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 In this paper, a multi-innovation least-squares scheme is proposed for Wiener system on the basis of the 
decomposition technique. Firstly, the linear model is substituted into the special term of nonlinear model by using 
decomposition technique, an estimation model of parameter separation of linear and nonlinear model is 
established, which reduces the computation burden of algorithm. Secondly, a reference model is developed to 
handle the internal signal, which transforms the unknown internal signal into the indirectly measurable signal, 
which enhances the performance of identification method. Finally, the scalar innovation is revised to 
multi-innovation through the usage of certain length, which improves the accuracy of estimation scheme. 
Furthermore, the influences of different noise and different innovation length on the proposed algorithm are 
analyzed. The simulation results show that the proposed estimation approach outperforms the recursive least 
squares method in estimation accuracy and convergence rate. 
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1. Introduction 

System identification technology is to select a model, standard 
and the collected data, and to fit the dynamic of the actual system. 
The model is selected based on the dynamic of the considered 
system, which is usually a simplified version of the real system. 
Standard includes mean square error, least squares standard, output 
error, etc. Data is the basis of system identification. In order to get 
accurate parameter estimation, the length of data should be large 
enough. To judge whether the system identification is successful, 
we can use model verification technology or some quantitative 
index values to test the performance of parameter estimation. In the 
past few decades，System identification technology has been widely 
used in control system, signal processing, fault diagnosis, event 
prediction and other fields, and has made a lot of achievements (Du 
et.al,2018, He et.al,2019,Yang et.al,2018). 

System identification technology includes linear system 
identification technology and nonlinear system identification 
technology. The identification technology of linear system is 
suitable for dealing with linear system, and the performance of 
handling nonlinear system is not ideal. The linear system mainly 
involves ARX, AMRA, CARMA and gain system (Zhao et.al, 2017, 
Bedoui et.al,2015, Jin et.al,2014). The nonlinearity identification 

technology is used to address the nonlinear system, such as 
Hammerstein, Wiener, multivariable nonlinear system, neural 
network, nonlinear state space equation, T-S fuzzy model 
(Meng,2018, Gao et.al,2019, Zhao et.al,2019,Li et.al, 2018).  

Wiener system is a modular non-linear system, which is 
composed of linear sub-models and memoryless non-linear modules 
in series. Such modular combination is very convenient and easy to 
use，and it is a kind of system that can describe the non-linear 
characteristics of many industrial processes (Lu, et al. 2019, Zhang 
et al. 2019, Kashima et al. 2018, Sadghi et al. 2019, Zhang et al. 
2018). Therefore, the study of system identification of Wiener 
system has certain practical significance for the understanding of 
actual system modeling and working process. However, Wiener 
system is composed of different components in series, when the 
identification model is established, it leads to the phenomenon of 
coupling between non-linear parameters and linear parameters, i.e., 
over-parameter problem, redundant parameter estimation, or the 
non-uniqueness of estimated parameters, which increases the 
computation of identification algorithm, especially for the complex 
systems and large-scale systems. In addition, the internal signal of 
Wiener system cannot be measured directly, which also makes the 
difficulty of parameter identification. 

Recursive least squares and its improved form are the most 
widely used identification algorithms in the field of system 
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identification. This is mainly due to its advantages of small 
calculation, strong applicability and convenient online estimation 
(Xia et al. 2019, Elisei-Iliescu et al. 2019, Kasai H. 2019). But it 
also has some shortcomings to be improved. For example, the 
performances of Recursive Least Square (RLS) for the 
identification of colored noise and strong noise are not ideal. The 
low utilization of information in the past and current time of the 
system results in low accuracy, and it is powerless for time-varying 
systems. Therefore, in order to solve these problems, a large number 
of improved algorithms have been designed by researchers and 
successfully applied in the field of system identification. Wang et al. 
(Wang et al. 2018) calculated the inverse function of piecewise 
affine nonlinear function in Hammerstein system, then established a 
parameterized linear regression identification model, and used the 
RLS to estimate the parameters of the model under bounded noise. 
Shi et al. (Shi et al. 2018) used the linear dynamic model to 
approximate the motor according to the working principle of the 
motor. To improve the accuracy of RLS, the discount factor is used 
to modify the corrected gain of RLS and apply it to the parameter 
estimation of the motor model. Ding et al. (Ding et al. 2018) 
explored the hierarchical principle to divide the system model into 
several sub-models identification such that the computational 
complexity of the system is decreased, and then proposed a least 
squares identification algorithm based on hierarchical method to 
estimate the system parameters. Hafezi et al. (Hafezi et al. 2019) 
proposed a recursive generalized least squares scheme to solve the 
problem of ARMA noise model, and compared it with RML method 
to verify the effectiveness of the proposed algorithm. Wei et al. (Wei 
et al. 2019) established the equivalent circuit model of the battery 
system, combined the multi-innovation theory with least squares to 
form a multi-innovation least squares identification method, and can 
effectively estimate of battery parameters under battery charging 
and discharging experiments. In Gan et al. (Gan et al. 2019), the 
projection algorithm is used to estimate the nonlinear parameters of 
the system, and then the multi-innovation least squares estimation 
scheme is presented to estimate the parameters of the linear part. 
Compared with some existing estimation methods, the proposed 
algorithm performs better. From the above literature, we can see 
that there are many ways to improve the least squares, but the 
improvement of multi-innovation theory is a relatively new 
identification method in recent years. At present, the application of 
multi-innovation least squares in linear systems is more, and the 
non-linear systems are relatively less. It is more difficult for a 
non-linear system such as Wiener, which exists the output signal 
distortion because the non-linear part is behind the system. 

In this paper, a decomposition-based multi-innovation Least 
Squares method (D-MILS) is proposed to solve the over-parameter 
problem and the non-unique parameter problem of Wiener system. 
The decomposition technique is used to construct the identification 
model of the system with each parameter separated from each other, 
which reduces the computational burden of the identification 
algorithm. The reference model is established to solve the problem 
of unknown internal signals, and to solve the immeasurable internal 
signals. p data are used to modify the utilization rate of observation 
vectors, to improve the estimation accuracy and convergence speed. 
Finally, the effectiveness and advantages of the proposed estimation 
scheme are compared. 

2. Problem Description 

Consider the Wiener system as shown in Fig.1 

( )u t
fG

( )w t

( )y t( )x t


 

Fig. 1. Block diagram of Wiener system 

where ,G f denote the linear part and nonlinear part. ( ), ( )u t y t are 
the input-output of system. ( ), ( )x t w t are inner and noise signals. 

Wiener system can be represented by the following equation 
( ) ( ) ( )x t G z u t                   (1) 

1

( ) ( ( )) ( ) [ ( )] ( )
n

i
i

i

y t f x t w t x t w t


       (2) 

( )
( )

( )

B z
G z

A z
                     (3) 

where ( ( ))f x t is a combination of basis functions with finite order. 

( )G z denotes rational fraction, where 1
1( ) n

nB z b z b z    ,

1 2
1 2( ) 1 n

nA z a z a z a z       . 

When the Eqs.(1) and (3) are substituted into (2), we have 

1 1

( ) [ ( )] ( )
n n

j i
i

i j j

b
y t u t j w t

a


 

    

which results in the block parameters and too many parameters need 

to be estimated, which increases the computational burden of the 

algorithm, and makes it impossible to obtain the unique 

identification model because there are numerous solutions for the 

composite parameters as long as the results are correct. 

In order to avoid this problem, the decomposition technology 
(Ding et al. 2016, Voros.J.2019) is used to construct the 
identification model in which system parameters are separated from 
each other, so as to reduce the calculation and improve the operation 
efficiency. 

To achieve this goal, based on Eq.(2), 1 ( )x t is selected as the 

key-term, the other items remain unchanged, we have 

1 1 1 2 1
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2 3
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  

  

       

     

    





 (4) 

Eq.(4) is written in compact form as follows: 

( ) ( ) ( )Ty t t w t               (5) 

2
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t x t x t x t n
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x t x t
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



 (6) 
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n n

a a a b b

b
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   
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   (7) 

Before implementing the identification algorithm, some 
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appropriate assumptions have been made for parameter 
identification. These assumptions have been widely used in the field 
of parameter identification and system modeling (Li et al. 2009, 
Wahlberg et al. 2018) 

Assumption : (1) The input is a persistent excitation signal, 

which makes the system identifiable; (2) the linear subsystem is 

stable; (3) to obtain a unique identification model, 1 =1 is given. 

Assumption (1) shows that the all mode of system can be excited, 
and the system is identifiable. In Assumption (2), there is no pole 
zero cancellation in the numerator and denominator of a linear 
system, which is the basis of system identification. Assumption (3) 
indicates that a multiple of the difference between the estimated 
parameter and the actual parameter, according to 1 =1 , we can 
obtain the independent parameters. 

Remark 1: According to the Eq.(7) and Assumption (3), we know 
that the linear and non-linear parameters in the estimated parameters 
are separated from each other and do not contain block parameters 
based on the decomposition technology, which reduces the 
computational cost and improves the identification performance. 

3. Estimation scheme 

The emergence of RLS is to improve the identification ability of 

least squares and adapt to online identification. Based on the Eq.(5), 

the cost function 
2
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The above equation can be rewritten as follows: 
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According to 
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According to prediction error method, by calculating the derivative 

of the object function J to the parameter vector  , we have 

 ˆ
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J
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 
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
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or 

-1ˆ= T T
t t t t ( )H H H Y  

Before deriving recursive least squares, we first introduce a lemma 

about matrix inverse operation 

Lemma 1: Matrix inversion lemma: assume that , ,A B C  are 

matrices, then 1 1 1 1 1( ) ( )A BC A B I CA B CA       holds. 
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 For the same reason, we have 
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This is proof of lemma one. 

Define  
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then, -1ˆ= T T
t t t t ( )H H H Y  can be written as  

ˆ= ( ) ( )P t t   

By using the Lemma 1, combining with matrix inversion, we have 
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For the estimation parameter, we have 
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Further, the expression of RLS can be obtained as follows: 

ˆ ˆ ˆ( ) ( 1) ( ) ( )[ ( ) ( ) ( 1)]Tt t P t t y t t t              (8) 

ˆ( ) ( ) ( ) ( 1)Te t y t t t                        (9) 
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   (10) 

where ( )P t is the covariance matrix. ( )e t represents the scalar 
innovation.  
The form of gain vector can be written as follows: 
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Eqs.(8) - (10) shows that the parameter estimation is conducted 
which only use current time data information, but not consider the 
other time information. This leads to the unsatisfactory estimation 
ability of RLS in some cases. In order to make full use of the system 
information, it is necessary to modify the scalar innovation. The 
most appropriate way is to expand the scalar innovation through 
several groups of data, then, the current and past time data are used 
in parameter updating process, which improves the utilization rate 
of data and thus increases the performance of identification. 

We use p data to modify the scalar innovation, it yields 
multi-innovation ( , )E p t , which has the following form: 

ˆ( , ) ( , ) ( , ) ( 1)TE p t y p t p t t    .   (11) 

Then, the other variables can be written as: 

( , ) [ ( ), ( 1), , ( 1)]p t t t t p       ,    (12) 

( , ) [ ( ), ( 1), , ( 1)]Ty p t y t y t y t p    .  (13) 

According to the modification of Eqs.(11) - (13), the expression 
of multi-innovation least squares is listed as follows. 

ˆ ˆ( ) ( 1) ( ) ( , ) ( , )t t P t p t E p t     ,   (14) 

ˆ( , ) ( , ) ( , ) ( 1)TE p t y p t p t t    ,    (15) 

1 1
0( ) ( 1) ( , ) ( , ), (0)TP t P t p t p t P p I      .  (16) 

In (16), the inverse of the covariance matrix needs to be 
computed, which produces a high computational effort. In order to 

solve this problem, the principle of matrix inversion is adopted. Eqs. 
(14) - (16) can be rewritten as follows: 

 ˆ ˆ ˆ( ) ( 1) ( )[ ( , ) ( , ) ( 1)]Tt t L t y p t p t t             (17) 

( ) ( 1) ( , ) / [ ( , ) ( 1) ( , )]TL t P t p t I p t P t p t        (18) 

0( ) ( 1) ( ) ( , ) ( 1), (0)TP t P t L t p t P t P p I        (19) 

Remark 2: By expanding the scalar innovation into 
multi-innovation vector, the system data are further utilized 
compared with the scalar innovation. Multi-innovation ways can lift 
the data utilization and enhance the precision and speed of the 
estimator.  

Although the identification algorithm is designed, the estimation 

scheme (17)-(19) cannot be implemented because the data vector 

contains internal signal ( )x t . To deal with this issue, we design the 

reference model according to the idea of reference model 

identification (Li et al. 2018, Liu et al. 2019), and use the output of 

the reference model to replace the internal signal, as shown in Fig.2. 

The expression of the reference model ( )refx t is as follows: 

1 1

ˆˆ( ) ( ) ( )
n n

ref i ref j
i j

x t a x t i b u t j
 

     
    

(20) 

( )u t ( )x t ( )y t
f



( )w t

reference model 

refG
( )refx t

original system

( )y t
f



( )w t

G

           Fig.2. The system based on reference model  

The internal signal ( )x t  is replaced by the output ( )refx t , the 

( )t  is also replace by ref ( )t . The data matrix can be written as 

( , ) [ ( ), ( 1), , ( 1)]ref ref ref refp t t t t p        

the multi-innovation is expressed as 

ˆ( , ) ( , ) ( , ) ( 1)T
refE p t y p t p t t     

The multi-innovation least squares can be rewritten based reference 

model as follows: 

ref
ˆ ˆ ˆ( ) ( 1) ( )[ ( , ) ( , ) ( 1)]Tt t L t y p t p t t         (21) 

ref ref ref( ) ( 1) ( , ) / [ ( , ) ( 1) ( , )]TL t P t p t I p t P t p t       (22) 
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ref 0( ) ( 1) ( ) ( , ) ( 1), (0)TP t P t L t p t P t P p I      (23) 

To summarize, we list the steps involved in the MILS algorithm to 
recursively compute the parameter estimation vector ˆ( )t  as t 
increases: 

Step 1: Collect the input\output data ( ), ( )y t t and choose the 

length of sample data N . 

Step 2: For initialize, Let 1,t   6
0 10p  , 0

ˆ(0) /I p  . 

Step 3: Form ref ( , )p t  by (12), and ( , )Y p t  by (13). 

Step 4: Compute ( )L t  by (22), ( )P t  by (23), ˆ( )t  by (21). 

Step 5: When 1t N  , then terminate the procedure and obtain 

the estimates of the parameter vector; otherwise, increment t by 1 

and go to step 3. 

The convergence of MILS is summarized as follows: 

Let us introduce some notation first. E denotes the expectation 

operator, the norm of the matrix X is defined by 
2

[ ]TX tr XX  

det[ ]X X  represents the determinant of the square matrix X ;

max min[ ], [ ]X X  represent the maximum and minimum 

eigenvalues of X , respectively. 

Next, we establish the convergence properties of the MILS 
algorithm. 
Lemma 2: For the MILS and any the innovation length, then the 
following inequality holds: 

1
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Proof: From the definition of ( )P t , we have 
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Taking the determinant of both sides of the above equation and 
using det[I + DE] = det[I, + ED] give 
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By dividing the 1[ln | ( ) |]cP t ,and summing for t give 
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This completes the proof of Lemma 1. 
Theorem 1: For the considered system and MILS algorithm, 

assume that { ( ),F( )}w t t  is a martingale difference sequence, 
where {F( )}t  is a algebra sequence generated by the observation 
data up to and including time t. The sequence { ( )}w t  satisfies the 
noise assumptions: 

(1) [ ( ) | F( 1)] 0E w t t     

2 2 2(2) [ ( ) | F( -1)] ( )wE w t t t       

and there exist 00, 0   ， such that the following 
generalized persistent excitation condition holds: 

0

1

1
(3) ( ) ( )

t
T

i

I i i t I
t

   


   

Then the parameter estimation error almost surely converges 
to zero, i.e., 

ˆlim ( ) 0
t

t 


   

From this theorem, we can see that the parameter estimates 
given by the MILS algorithm always converge to their true values 
and are more accurate than those obtained by the standard LS 
algorithm for the same data length, see the example later. 

The goal of this paper is to design a low computational 
complexity and high accuracy identification algorithm based on the 
collected input-output data, to estimate the parameters of the system, 
and to analyze the advantages of D-MILS by comparing the 
decomposition technique of recursive least squares method 
(D-RLS). 

Remark 3: By using Eq.(20), the unknown inner signal is 
converted into indirectly measurable signals according to the 
reference model of original signal, which makes the unmeasurable 
signal close to the actual signal and improves the identification 
nature. 

4. Example 

Consider the Wiener system: 

( ) 0.65 ( 1) 0.4 ( 2) 0.5 ( 1) 0.25 ( 2)x t x t x t u t u t           

2 3( ) ( ) 0.35 ( ) 0.5 ( ) ( )y t x t x t x t w t      

Based on the considered system, we know that real parameters 

are 1 2 1 2 2 30.5, 0.25, 0.65, 0.4, 0.35, 0.5a a b b        . 

The input signal chooses a random signal whose mean value is zero 

and variance is one, and the noise is white noise. The estimated 

values of D-RLS and D-MILS under different sample sizes are 

listed as Tables 1-2. From the Tabs.1-2, we know that with the 

addition of sample, the estimated parameters fluctuate near the real 

values, and the closer to the expected value, the smaller the 

fluctuation amplitude. Although both algorithms can estimate the 

parameters of Wiener system, but the estimated values of the 

proposed algorithm D-MILS are closer to the real values with high 
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accuracy compared to D-RLS. 

Tab.1. The identification results of D-RLS 

Tab.2. The estimation results of D-MILS 

 

 

 

         Fig.3. The estimation error by both methods 

 
Fig.3 shows the results of D-RLS and D-MILS estimation errors. 

It can be seen from the graph that with the increase of samples, the 
estimation errors of the two estimation schemes are gradually 
reduced, a small steady-state value is finally reached, which shows 
that both D-RLS and D-MILS can identify the parameters of Wiener 
system. Fig. 3 also depicts that the proposed algorithm has better 
estimation accuracy and faster convergence speed than D-RLS. Fig. 
3 is an identification performance of the proposed algorithm under 
different innovation lengths. It can be seen from Fig.4 that with the 
increase of innovation lengths, the convergence rate of estimation 
error is faster, but the oscillation is more serious. The reason for this 
phenomenon is that although the identification algorithm uses more 
and more system information to improve the utilization rate of 
identification data, noise information is also further utilized at the 

same time. At this time, the impact of noise on identification 
performance is also increasing, which leads to the deterioration of 
estimation performance. 

 

Fig.4. The estimation error with different innovation length 

 

Fig.5. Model test output 

 

Fig.6. Output error  

One of the methods to evaluate effectiveness of the parameter 
estimation is to build the corresponding estimation model based on 
the estimated parameters, and compare the difference between the 
model output and the actual output. When the difference is small, it 
shows that the estimation model can describe the output of the 
actual system and the identification algorithm can accurately 
estimate the parameters of the system. However, when the 
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Model error:y-yp D-RLS

Model error:y-yp D-MILS

N 100 500 800 1000 2000 True 

value 

a1 0.667 0.500 0.500 0.500 0.501 0.500 

a2 0.271 0.252 0.251 0.250 0.249 0.250 

b1 0.709 0.654 0.652 0.650 0.647 0.650 

b2 0.614 0.399 0.401 0.399 0.401 0.400 

λ2 0.340 0.348 0.349 0.350 0.350 0.350 

λ3 0.081 0.498 0.496 0.498 0.498 0.500 

N 100 500 800 1000 2000 Real 

value 

a1 0.503 0.501 0.503 0.503 0.501 0.500 

a2 -0.061 0.133 0.169 0.184 0.214 0.250 

b1 0.035 0.428 0.499 0.527 0.582 0.650 

b2 0.228 0.345 0.364 0.372 0.383 0.400 

λ2 0.440 0.374 0.369 0.364 0.356 0.350 

λ3 0.497 0.508 0.498 0.496 0.501 0.500 
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difference is large, it shows that the estimation algorithm cannot 
effectively estimate the parameters of the system, and it can be 
considered that the parameter estimation is the failure. Figs.5-6 
show the model validation and output error results. It can be 
observed that the model output can track the real output, but the 
presented method provides a higher tracking result than the D-RLS 
algorithm. 

Table 3 displays the identification error results of the proposed 

algorithm under different noise levels. From the Tab.3, it can be 

seen that the parameter estimates are close to the real parameters 

under weak noise, and the estimates fluctuate greatly near the real 

values under strong noise, which also shows that noise has some 

adverse effects on the identification algorithm. 

Tab.3. The performance of D-MILS with different noise 

5. Summary 

 Aiming at the parameter identification of nonlinear Wiener 
system, the decomposition technique is used to select the 
decomposition term and substitute it into the corresponding 
expression, and to construct the identification model with fewer 
parameters in the estimated parameter vector, which improves the 
efficiency of the algorithm. For the internal variables of the system, 
the output of the reference model is used to replace the unknown 
internal variables, which lifts the identification performance. In 
order to raise the convergence speed and estimation accuracy of the 
recursive least squares, some data are used to modify the innovation 
vector so that the scalar innovation can be transformed into a 
multi-innovation, and the multi-innovation least squares method can 
be obtained. Finally, the performances of the proposed algorithm 
under different noise and different length of innovation are analyzed 
by simulation. The results show that the proposed algorithm has 
certain advantages. 
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