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 Wheeled Mobile Robots (WMRs) provide the advantage of stable locomotion on uneven terrain; hence, such 
mechanisms are used for locomotion by outdoor robots including those used for search and rescue. However, 
slippage often occurs when WMRs follows a slope in uneven terrain, and the slippage generates large accumulated 
positioning errors in the vehicle, compared with conventional wheeled mobile robots. An estimation of the wheel 
slip ratio is essential to improve the accuracy of locomotion control. In this paper, we propose an improved 
slip-compensation and adaptive NN control method to allow WMR to follow a slope curve, where stability is 
guaranteed by Lyapunov theory. All system states use neural network online weight tuning algorithms, which 
guarantee small tracking errors and no loss of stability in robot motion with bounded input signals. We 
demonstrate superior tracking results using the proposed control method in various Matlab simulations. 
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1. Introduction 

In recent years, several researchers have investigated the problem 
of controlling nonholonomic systems. A major representative 
nonholonomic system, the wheeled mobile robot (WMR), provides 
the advantage of stable locomotion on uneven terrain during 
outdoor locomotion. Such robots are used for search and rescue, and 
they have attracted considerable attention in the last few years. Most 
authors concentrate on the nonholonomic problem that arises when 
side slip and tangential slip of the wheels are neglected (Kim et al., 
2002).  

Among these systems, many modern control theory techniques 
and stabilizing control algorithms have been proposed for the 
motion control of WMRs. A stable control scheme is proposed for 
an autonomous mobile robot under the assumption of perfect 
velocity tracking (Kanayama et al., 1990). A modified input-output 
linearization method was proposed to solve the problem of a 
decoupling matrix using a generalized inverse that provided a 
least-squares solution to the tracking control of two-wheeled mobile 
robots (Kim et al., 1999). A PID controller was proposed to solve 
the path tracking problem of a mobile robot using a simple 
linearized model of the mobile robot, which was composed of an 
integrator and a delay (Julio et al., 2001). An output-feedback 
controller was proposed that allowed a unicycle mobile robot to 
track a predefined path (Do et al., 2006). However, all of these 

control methods require a known and accurate mathematical model 
of nonholonomic mobile robot systems. 

In practice, fully autonomous WMR control systems need to cope 
with dynamical robot uncertainties, unmodeled or unstructured 
disturbances, and nonlinear friction. Thus, it is difficult to obtain an 
accurate mathematical model for applying computed torque 
controllers or other model-based controllers. Many modern control 
techniques are designed to control the motion of WMRs; however, 
control performance is often degraded by modeling errors, 
information feedback errors, and external disturbances. The neural 
network control of mobile robots has been the subject of intense 
research in recent years (Wang et al., 2006, Li et al., 2009). This 
research has produced new methods for solving the main difficulties. 
Neural networks are most often used as function approximators. 
Wang investigated tracking control using an adaptive smart neural 
network for WMRs and they produced fine motion control based on 
partially unknown dynamics. A neural network-based model was 
presented that combined the backstepping technique with a torque 
controller (Fierro et al., 1997). The control methods stated above are 
designed under the constraint of pure roll and no slip.  

However, slippage always exists between the wheels and ground 
(Ray et al., 2009) when a WMR moves on uneven terrain or 
undulating slopes. The slippage generates large numbers of 
accumulated positioning errors in the vehicle compared with 
conventional WMRs. Therefore, the control systems will be based 
on the effected by wheeled slippage as long as slippage exists when 
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a WMR is in motion; thus, the WMR motion control system will not 
be stable. In order to solve this problem, we propose an approach 
based on the estimation of each wheel’s quantitative slippage, which 
improves the accuracy of the vehicle velocity. The analysis of wheel 
slippage is based on the “Theory of Ground Vehicles” (Wong, 1978). 
Ding showed that slip ratios of all wheels could be obtained by 
experimental study (Ding et al., 2010). Some methods were 
proposed for measuring the linear velocities of wheels and for 
detecting the current velocity of vehicle, which used encoders and a 
gyro-sensor, respectively (Ding et al., 2010, Endo et al., 2007). 
These methods proved useful for estimating the slip ratios of wheels. 
It is difficult to establish a precise mathematical model because of 
external disturbances and unmodeled or unknown system 
parameters. This means that we need an adaptive controller to solve 
these problems. 

In this paper, the author proposes an effective adaptive robust 
motion tracking control method based on neural networks and 
slip-compensation for WMR systems. The control objective is to 
track a specified motion trajectory (e.g., deformable slope) in the 
proposed closed-loop system. This research identifies the model of a 
WMR system, assuming the appropriate slip ratio, and we 
characterize the unknown robot dynamics of the system. This paper 
developed the proposed control method using neural networks to 
model the system dynamics and nonlinearities. The radial basis 
function (RBF) neural network is well suited to uncertain or 
nonlinear functions because to its rapid online learning ability and 
nonlinear characteristics. A robust term can avoid the effects of 
external disturbances. Slip-compensation can decrease the error of 
tracking velocity. In this paper, the control approach includes radial 
basis function neural networks, proportional-differential (PD) 
control strategy, a robust term, and slip-compensation. The author 
use the control approach to overcome unknown system parameters 
and slippage disturbances in the WMR system, and to find a suitable 
velocity control input that stabilizes the closed-loop system. This 
controller guarantees perfect velocity tracking and the posture error 
converges to 0. The proposed control method facilitates precise 
motion tracking performance, which was demonstrated using 
Matlab simulation. 

The remainder of this paper is organized as follows. The basics of 
nonholonomic systems slip ratios, and RBF neural networks are 
introduced in Section II. Section III discusses the robust adaptive 
NN control method based on slip-compensation, and Section IV 
covers the stability analysis. The Matlab simulation is presented in 
Section V. Finally, Section VI concludes the paper. 

2. Preliminaries 

2.1 Nonholonomic WMR Model 

A mobile robot system in an n-dimensional configuration space C 

with the generalized coordinates 1( ,..., )nq q  that is subject to m 

constraints can be described by (Li et al., 2010): 

T( ) ( , ) ( ) ( ) ( ) ( )dq q q q q q q q q         M C F G τ B τ A  (1) 

where ( ) n nq R M  is a symmetric, positive definite inertia 

matrix, ( , ) n nq q R C  is the centripetal and Coriolis matrix, 
1( ) nq R F  denote friction coefficients, 1( ) nq R G  denote 

gravitational torques (or forces), dτ  denotes bounded external 

disturbances and unmodeled dynamics, ( ) n rq R B  is the input 

transformation matrix, 1rR τ  are the input torques supplied by 

actuators, ( ) m nq R A  is the matrix associated with the 

constraints, and 1mR   is the vector of constraint forces.  

Property: 2 .M C  is skew-symmetric: i.e., 

 T 2 0,x x M C  0.x   

The Euler-Lagrangian formulation is used to derive the dynamic 
equations for the mobile robot. Its potential energy U and its kinetic 
energy K is given by [15]: 
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The dynamical equations of the mobile base in Fig. 1 can be 
expressed using a matrix form (1), 
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where m is the mass of the robot, I is the mass moment of inertia 
about the mass center C, 2L is the distance between the driving 
wheels, and r is the radius of the wheel of the mobile robot. Here, 
  is the main direction of the driving wheels of the vehicle,   is 
the slope angle between forward orientation and horizontal surface 
(X-O-Y), d is the distance between the center C and the axis of the 
driving wheels. Previous studies generally assume that G(q)=0 
( 0  ), i.e., the vehicle moves in a horizontal direction. Here, we 
consider G(q) can be not equal to 0, excluding this constraint 
condition. 

We consider that all equality constraints of kinematics are 
independent of time and they can be expressed as follows: 

( ) 0q q A                            (2) 

Let ( )qS  be a full rank matrix, n m , formed by a set of 
smooth and linear independent vector fields spanning the null space 
of ( )qA : 

T T( ) ( ) 0q q S A                       (3) 

According to (2) and (3), it is possible to find an auxiliary vector 
time function ( ) n mt v  such that for all t 

( ) ( )q q t S v                         (4) 

The mobile robot shown in Fig. 1 is a typical example of a 
nonholonomic mechanical system. It has two parallel driving 
wheels mounted on the same axis. The motion and orientation are 
controlled by independent actuators, i.e., DC motors provide the 
necessary torque to the rear wheels. The stability of the platform is 
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ensured by means of a front castor. The position of the robot in an 
inertial Cartesian frame {O, X, Y} is completely specified by the 
vector, where ,  c cx y  are the coordinates of the center C of the 
mass and {C, Xc, Yc} is the local coordinate with an origin of 
( ,  c cx y ) with respect to the inertial basis. 

 

Fig.1. A nonholonomic mobile robot. 

The nonholonomic constraint states that the robot can only move 
in a direction normal to the axis of the driving wheels. Previous 
studies always assumed that the system is subject to a “pure rolling 
without slipping” constraint (Lewis et al., 1993): 

cos sin 0c cy x d       
It follows that S(q) is given by: 
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Under such a constraint condition, the vehicle is described by the 
following kinematic model: 
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( ) ( )q q q S v S v                     (7) 

where  T
v v , v and w are the displacement/linear and the 

angular velocities (which are also functions of time) respectively. In 

addition, maxv v  and max  , maxv  and max  are the 

maximum linear and angular velocities of the mobile robot. 

However, when tangential slippage occurs between the wheels 
and the ground we adopt the following kinematics equations to 
reflect the effects of the slippage: 
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where 1v  and 2v  are the theoretical left- and right-wheel 

velocities, respectively, 2L is the tread, and 1s  and 2s  are the 

slip ratios defined as follows: 
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where 1v  and 2v  are the factual/current velocity of the left and 

right wheels, respectively. If no slippage occurs, the current velocity 

is equal to the theoretical velocity ( 1 1v v  , 2 2v v  ), and the above 

equations (8), (9), (10) result in the conventional kinematics of 

WMRs. 

2.2 Structural Properties of a Mobile Robot 

According to the Euler-Lagrangian formulation, the dynamics of 
system (1) are now transformed into a more appropriate 
representation for control purposes. Using equations (4), (6), and (7), 
the complete equations of motion for the nonholonomic mobile 
platform are given by: 

T

( )( ( ) ( ) ) ( , ) ( ) ( ) ( )

( ) ( )

dq q q q q q q q

q q 

   

 

M S v S v C S v + F G τ
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T T T( ) d    S MSv S MS + CS v F G τ S Bτ     (11) 

Using appropriate definitions, we can rewrite as the following 
equation: 

( ) ( , ) ( ) ( ) dq q q    M v C v F v G v τ τ           (12) 

τ Bτ  

where ( ) r rq M  is a symmetric positive definite inertia 

matrix, ( , ) r rq q C   is the centripetal and Coriolis matrix, 
1( ) rF v  is the surface friction, 1( ) rR G v  denote 

gravitational torques (or forces), dτ  denotes bounded unknown 

disturbances including unstructured, unmodeled dynamics, and 

d dbτ , and 1r   is the input vector. If r = n – m, it 

follows that B  is a constant, nonsingular matrix that depends on 

the distance between the driving wheels, L, and the radius of the 

wheel, r. Equation (6) describes the nonholonomic mobile robot in 

local coordinates attached to its center of mass, while T ( )qS  is a 

Jacobian matrix that transforms velocities v in the local coordinates 

to the constrained velocities q  in Cartesian coordinates. 

Skew-symmetry: The matrix 2M C  is skew-symmetric. 

Under pure rolling without slipping, the linear and angular 
velocities of the WMR system can be denoted by: 
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If slippage occurs between the wheels and the ground during 

movements, the factual velocity is not equal to v, but instead 
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where 1v , 2v are the linear velocities of the right and left wheels, 

which can be measured by encoders, while s1 and s2 are the slip 

ratios of the right and left wheels, respectively. 

The factual velocity fv  can be detected by motion capture using 

a gyro-sensor. Thus, according to (13) we can obtain the slip ratios 

of the right and left wheels as follows: 

1
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2.3 RBF Neural Networks 

Many different models of neural networks have been established 
(Karayiannis et al., 1997, Jung et al., 2001, Gao et al., 2019). They 
are mostly designed for specific objectives. Of these models, the 
RBF neural network is well suited to modeling uncertain or 
nonlinear functions. A typical RBF neural network is shown in Fig.2. 
It is a two-layer network comprised of a hidden layer and an output 
layer. The hidden layer consists of an array of functions, i.e., RBFs, 
while the output layer is merely a linear combination of the hidden 
layer functions. Using this simple structure, the RBF neural network 
facilitates a more effective weight updating procedure compared 
with other, more complex multilayer networks. 

In this study, the RBF neural network was used for function 

approximation. We assume a smooth function ( ) : p mg     

expressed in terms of the RBF neural network as follows: 
T( ) ( ) ( )g   W                (15) 
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0 1 2

   

L

L

m m m mL

w w w w

w w w w

w w w w

 
 
 
 
 
 

W




    


  

 T1 2( ) 1 ( ) ( ) ( )L   θ θ θ θ       (16) 

where pθ  is the input vector, ( 1)L m W  contains the 

ideal thresholds 10 0 ,mw w  and weights 11 mLw w , of the 

neural network, ( 1)( ) L θ  is the activation vector comprising 

the RBFs, and ( ) m θ  is a vector of the neural network 

function approximation errors. 

Using the neural network shown in Fig.2 with a sufficiently large 

number (L) of RBFs in the hidden layer to approximate the smooth 

function ( )g θ  described by (11), there exist positive numbers wb  

and b  such that: 

wF
bW  and ( ) bε θ  θ           (17) 

where the symbols 
F

  and   denote the Frobenius matrix norm 

and Euclidean vector norm, respectively (Hom et al., 1985). For 

control purposes, we only need to know that these ideal 

approximating NN weights exist for a specified value of b . Thus, 

an estimate of ( )g θ  can be given by: 
Tˆˆ ( ) ( )g θ w θ  

where ŵ  is an estimate of w . 

 
Fig. 2. Structure of a two-layer RBF neural network. 

A suitable RBF may be selected from a large class of functions for 

the activation vector (12). A Gaussian function is typically selected 

and the RBF ( )i θ  for 1,...,i L  in (12) is given by: 
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where i  is the mean or center of the function, and i  denotes 

its width.  
A common weight-tuning algorithm is the gradient algorithm 

based on the backpropagated error (Haykin, 2009). Here, the NN is 
trained to match specified exemplar pairs ( , )x y , where x is the ideal 
NN input that yields the desired NN output y. The online tuning 
backpropagation algorithm for the two layers is designated as: 
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where 1 2 3,  ,  0     are the NN learning laws of ,  i iw  , and 

i , respectively. 

3. Robust Adaptive NN Motion Controller Design 

3.1Motion tracking problem 

In this control system, we use two postures: the reference posture 
T( , , )r r r rq x y   and the current posture T( , , )q x y  . A 

reference posture is a goal posture of the vehicle and a current 

posture is its “real” posture at any given moment. The tracking 

position error vector is expressed on the basis of a frame linked to 

the mobile robot [2] as: 
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We can prove that the time derivative of the above position error is 
given by: 

cos

sin
e r e

m e r e

r

y v v

x v

 
 

 

  
    
  

e                 (19) 

1) When the slip is neglected in the control design, an auxiliary 
velocity control law input that achieves tracking for (3) is given by 
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where 1 2 3,  ,  0k k k   are the feedback gains of ,  ,  e ex y and e , 

respectively. If we consider only the kinematic model of the mobile 

robot (6) with its velocity input (20) and we assume perfect velocity 

tracking, then the kinematic model is uniformly asymptotically 

stable with respect to a reference trajectory (i.e., 0me   as 

t  ) . 

The theoretical velocity generates a tracking error in the inner 
closed-loop, which is defined as follows:  
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2) However, when the slippage occurs between the wheels and the 
ground, the actual velocity of the vehicle is not equal to the desired 
velocity due to the wheeled slippage even if the theoretical velocity 

 

1( ) 

2 ( ) 

( )L 

1

2

p







X. Song et al. / IJAMCE 2 (2019) 118-126 

 

satisfies v=vc, c  , such that the real position is expected but 
not equal to the desired position. Therefore, if we do not consider 
the slippage between the wheels and the ground, the designed 
controller will be unstable and it cannot track the reference 
trajectory. To solve this problem, we propose adding a slip- 
compensation method in the design of the controller. If the slip 
ratios of both wheels are detected quantitatively, this controller can 
be implemented to consider the slippage. 

Here, we need to compensate for the loss of velocity caused by 
wheel slippage while maintaining the desired velocity of the WMR 
when we design the controller. Therefore, the velocity control input 
should be compensated based on the estimation of slip ratios using 
Eq. (22)  

1 2

1 21
1

1 1 2

1 2

( ) / 2
ˆ ˆ1 1

( ) / 2
ˆ ˆ1 1

c
c

c

s sv

L
s s

 

  

               

v  

1 2

1 2

( ) / 2
ˆ ˆ1 1

( ) / 2
ˆ ˆ1 1

c c c c

c c c c

v L v L

s s

v L v L
L

s s

 

 

     
  

   

          (22) 

where 1 c cv L   and 2 c cv L   , respectively, are the linear 

velocities from the control input of the right and left wheel before 

slip-compensation, while 1̂s  and 2ŝ  are the estimated slip ratios 

of the right and left wheels, which can be obtained by equality (14). 

After slip-compensation, the velocity tracking error is defined as 
follows: 

3
1 1

4
c c

e

e

 
   
 

e v v                 (23) 

Differentiating (23), using (12), the mobile robot dynamics may be 
written in terms of the velocity tracking error as: 

1 1( ) ( , ) ( )c c dq e q q g    M C e τ x τ            (24) 

where the important nonlinear mobile robot function is defined as: 

1 1( ) ( , ) ( ) ( )c cg q q   x Mv C v F v G v           (25) 

Here, the vector x can be measured by 
TT T T

c c   x v v v . 

Function g(x) contains all the mobile robot parameters, such as 
mass, moments of inertia, and friction coefficients. The nonlinear 
robot function g(x) is often imperfectly known in applications and it 
is difficult to determine. 

3.2 RBF Neural Network Control Scheme 

Many approaches exist for selecting a velocity control v, to be 
used in the steering system of a mobile robot (6). In this section, we 
seek to convert the prescribed control v into a torque control τ  for 
the actual physical WMR. Therefore, we designed an NN control 
algorithm to produce the desired behavior, which is moved by the 
specific choice of velocity, v. 

In previous studies, the nonholonomic tracking problem is 

simplified by neglecting the vehicle dynamics (12) and considering 

only the steering system (6). Thus, a steering system input cv  is 

determined such that (6) tracks the reference cart trajectory. Here, it 

is assumed that there is “perfect velocity tracking” so that 1cv = v , 

and then (11) is used to compute τ . This approach has three 

problems: first, the perfect velocity tracking assumption does not 

hold in practice; second, the disturbance dτ  is ignored; third, the 

approach requires complete knowledge of the dynamics. However, 

“perfect velocity tracking” can be performed effectively if we only 

consider the vehicle’s kinematic model. Therefore, we use the NN 

integrator backstepping method to deal with unmodeled bounded 

disturbances and unstructured, unmodeled dynamics in the vehicle, 

such that 1cv = v .  

In applications, the nonlinear robot function g(x) is at least partially 
unknown. A suitable control input for velocity following is given by 
a neural network computed-torque controller. The unknown system 
function g(x) is approximated using the RBF neural network 
described by (11). A major advantage is that this can always be 
accomplished, due to the RBF NN approximation property. To 
consider the function g(x) given by (25), the vector in (16) is defined 
as: 

TT T T
1 1c c   θ v v v                (26) 

The neural network (15) for (25) is redefined as 6( ) :g  θ  
2 , which is rewritten as: 

T( ) ( ) ( )g   θ w θ θ               (27) 

where ( 1)Lw  is the vector of the ideal threshold and their 

weights. The bounds described by (17) are modified for w and 

( ) θ  and expressed as: 

wbw  and ( )   .b  θ θ            (28) 

The configuration of the proposed robust NNC system, which 

combines a NN controller, PD controller, and robust term, is 

summarized in Fig. 3. The NN controller is connected in parallel with 

the PD controller and robust term to generate a compensated control 

signal. They form the inner closed-loop system that controls the 

velocity error, 1 0ce  , while the outer closed-loop system controls 

the position/trajectory error, 0e  based on slip-compensation.  

 
Fig. 3. Structure of the proposed robust adaptive neural network motion 

control methodology.      

The control law is given by: 

1ˆ sgn( )cg d  τ KE e               (29) 

where ĝ  is an estimate of g and the output torque of NNC, KE is 

the torque produced by the PD controller, and 1sgn( )cd e  is the 

robust term. An estimate of ( )g   can be given by: 
T ˆˆˆ ( ) ( )g  w                      (30) 

where ( 1)ˆ Lw  is the vector of the estimated threshold and 

weights. There is no simple, standard measurement to judge which 

choice is the best, hence, our assumption of ̂   is always 

feasible. The velocity error vector is defined as: 
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1 1

1 1

c c

c c

   
       

v v e
E

v v e                    (31) 

where  P DK K K  and 4 5( , )P diag k kK  as well as 

 6 7D k kK  are positive real numbers. KE is given by: 

1 1P c D cKE K e + K e                  (32) 

Let the NN weights be further adjusted to minimize the velocity 
tracking error. The adaptive law of ŵ  is designated as:  

T
1 1ˆ ˆi c c iw w  e e , 1, 2,...,i n             (33) 

where  1 2
ˆ ˆ ˆ ˆ nw w ww =  , n is the NN output, and   is a 

positive constant. The center of function i  and its width i  use 

the gradient algorithm based on the backpropagated error. 

The simultaneous updates of all three sets of parameters may be 
suitable for non-stationary environments or online settings. 

Using the estimated function ˆ ( )g   given by (30) and (32), the 

control law (29) becomes: 
T

1 1 1ˆ ( ) sgn( )P c D c cd  τ w K e + K e e         (34) 

and the parameter d is defined as: 

21

4d wd b b b є      

which is related to the bounds described by (28), the parameter   
in (33), and a strictly positive constant є . 

4. Stability Analysis 

In this section, we perform system stability analysis of the 
closed-loop behavior in the proposed control methodology. Thus, 
we derive and analyze the closed-loop dynamics. Substituting the 
control input (34) into the mobile robot dynamics system described 
by (24) yields: 

1 1 1( ) ( ) sgn( )D c P c d cg d M + K e = K + C e + + τ e      (35) 

where ˆg g g   is the function estimation error. This estimation 

error is expressed according to (21) and (22) as: 
T( ) ( ) ( )g   θ w θ θ  

where w  is the vector of the threshold and weight estimation 

errors, defined as: 

ˆw = w - w  

Therefore, (29) can be written as follows: 
T

1 1

1

( ) ( ) ( )

                       ( ) sgn( )
D c P c

d cd



 

  


M + K e = K + C e + w θ

θ + τ e
 

Consider the following Lyapunov function candidate: 

   1 1 2, ,c mV V t V t e e  

where 

     TT T
1 1 1 1 1 1

1 1 1
ˆ ˆ,

2 2 2c c c c D cV t      e e Me e K e w - w w - w   

Differentiation yields: 
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1 1 1 1 1 1 1 1
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ˆ ˆ, +tr
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              
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K e e w
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2

1 1

1

2P c c wє b
        

   
K e e w                (36) 

Thus, 1 0V  , 1 0V   are guaranteed to be negative, and this 

shows that 1 0V   and implies 1 0c e  while 1 0c e  as 

t  . Furthermore, (36) shows 1 0V   if and only if 1 0c e . 

Therefore, 1cv v , which equals f cv v  as t  . We 

continue by choosing a Lyapunov functional candidate: 

  2 2
2 2

1
, ( ) (1 cos ) /

2m e e eV t x y k   e  

Differentiation yields: 

  2 2
2 1 3 2, sin / 0m e eV t k x k k   e           (37) 

According to (36) and (37), we can obtain 1 2 0V V V     . 

Therefore, global stability is guaranteed by the standard Lyapunov 

theory. The system stability and velocity tracking convergence are 

guaranteed by the control law (34) driving the system (11), which 

closely tracks the desired motion trajectories. 

If there are no slip ratios between the wheels and the ground, we 

only need to change 1cv  into cv , and 1ce change into ce . This 

case indicates WMR under pure rolling without slipping; hence, we 

do not need to compensate for slippage, and the stability can be 

proved using the same method stated above.  

Remark: In practice, the velocity and tracking errors are not exactly 

equal to zero when using control law (34). The best we can guarantee 

is that the error converges in the neighborhood of the origin. The 

discontinuous function “sign” will give rise to control chattering due 

to imperfect switching in the computer control. This is undesirable, 

because the unmodeled high-frequency dynamics might become 
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excited. To avoid this effect, we apply boundary layer technique (Wu 

et al., 2018) to smooth the control signal. In a small neighborhood of 

the velocity error 1( 0)c e , the discontinuous function “sign” is 

replaced by a boundary saturation function sat( ),  3,4ie i  , 

defined as: 

1  :

sat( )        :

1 :

i

i i i

i

e

e e e

e


   



  
   
  

           (38) 

where   is the specified boundary layer thickness. Thus, based on 
dynamics control, the robust neural network motion tracking control 
law (34) becomes: 

T
1 1 1ˆ ( ) sat( )P c D c cd   τ w K e + K e e       (39) 

5. Simulation Results 

A wheel’s slip ratio is an important state variable. When slippage 

occurs between the wheels and the ground, most of the wheel 

velocities are influenced by the slip ratio, necessitating their 

analysis using a certain slip ratio for movement control. According 

to the definition of the slip ratio, the range of slip ratios is from -1 to 

1 [11]. According to [11] and [12], we know that the change in slip 

ratios is similar to a sine curve and the slip ratio will increase with 

increasing slope. Therefore, we assume that the reference trajectory 

is a space circle, where 3cos( / 3),rx t 3sin( / 3),ry t  

0.4cos(2 3),rz t   and [0,  20]t  and where the initial 

position is Q = (3, 0, 0). The slip ratio can be considered as the time 

variable function “0.4sin(2t/3)”, which increases or decreases with 

the slope angle of the reference trajectory.  

 
Fig. 4. Reference circle trajectory  

We now demonstrate the adaptive robust NN control shown in Fig. 

3. Here, we compare its performance without slippage and with 

slippage between the wheels and the ground, before we compensate 

using the slip ratios for this NN controller, which is indicated by the 

left dashed circle in Fig.4. Three control performances were 

implemented and tested using Matlab Simulink models: 5.1. Robust 

NN controller without slippage; 5.2. Robust NN controller with 

slippage; 5.3. Robust NN controller with slip-compensation. We 

adopt vehicle parameters (Fig. 1) of 10kgm  , 25kgmI  , 

0.2mL  , 0md  , 0.05mr  , under the time varying 

external disturbance T(sin cos ,  1)d t t   , and 1.0m/srv  , 

1 3rad/sr  . The objective is to track the trajectory such that the 

errors in the position and velocity tend to zero. The controller gains 

were selected so that the closed-loop system exhibits a critical 

damping behavior: 1 1,k  2 9,k  3 6,k  {20,10,10,diagK

5} . In the neural network, we selected a radial basis function with 

Nh = 6 hidden-layer neurons and 0.35  .  

5.1 Robust NN controller without slippage 

The response of this controller is described under conditions of 
pure roll and without slip, as shown in Fig.5. The results show that 
this robust NN controller was effective, even when bounded 
unmodeled disturbances and non-symmetric friction were included. 
The performance of the system was clearly improved compared 
with previous methods. Moreover, the NN controller requires no 
prior information about the dynamics of the vehicle. Like the 
classical PID torque controller, the NN controller also provides a 
velocity tracking inner loop. The robust term deals with 
unstructured unmodeled dynamics and disturbances. However, the 
robust NN controller can control the velocity tracking error so that it 
converges to zero, such that the stable state error also converges to 
zero. 

(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 5. No slippage with the NN controller: 
(a) Position errors (b) Position error in the x-axis  
(c) Position error in the y-axis (d) Velocity tracking 

 

x e
, y

e, 
θ e

 

 

 



X. Song et al. / IJAMCE 2 (2019) 118-126 

 

5.2 Robust NN controller with slippage 

The response of this controller is described based on the 
tangential slip of the wheels, as shown in Fig. 6. The results show 
that tracking errors occurred and there were large position and 
velocity error changes. This controller was unstable. 

(a) 

 
(b) 

 
(c) 

 

(d) 

 

Fig. 6. Existing slippage with the NN controller: 
(a) Position errors (b) Position error in X-axis  
(c) Position error in Y-axis (d) Velocity tracking 

5.3 Robust NN controller with slip-compensation 

The response of this controller is shown in Fig.7. We compensated 
for lost velocity due to wheel slippage. It is obvious that the 
tracking errors were almost the same as A. The results show that 
slip-compensation plays a significant role. Thus, when slippage 
occurred between the wheels and the ground, the control method 
with slip-compensation and adaptive NN control laws performed 
well during tracking control. 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 7. No slippage with the NN controller:  
(a) Position errors (b) Position error in X-axis  
(c) Position error in Y-axis (d) Velocity tracking  

6. Conclusion 

In this paper, we proposed and demonstrated a robust adaptive 
motion tracking control method based on RBF neural networks and 
slip-compensation. This control scheme was designed for tracking 
the desired motion trajectory of a wheeled mobile robot system. We 
also designed a neural network learning procedure that enhanced the 
performance of the proposed control scheme, even when tracking 
on uneven terrain. The stability of the inner closed-loop system was 
analyzed. We showed that the velocity tracking error converges to 
zero and that the convergence of the position tracking errors to zero 
is guaranteed by the proposed robust adaptive neural network 
motion tracking control law (39), even though external disturbances 
and unknown system parameters, such as friction and slippage, are 
very difficult to model using conventional techniques. To overcome 
this difficulty, we compensated for the slip ratios of all the wheels 
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and we derived an RBF neural network controller with guaranteed 
performance and described its advantages. One of the most 
important advantages of the control methodology is that no prior 
knowledge is required for the system parameters or for the 
thresholds and weights of the neural networks. Finally, we 
demonstrated the results of precise tracking performance using a 
Matlab simulation. 
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