacle point cloud data from the downward-facing

LiDAR, and the front-facing depth point cloud data from the RGB-D camera are integrated to generate a costmap.

The costmap is a fundamental concept in robotic navigation, playing a crucial role in path planning, obstacle avoidance, and

environmental perception. It maps different regions of the environment (such as obstacles and free space) onto a 2D grid and

assigns a cost value to each grid cell, representing the "difficulty" or "cost" of traversing that area. During path planning, the robot

prioritizes regions with lower cost values to optimize its trajectory.

The cost values represent the distribution of obstacles and free space within the costmap, where each grid cell holds a specific

value: Lethal obstacles (254): Represented as static global map obstacles or dynamic obstacles detected by sensors. Obstacle

space (128-253): Areas where collisions may occur, especially for robots with complex contours and postures. Irregular robot

shapes are more prominent in this category. Inflation space (1-127): Ensures that the robot maintains a minimum safe distance

from obstacles during path planning, especially useful in narrow spaces to facilitate the generation of a safe, low-cost path. Free

space (0): Areas where the robot can navigate freely.

In obstacle and inflation spaces, cost values can either be assigned directly from predefined thresholds or mapped using

a decay coefficient. The cost values are computed based on the robot’s geometric dimensions and sensor data, leading to the

construction of the costmap.

As shown in Fig. 6, different sensor data sources contribute to the costmap.

Single-line LiDAR scans the environment and generates a 2D point cloud in LaserScan format, originally in polar coordinates.

This data is transformed into the global coordinate frame (x,y,z) and stored in PointCloud2 format. Multi-line LiDAR and depth

cameras generate depth maps in real-time, which are converted into 3D point clouds, typically in PointCloud or PointCloud2

format. While PointCloud is an earlier ROS format, PointCloud2 is more efficient for handling 3D data.

After converting and storing all sensor data in PointCloud2 format, the points are added to an obstacle list. Each point (x,y,z)

undergoes height and distance filtering, removing points exceeding the maximum height or Euclidean distance threshold. The

remaining points are projected into a 2D coordinate system (x,y) and marked as obstacles (cost = 254).

Through this process, all sensor-generated point cloud data is continuously pushed into the obstacle list, which is then used to

update the obstacle layer. In addition to the obstacle layer, the system also maintains static and inflation layers, forming a layered
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F I G U R E 6 Diagram of geometric correction.

F I G U R E 7 Diagram of layer design.

costmap structure, as shown in Fig. 7. The static layer is generated from a global map topic, while the inflation layer is created

based on predefined obstacle inflation radii. The final costmap is obtained by overlaying all layers together.

When multiple sensors are used for obstacle detection, two primary update methods are available for the main obstacle layer,

as illustrated in Fig. 8.

Overwrite Update: The new obstacle layer directly replaces the old values in the main layer, discarding historical data. This

method is suitable for highly dynamic environments but may result in the loss of past obstacle information.

Maximum Value Update: The new obstacle value is compared with the existing value, and the maximum is retained. This

approach prevents frequent updates caused by dynamic obstacles and more accurately reflects the actual environment. It is

particularly useful in complex or dynamic settings where preserving historical data is beneficial.

The overwrite method is aggressive, best suited for dynamic environments but prone to data loss, whereas the maximum

value method is more conservative, retaining past obstacle information unless explicitly cleared. In multi-sensor processing, the

maximum value update is the preferred approach.

F I G U R E 8 Diagram of map update.
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3.3 | Obstacle Avoidance Implementation

This paper adopts the A* algorithm for global path planning and the DWA algorithm for local path planning to achieve

autonomous navigation and obstacle avoidance.

The A* algorithm is a heuristic search algorithm that introduces a heuristic estimation function into the traditional Dijkstra

algorithm, guiding the search direction and significantly improving search efficiency. A* utilizes two cost functions, as shown in

Eq. (6):

f (n) = g(n)+h(n) (6)

Here, g(n) is the cumulative cost function, representing the actual movement cost from the start node to the current node;

while h(n) is the heuristic function, used to estimate the minimum expected cost from the current node to the target node. The

heuristic function can use different distance metrics, such as Euclidean distance, Manhattan distance, or Chebyshev distance, with

the specific choice depending on the characteristics of the environment.

DWA (Dynamic Window Approach) is a local path planning method based on velocity obstacles. It primarily generates

feasible motion trajectories for the robot by considering the robot’s speed limitations and the obstacles in the surrounding

environment. The DWA algorithm relies on the robot’s velocity space (the range of velocities the robot can achieve within a

certain time period) and samples different speed combinations to evaluate the trajectories at each speed. The optimal trajectory is

then selected as the robot’s motion direction.

Velocity space sampling is based on the robot’s physical parameters, such as linear velocity, angular velocity, acceleration,

and safety distance. Based on these physical parameters, velocity space sampling can be divided into three types of constraints:

velocity boundary constraints, acceleration constraints, and environmental obstacle constraints.

After obtaining the velocity sampling space, the DWA algorithm needs to perform sampling at a certain frequency. Assuming

the sampling intervals are denoted as v and w for linear velocity and angular velocity respectively, the number of sampled velocity

sets can be expressed by the Eq. (7):

n =
[(

vhigh − vlow
)
/vres

]
·
[(

ωhigh −ωlow
)
/ωres

]
(7)

where: vhigh and vlow are the maximum and minimum linear velocities; ωhigh and ωlow are the maximum and minimum angular

velocities.

Among the n sampled trajectories, an evaluation function is used to assess and select the optimal trajectory. The trajectory

evaluation function is given by Eq. (8):

G(vc,ωc) = a ·heading(vc,ωc)+b ·dist(vc,ωc)+ c ·vel(vc,ωc) · → (8)

Where: a, b, c are the weighting coefficients of the evaluation function; heading(vc,ωc) is the heading evaluation function,

which describes the geometric relationship between the heading angle and the line connecting the robot center to the target point;

dist(vc,ωc) is the distance evaluation function, which measures the distance between the robot’s current velocity trajectory and

the nearest obstacle; vel(vc,ωc) is the velocity evaluation function, representing the magnitude of the robot’s current velocity in

the trajectory.

4 | EXPERIMENTAL RESULTS AND ANALYSIS

4.1 | Physical Mobile Robot

This paper constructs a two-wheeled differential-drive mobile robot equipped with a stereo depth camera and two LiDAR

sensors for multi-sensor environmental perception and obstacle recognition. A general path planning scheme is employed for
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F I G U R E 9 Physical mobile robot.

F I G U R E 1 0 Detection results of individual sensors.

navigation and obstacle avoidance. The system configuration is provided in Tab. 1, and the overall setup is shown in Fig. 9.

4.2 | Obstacle Detection

This study employs visual point clouds, horizontal LiDAR, and ground LiDAR to achieve multi-dimensional obstacle

detection. In an indoor environment, individual validation is conducted by testing different obstacle heights for each detection

method separately. Finally, the functionality of multi-dimensional obstacle detection is verified by simultaneously placing

obstacles of varying heights.

Fig. 10 illustrates the obstacle detection results when different sensors are used individually:

• An obstacle taller than the horizontal LiDAR height is placed. The white lines represent the detection results of the horizontal

LiDAR, capturing not only the obstacle itself but also environmental information.

• An obstacle shorter than the horizontal LiDAR height is placed. When the robot approaches the obstacle, it successfully

detects it and provides the correct position. The white lines represent the corrected obstacle data from the ground LiDAR,

while the blue lines represent the raw LiDAR data without obstacle identification or geometric correction.

• An obstacle shorter than the horizontal LiDAR height is placed outside the ground LiDAR detection range. The obstacle is

detected using visual point clouds. Due to the nature of depth point clouds, only the side facing the robot has a more complete

edge representation.

Fig. 11 presents the obstacle detection results when multiple sensors work together. The red lines represent the horizontal

LiDAR data, the white lines represent the ground LiDAR obstacle data, the blue lines represent the raw ground LiDAR data, and
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F I G U R E 1 1 Detection results of multiple sensors.

F I G U R E 1 2 Experimental site and the distribution of static obstacles.

the orange lines indicate the visual detection results. By placing two buckets in different positions, the complementary effect of

horizontal LiDAR and visual detection can be observed. The visual detection helps to complete the correct obstacle region for the

left bucket.

4.3 | Obstacle Avoidance Experiment

After completing obstacle detection, the feasibility of path planning and the timeliness of obstacle avoidance are validated.

The experiment consists of static obstacle tests and dynamic obstacle tests. The experimental site and the distribution of static

obstacles are shown in Fig. 12, while the dynamic obstacle experiment simulates moving obstacles using pedestrians in the test

environment.

The results of the static obstacle experiment are shown in Fig. 14. At 0 s, the robot platform issued a target point and planned

a global path directly to the goal. At 3.30 s, the robot detected the first obstacle (a stool), and at 4.45 s, it updated the global path

and bypassed the obstacle via the local path. At 7.00 s, the robot detected the second obstacle (a foam box), and at 7.32 s, it

updated the global path to avoid it. At 11.15 s, the robot detected the third obstacle (a cardboard box). Due to the influence of the

inflation zone, even though the robot was physically able to pass through, it still planned a global path that avoided the obstacle at

12.55 s. Finally, the robot successfully reached the goal at 26.35 s, completing the navigation task.

To verify the stability of the system, four additional experiments were conducted. In five experiments, the robot responded
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F I G U R E 1 3 Results of the static obstacle experiment.

F I G U R E 1 4 Results of the dynamic obstacle experiment.

to 15 static obstacles with an average response time of 1.09 seconds. Timely response indicates that the robot exhibits reliable

obstacle avoidance performance in static environments.

The results of the dynamic obstacle experiment are shown in Fig. 15. At 0 s, the robot platform planned a global path directly

to the goal. At 1.32 s, a pedestrian began to move and was detected as an obstacle. At 2.13 s, the pedestrian appeared in front of

the robot, but the global path was not immediately updated. At 2.47 s, the robot replanned the global path to avoid the obstacle.

At 14.00 s, the pedestrian moved again and was detected; at 15.23 s, the pedestrian appeared in front of the robot, but the global

path still remained unchanged. At 15.45 s, the robot updated the global path to perform an avoidance maneuver. Ultimately, the

robot successfully reached the goal at 32.28 s, completing the navigation task.

In addition, four dynamic obstacle avoidance experiments were conducted. In five experiments, a total of 10 dynamic

interruptions were recorded, with an average dynamic obstacle response time of 1.30 seconds.

5 | EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results demonstrate that the proposed costmap-based obstacle detection and avoidance method effectively

handles environmental perception and obstacle detection in complex environments. Compared to traditional single-sensor

approaches, the complementary use of vision and LiDAR enhances the robustness of environmental perception. For ground
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obstacle detection, the designed ground-facing LiDAR successfully identifies and enriches the detection of obstacles in front of

the robot.

During real-world experiments, the proposed method accurately identifies various obstacles and generates a costmap. Using a

unified path planning framework, both static and dynamic obstacle avoidance were validated. The method achieved an average

response time of 1.09 s in static obstacle experiments and 1.30 s in dynamic obstacle experiments, confirming its effectiveness in

real-world scenarios.
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