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Abstract

This study proposes a behavior tree (BT)-based autonomous task management

system for tunnel firefighting robots, integrated with ROS2 and Autoware frame-

work. The system coordinates perception, navigation, and fire-extinguishing

modules by leveraging BT’s modularity and responsiveness. A visibility-reward-

augmented Hybrid A* algorithm ensures flame visibility during navigation,

while flame detection and ROS2-enabled localization guide water-cannon con-

trol. Virtual and real-world experiments demonstrate effectiveness: navigation

achieved 20.22 s average time with 6.21° angular deviation, and water-cannon

extinguishing averaged 1.77 to 3.87 s per flame across angles. Results con-

firm robust task execution in dynamic tunnel environments, highlighting the

framework’s adaptability for firefighting scenarios.
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1 | INTRODUCTION

As a relatively unique structure, tunnels rely heavily on mechanical assistance for ventilation and lighting. Once a fire occurs,

unless mechanical cooperation is employed, it cannot be controlled or extinguished[1], posing a serious threat to public property

and even personal safety[2]. As a solution to tunnel fires, tunnel fire-fighting robots must carry out extinguishing tasks in dynamic,

complex, and uncertain tunnel environments through autonomous task management, concurrently integrating modules such as

perception, modeling, planning, decision-making, and execution[3].

Autonomous task management, as a control strategy, aims to organically integrate the various modules to enable the robot to

complete tasks in dynamic environments autonomously. The commonly used robot control architectures include behavior trees,

finite state machines, hierarchical finite state machines, subsumption architectures, TR programs, decision trees, etc. Their details,

advantages, and disadvantages are shown in Table 1.

Behavior trees, as a member of robotic control architectures, have been widely applied in the field of automatic control

in recent years. They were first proposed by Dromey[4] and are principally characterized by modularity and responsiveness.

Modularity refers to the ability to flexibly separate and recombine control strategies, while responsiveness denotes the system’s
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TA B L E 1 Comparison of autonomous task control architectures.

Architecture Structure Pros Cons

Behavior Tree Hierarchical nodes Modular, expressive Steep learning

Finite State Machine Flat states Simple, debuggable Unscalable

Hierarchical FSM Nested states Modular, scalable Complex

Subsumption Architecture Layered suppression Fast, robust Priority tuning

Trigger–Rule Program Ordered rules Reactive, goal-driven Hard to maintain

Decision Tree Branching logic Transparent Inflexible

capacity to efficiently handle unpredictable events. In contrast, finite state machines rely on the unidirectionality of state

transitions, which can lead to state-explosion problems and prohibitively high code maintenance costs when managing complex

tasks. Consequently, behavior trees have gradually been adopted as the primary solution.

In the robotics domain, Marzinotto et al.[5] demonstrated the mathematical equivalence between behavior trees and traditional

control architectures, establishing the theoretical foundation for their application in robotic task management. Ögren[6] proposed

leveraging the self-management features of behavior trees to control unmanned aerial vehicles in tasks such as missile evasion,

target engagement, and return to base. Kobori et al.[7] introduced a distributed behavior-tree framework for multi-robot task

coordination, enabling ground robots and UAVs to collaboratively perform search and rescue missions. Current research on

behavior trees focuses on resolving issues of synchronization, deadlock, and fault tolerance.

The modular design of behavior trees is well suited to decomposing autonomous firefighting tasks into independent and

recombinable sub-behavior trees, while providing real-time status feedback from each node, thereby enabling robots to cope with

the complex environmental changes encountered during fires[8]. To this end, this study proposes a ROS2-based collaborative

decision-making control strategy using behavior trees. Through a hierarchical decoupling mechanism, task logic and low-level

execution are organically coordinated, allowing the firefighting robot to safely navigate narrow tunnel environments and areas

near fire sources using high-precision localization and dynamic path-planning algorithms, and to control a two-axis water cannon

for extinguishing based on flame detection and localization algorithms.

2 | RELATED WORK

2.1 | Behavior Trees

A behavior tree is a formal model based on a directed tree structure for describing an agent’s behavioral logic. Nodes in a

behavior tree are classified into four main categories:

1) Control Nodes:

Sequence Node: Traverses its children from left to right. When a child returns Success, the sequence proceeds to the next

child; if a child returns Failure or Running, the sequence halts and propagates that status to its parent. The sequence returns

Success only if all children return Success; otherwise, it returns immediately upon the first Failure or Running.

Selector Node: Traverses its children from left to right until one returns Success or Running, which it then propagates to

its parent. If all children return Failure, the selector returns Failure.

Parallel Node: Executes all children simultaneously. For a total of N children and a user-defined threshold M, the parallel

node’s return status follows: it returns Success when M children return Success; returns Failure when M children return

Failure; and returns Running otherwise. Here, N denotes the total number of children, and M is the threshold.

2) Decorator Nodes: Each decorator has exactly one child and serves to modify its child’s return status or control its execution

behavior. Common decorators include:

Inverter: Swaps Success and Failure returned by the child.
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Repeater: Re-executes its child until a specified repeat count is reached or a given condition is met.

Always Fail/Always Succeed: Forces the node always to return Failure or Success, regardless of the child’s status.

Until Fail/Until Succeed: Continuously executes the child until it returns Failure or Success, respectively.

4) Condition Nodes: Condition nodes evaluate a logical predicate and return Success if the predicate holds, or Failure

otherwise. They never return Running.

5) Action Nodes: Action nodes perform concrete operations. They return Success when the action completes, Failure if

it cannot be carried out, or Running while the action is still in progress.

2.2 | ROS2 Framework

ROS2 is an open-source framework that provides all the utilities required to configure the system and build the middleware

for controlling and simulating robots[9]. The ROS2 architecture comprises multiple abstraction layers, as illustrated in Fig. 1,

arranged from top to bottom as: rclcpp/rclpy, rcl, and rmw (ROS Middleware Interface). The upper layers host user-level code,

while the lower layers implement the middleware. Specifically, rclcpp and rclpy serve as the C++ and Python client libraries,

respectively, both built upon rcl. The rcl layer is a generic client-library API written in C that provides fundamental functionalities,

whereas the client-library implementations furnish the remaining features required by the application-level API. These include the

executor, a high-level scheduler responsible for managing callback invocations (e.g., timers, subscriptions, and services) across

one or more threads. The rmw layer constitutes the middleware abstraction interface, with each middleware implementation for

ROS2 providing a corresponding rmw plugin.

At the rmw layer, communication is decoupled via the DDS (Data Distribution Service) protocol, relying on key entities

such as Publishers, Subscribers, QoS (Quality of Service) settings, and Topics. A Domain represents a communication realm

identified by a unique Domain ID; domains with different IDs cannot exchange information directly. QoS policies can be tailored

per Topic to meet diverse scenario requirements. A Topic serves as the fundamental unit of data exchange under DDS. Publishers

and Subscribers respectively manage the writing and reading of data to and from Topics, internally leveraging DataWriters for

network transmission and DataReaders for reception.

2.3 | Autoware Framework

Autoware is an open-source autonomous driving software platform built on the ROS2 framework, designed to provide a com-

prehensive software solution for automated vehicles [10]. Autoware supplies a suite of functional modules and tools—including
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F I G U R E 2 Autoware Integration Workflow.

F I G U R E 3 Autoware Map Construction.

perception, sensor fusion, localization, planning, and control—to support each of the key tasks in autonomous driving, thereby

offering a high starting point for firefighting robots. Its open-source character enables researchers, developers, and vehicle

manufacturers to extend and customize its code to meet their specific requirements. The overall integration flow is shown in Fig. 2.

Integrating the Autoware framework begins with creating a sensor model for each sensor, specifying its parameters and

data format to ensure the system processes incoming data correctly. Simultaneously, to enable Autoware to control the robot, a

vehicle-dynamics model of the robot’s motion characteristics must be developed, and an accompanying vehicle-interface package

must be implemented to translate Autoware control commands into executable instructions for the four-wheel chassis.

For map creation, the open-source SLAM package lidarslam_ros2[11] is employed to generate an environment point-

cloud map, which is then downsampled to reduce computational load. Traffic-related features are annotated on this map to produce

a vector map, as illustrated in Fig. 3.

3 | METHODS

3.1 | Integration of Behavior Trees with ROS2

The integration of behavior trees with ROS2 is achieved using BehaviorTree.CPP, which provides a C++ library for

implementing node logic and actions, and supports assembling behavior trees via an XML-based scripting language[12]. Once

the tree structure is defined in XML, it is compiled using ROS2’s build tools, completing the integration process illustrated

in Fig. 4. Packaged as a ROS2 feature package, behavior tree leaf nodes communicate directly with ROS2; developers create

classes inheriting from synchronous or stateful action nodes and implement ROS2 publishers, subscribers, or service calls, thereby

enabling modular task management and dynamic scheduling.

During integration, behavior tree leaves are implemented as standalone or interrelated ROS2 nodes to be invoked at runtime.

In tunnel firefighting, these leaf nodes perform concrete tasks and decision logic, such as goal evaluation, flame detection and

localization, navigation with obstacle avoidance, and water-cannon control. Condition nodes subscribe to target-state topics and,

based on predefined criteria, decide whether to adjust the mission strategy. Flame detection/localization nodes identify flames in

the environment and compute their positions. Navigation nodes handle path planning and trajectory tracking from the robot’s
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current pose to the target.

The design of the autonomous firefighting system’s behavior tree adheres to modular and hierarchical principles, decomposing

complex behaviors into small, independent nodes or subtrees, each responsible for a single function corresponding to one ROS2

node. The overall system behavior tree is summarized in Algorithm 1.

Algorithm 1 Autonomous Firefighting Behavior Tree

1: Root (Parallel)

2: InspectionTaskSubtree (Sequence): SetGoal, StartCruise, Repeat Until Success→ IsArrival?, StoptCruise

3: FireExtinguishingTaskSubtree (Sequence):

4: RepeatUntilSuccess→ Selector→ [FireDetection, RelativePos > Threshold?]

5: StoptCruise, LocateFire

6: NavigateToFireSubtree (Sequence)→ SetTargetToFire, StartNavigation, Repeat Until Success→ IsArrival?

7: ExtinguishFireSubtree (Sequence):

8: Repeat Until Success With TimeOut→ Subtree (Sequence):

9: ComputeRelativePosition

10: Selector→ [Sequence→ (RelativePos > Threshold?, AimWaterCannon), SucceedImmediately]

11: Selector→ [Sequence→ (IsCannonNotStarted?, StartWaterCannon), SucceedImmediately]

12: Inverter→ FireDetection

13: StopWaterCannon

14: ErrorHandling (Action)

3.2 | Behavior-Tree-Based Autoware Framework Design

The behavior tree leverages the Autoware framework for the navigation-related nodes within the robotic system. Owing to its

modular, extensible, and standardized interface design, Autoware offers a high degree of customizability and scalability. The

planning framework in Autoware comprises three primary modules: mission planning, scheduling, and verification. The mission

planning module—analogous to traditional global path planning—utilizes map data to compute a route from the current pose to

the target pose, thereby providing global guidance. The scheduling module determines the vehicle’s overall maneuver strategy in
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a given scenario, such as starting and stopping, lane changes, or obstacle-avoidance maneuvers, and combines these with the

vehicle’s kinematic constraints to generate smooth, executable trajectories.

Within mission planning, each submodule can be customized for specific scenarios, with multiple trajectory proposals

generated in parallel. A selector node then chooses the active trajectory. After smoothing, the trajectory is passed to the

verification module for safety and feasibility checks; if any potential risk is detected, an emergency plan or alternative path is

triggered.

When integrated with the behavior tree, the tree interacts with the mission planning module interactively, handling tasks such

as setting goal waypoints and retrieving vehicle pose information. Concurrently, the behavior tree controls the scenario selector,

invoking node operations and rule-based logic to choose the appropriate trajectory for each mission. The resulting integrated

architecture is illustrated in Fig. 5.

3.3 | Key Behavior Design

3.3.1 | Visibility-Reward-Based Navigation Algorithm Design

Navigation typically uses data from multiple sensors to compute a path from the robot’s start pose to the goal pose and then

executes trajectory-tracking along that path. For four-wheeled vehicles, the Hybrid A* algorithm[13] is often employed. This

method extends the classical A* by incorporating steering-angle constraints into the search, thereby producing paths that are both

near-optimal and consistent with the vehicle’s kinematic limits. Its total cost function is defined as:


f (n) = g(n)+h(n),

g(n) = ∑
(
w1 ·∆s+w2 · |δ |+w3 · Irev

)
,

h(n) = max
(
dEuc(n,g), dRS(n,g)

)
,

(1)

where ∆s is the path-segment length, |δ | is the absolute steering angle, Irev is the reverse-motion penalty, and w1,w2,w3 are

weighting coefficients. dEuc and dRS denote the Euclidean and Reeds–Shepp distances, respectively. Here, g(n) is the actual cost

from the start node to node n, incorporating distance traveled and steering-change penalties, while h(n) is the heuristic estimate

from n to the goal. Compared with standard A*, Hybrid A* generates smoother, dynamically feasible paths that better handle

narrow passages.
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To ensure that the flame remains within the robot’s line of sight during navigation, we augment Hybrid A* with a visibility-

reward term by incorporating a line-of-sight (LOS) indicator into the heuristic. The modified cost function becomes:

 f ′(n) = g(n)+h′(n),

h′(n) = h(n)+λ · ILOS(n),
(2)

where ILOS(n) is the visibility indicator, equal to 1 if the straight-line segment is unobstructed and 0 otherwise, defined as:

ILOS(n) =
max(∆x,∆y)

∏
k=0

(
1−O(xk,yk)

)
, (3)

with O(·) indicating whether a grid cell is occupied (1) or free (0). The Bresenham algorithm[14] is used to iterate along the

approximate straight line on the occupancy grid. For a start (xo,yo) and goal (xg,yg), we compute:

∆x = |xo− xg|, ∆y = |yo− yg|,

sx = sign(xo− xg), sy = sign(yo− yg),
(4)

and initialize the error term:

ε =

2∆x−∆y, ∆x≥ ∆y,

2∆y−∆x, ∆y > ∆x.
(5)

Then, for each k ∈ {0, . . . ,max(∆x,∆y)}, the update is:

xk+1 = xk + sx, if 2ε ≥−∆y, ε ← ε−2∆y,

yk+1 = yk + sy, if 2ε <−∆y, ε ← ε +2∆x.
(6)

Figure 6 compares the original Hybrid A* and the visibility-reward-augmented version. Although the original generates a

slightly shorter path, it may lose sight of the target behind obstacles. The visibility-reward variant, with only a modest increase in

path length, plans trajectories that maintain the target in view by veering away from occlusions. In tunnel firefighting scenarios,

this improvement trades minimal path efficiency for substantially improved reliability by preserving continuous flame visibility.
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F I G U R E 7 Flowchart of Flame Detection and Localization Algorithm.

3.3.2 | Flame Detection and Localization Algorithm Design

Flame detection in the tunnel is performed using YOLOv8 as the detection backbone. By training YOLOv8 according to the

method of Fatma M. Talaat et al.[15], the resulting flame–detection accuracy exceeds 90%.

Flame localization leverages the distributed-node architecture of ROS2 to partition and process subtasks. Separate nodes

are implemented for detection and localization, each handling a distinct responsibility to achieve target positioning. The overall

workflow is depicted in Fig. 7: the detection node subscribes to and processes image data from the camera, while the localization

node computes the spatial coordinates of the detected flame.

In implementation, a ROS2 node is created to subscribe to sensor_msgs/Image topics. Upon receiving an image

message, it converts the data into a NumPy array and feeds it to the YOLOv8 model. The model returns detection results

containing bounding-box coordinates, confidence scores, and class indices. These are packaged into a custom message—including

the box coordinates, confidence, and class name—and published on a designated topic. The localization node subscribes to this

topic to receive detection data in real time.

Once detection data (bounding boxes, class IDs, confidence, etc.) arrive, the localization node iterates over each bounding

box, computes its center pixel coordinates (ux,uy), and retrieves the corresponding depth value from the depth image. Using the

RealSense SDK, the depth coordinate z is obtained, and the pixel coordinates are converted into camera-frame coordinates (x,y)

according to Eq. 7:


x =

(ux− cx) · z
fx

,

y =
(vx− cx) · z

fx
.

(7)

Here, (x,y,z) denotes the target’s 3D coordinates in the camera coordinate system. The final localization result is shown in

Fig. 8.

3.3.3 | Water-Cannon Aiming Algorithm Design

The water-cannon control node is responsible for actuating the cannon’s on/off switch, adjusting its angles, and setting its

effective range. In ROS2, these operations are implemented as a dedicated package that can be invoked by the behavior tree to

execute the cannon’s actions.

To aim at a detected flame, the rotation angles must be computed. Given the target point and the cannon’s base point, compute

the target vector (dx,dy,dz) by subtraction. In an idealized model, the required horizontal and vertical rotation angles are:
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
θ1 = atan2(dy, dx),

θ2 = arcsin
(

dz√
d2

x +d2
y +d2

z

)
.

(8)

In practice, the vertical rotation angle θ ′2 must account for factors such as firing range, water pressure P, nozzle discharge

coefficient Cd , pipe-friction losses, and air resistance. For a horizontal distance r =
√

d2
x +d2

y , a fixed pressure P, and discharge

coefficient Cd , the effective muzzle velocity ve is:

ve = Cd

√
2P

ρ
(
1+ f L

D
)(

1+ γ
r
D
) , (9)

where 1+ f L
D is the pipe-friction correction factor, and 1+ γ

r
D is an empirical correction for air resistance and jet dispersion.

From the projectile-motion relation,

sin(2θ) =
v2

g
, (10)

we obtain

θ
′
2 =

1
2

arcsin

(
gr ρ (1+ f L

D )(1+ γ
r
D )

2C2
d P

)
− θ2. (11)

Using the small-angle approximation arcsin(x)≈ x, the vertical rotation simplifies to:

θ
′
2 ≈

gρ

√
d2

x +d2
y
(
1+ f L

D
)(

1+ γ

√
d2

x+d2
y

D
)

4C2
d P

− dz√
d2

x +d2
y +d2

z

. (12)
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F I G U R E 9 Experimental platform: (a) physical robot; (b) simulated tunnel fire environment.

4 | EXPERIMENTAL RESULTS AND ANALYSIS

4.1 | Experimental Setup

The experimental platform employs a robot as shown in Fig. 9(a), which comprises a four-wheel chassis, an industrial PC, a

LiDAR, and a stereo camera, offering stable and agile mobility and enabling perception capabilities such as flame and obstacle

detection. To account for the tunnel fire environment and safety considerations, a fire simulation was constructed in Unity, as

depicted in Fig. 9(b). The virtual tunnel consists of two lanes with a single curve, maintenance passages on both sides, and an

overhead lighting system. Relevant logic was implemented to achieve seamless data integration between the virtual environment

and the physical robot.

4.2 | Tunnel Navigation Experiment

To evaluate the execution capability of the behavior tree for cruising and flame-oriented navigation tasks in a tunnel,

experiments were conducted in a virtual environment due to the safety and cost concerns of real tunnel fires. Obstacles and flames

were arranged in the simulation, as shown in Fig. 10. Two vehicles were used as obstacles on the tunnel roadway, and their

positions in the curved section and front of the flame were randomly generated by a Unity script for each trial. Each experiment

consisted of (1) initializing the fire scenario and the flame-detection node, (2) running the behavior tree for navigation toward

the flame, allowing the robot to autonomously plan its path and move, and (3) stopping automatically in front of the flame, after

which all systems were shut down and data were collected.

Thirty trials were performed, recording the navigation time and the final angular deviation of the robot’s orientation facing the

flame; the results are shown in Fig. 11. The average navigation time was 20.22 s with a standard deviation of 0.08 s, and the mean

absolute angular deviation was 4.27° with a standard deviation of 6.21°. The small variation in navigation time across different

obstacle configurations indicates good algorithmic robustness. The larger spread in angular deviation is attributed to the proximity

of obstacles to the flame—when an obstacle lies very close to the flame, it becomes difficult to plan a path that positions the robot

directly facing the flame. Overall, the navigation-related behavior tree executed effectively.

4.3 | Water-Cannon Fire-Extinguishing Experiment

Considering the safety and economic concerns of real tunnel fires, the experiment was conducted in a virtual environment.

Within the virtual tunnel environment, a robot and an ignition point were instantiated, and Unity scripts were used to randomly

generate between one and five flames around the ignition point. The water-cannon extinguishing behavior tree was then executed,
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F I G U R E 1 0 Virtual Environment Navigation Experiment.

F I G U R E 1 1 Virtual Navigation Errors.

as illustrated in Fig. 12. The robot and the ignition point were placed 6 m apart, and trials were performed 10 times at each of

three angles: 0°, 30°, and 60°, recording both the water-cannon operation time and the extinguishing completion rate.

The statistical results are shown in Fig. 13. The average extinguishing times per flame at 0°, 30°, and 60° were 1.7710 s,

2.5599 s, and 3.8651 s, with standard deviations of 0.1975 s, 0.6582 s, and 1.1983 s, respectively. The average time per flame

increases with angle, owing to the greater rotation required by the water cannon. However, the extinguishing success rate also

increases at larger angles, likely because the wider sweep of the water stream covers a larger area, enhancing the extinguishing

effect. Overall, the mean extinguishing time remains low and the completion rate high, demonstrating the effective execution of

the subtask behavior tree.

4.4 | Overall Task Virtual-Environment Experiments

To validate the overall task behavior tree, experiments were first conducted in a virtual environment. Drawing on scenarios

from real tunnel fires, three scenes of increasing difficulty were configured, and the task tree was executed in each.

1) Experiment 1: In the virtual scene, a vehicle-collision fire scenario was set up. After initializing the scene, the behavior tree

was executed. As shown in Fig. 14, with no obstacles present, the robot drives along the roadway; upon detecting and localizing

the flame, it navigates toward it. When the distance to the flame falls below a predefined threshold, the robot halts, activates the
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F I G U R E 1 2 Virtual Environment Water-Cannon Fire-Extinguishing Experiment.

F I G U R E 1 3 Virtual Water-Cannon Fire-Extinguishing Errors.

two-axis water cannon to aim at the flame, and discharges water to complete the extinguishing task.

2) Experiment 2: A self-ignition tunnel-fire scenario was created by placing multiple vehicles as obstacles between the robot’s

path and the flame to occlude detection and localization. The robot behavior tree was then executed following the same procedure

as in Experiment 1. As illustrated in Fig. 15, the robot first performs the cruising task; once the flame is detected, localized, and

within the threshold distance, it navigates toward the target while maintaining it in view. Upon stopping at a safe distance, the

robot controls the water cannon to aim and spray, extinguishing the fire and completing the mission.

3) Experiment 3: A cargo-truck-fire scenario was configured by placing a single flame source near the ignition point and

adjusting the positions of other vehicles. The execution flow, shown in Fig. 16, mirrors Experiment 2: the robot transitions from

cruising to extinguishing, navigates until within the threshold distance of the flame, and then engages the water cannon. During

this phase, the water cannon periodically re-detects and re-localizes the flame, continuing to spray until all flames are extinguished,

thereby concluding the firefighting task.

F I G U R E 1 4 Virtual-Environment Experiment: Vehicle-Collision Fire Scenario.
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F I G U R E 1 5 Virtual-Environment Experiment: Self-Ignition Fire Scenario.

F I G U R E 1 6 Virtual-Environment Experiment: Cargo-Truck Fire Scenario.

4.5 | Overall Task Real-World Validation Experiments

Field tests were conducted in a corridor environment analogous to a tunnel, measuring 15 m in length, 10 m in width, and

featuring a slope of < 5°. Solid alcohol cubes were used as fire sources, and assembled cubic blocks served as obstacles. Drawing

on the virtual-environment experiments, three scenarios of increasing difficulty were validated as follows:

1) Experiment 1: In this scenario, an assembled cube was placed as the fire site, with solid alcohol atop it serving as the

ignition source. Once the fire was lit, all preparatory routines on the firefighting robot— including chassis control, stereo-camera

detection and localization, LiDAR data acquisition, and odometry—were launched, after which the behavior tree was executed.

As shown in Fig. 17, with no obstacles present, the robot advanced a set distance before detecting and localizing the flame. Upon

confirming the distance to the flame fell below the threshold, the robot stopped, activated the two-axis water cannon to aim at the

flame, and discharged water. During this process, the robot periodically checked for flame presence; once the flame could no

longer be detected, indicating successful extinguishment, the mission concluded.

F I G U R E 1 7 Unobstructed Fire-Extinguishing Experiment.
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F I G U R E 1 8 Obstructed Fire-Extinguishing Experiment.

2) Experiment 2: To validate autonomous extinguishing in an obstacle-laden environment, two assembled cubes were added

as obstacles. One cube was placed directly in the robot’s path to impede its cruising behavior, and the other was positioned inline

between the robot and the flame to occlude detection and localization. The robot’s behavior tree was then executed following the

same procedure as in Experiment 1. As depicted in Fig. 18, the robot first performed its cruising task, using Autoware’s built-in

obstacle-avoidance planner to generate a trajectory around the obstacles. Upon detecting and localizing the flame within the

threshold distance, it navigated toward the fire while maintaining the target in view. A Hybrid A* planner augmented with a

visibility-reward term ensured the robot only began turning toward the flame after clearing the occlusion (as observed in panels

7–8 of Fig. 18). After stopping at a safe distance, the robot aimed the water cannon and discharged water until the flame was

extinguished, completing the task.

3) Experiment 3: To further assess the water cannon’s extinguishing capability, an additional flame source was introduced at

the fire site in the setup of Experiment 2, and the obstacle positions were adjusted. As shown in Fig. 19, the procedure mirrored

that of Experiment 2: the robot transitioned from cruising to extinguishing, navigated until within the threshold distance of the

nearest flame, and then actuated the water cannon. During this phase, the cannon periodically re-detects and re-localizes both

flames, extinguishing the one with higher detection confidence before turning to the remaining flame. The task was deemed

complete once all flame sources were extinguished.

5 | CONCLUSION

In this study, to realize the tunnel fire-extinguishing task for a firefighting robot, we present a ROS2-based behavior-tree

design and implement each leaf-node behavior in ROS2. A visibility-reward mechanism is introduced and combined with the

Autoware framework to construct the overall task behavior tree. Experimental results show that key sub-behavior trees perform

well in a virtual environment: under identical distances but varied obstacles, the average navigation time is 20.22 s, with an

angular deviation of 6.21° upon stopping; for water-cannon extinguishing at 0°, 30°, and 60°, the mean times per flame are

1.7710 s, 2.5599 s, and 3.8651 s, respectively. Finally, validations in both virtual and real-world scenarios confirm that the overall

behavior tree executes robustly under different conditions, demonstrating its effectiveness for autonomous firefighting in simple

tunnel environments.
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